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How is the cognitive performance of the human brain related to its topological and spatial organization as a complex network embedded
in anatomical space? To address this question, we used nicotine replacement and duration of attentionally demanding task performance
(time-on-task), as experimental factors expected, respectively, to enhance and impair cognitive function. We measured resting-state
fMRI data, performance and brain activation on a go/no-go task demanding sustained attention, and subjective fatigue in n � 18 healthy,
briefly abstinent, cigarette smokers scanned repeatedly in a placebo-controlled, crossover design. We tested the main effects of drug
(placebo vs Nicorette gum) and time-on-task on behavioral performance and brain functional network metrics measured in binary
graphs of 477 regional nodes (efficiency, measure of integrative topology; clustering, a measure of segregated topology; and the Euclidean
physical distance between connected nodes, a proxy marker of wiring cost). Nicotine enhanced attentional task performance behaviorally
and increased efficiency, decreased clustering, and increased connection distance of brain networks. Greater behavioral benefits of
nicotine were correlated with stronger drug effects on integrative and distributed network configuration and with greater frequency of
cigarette smoking. Greater time-on-task had opposite effects: it impaired attentional accuracy, decreased efficiency, increased clustering,
and decreased connection distance of networks. These results are consistent with hypothetical predictions that superior cognitive
performance should be supported by more efficient, integrated (high capacity) brain network topology at greater connection distance
(high cost). They also demonstrate that brain network analysis can provide novel and theoretically principled pharmacodynamic bio-
markers of pro-cognitive drug effects in humans.

Introduction
There is increasing interest in understanding the brain as a com-
plex system, which can be represented using graph theory as a
network of neuronal or regional nodes connected by edges
(Bullmore and Bassett, 2011; Sporns, 2011). Brain graphs high-
light the topological pattern of (axonal or synaptic) connections
between (regional or neuronal) nodes. It has been found that
human brain functional networks, in common with many other
complex systems (Stam, 2004; Skudlarski et al., 2008; Deuker et
al., 2009; Fornito et al., 2011; Gallos et al., 2012), have nonran-

dom topological features, including the small-world property of
high efficiency (or short path length between pairs of nodes)
combined with high clustering (a measure of cliquish connec-
tions between topologically neighboring nodes) (Onnela et al.,
2004; Bassett et al., 2010). However, it is not yet clear how the
topological properties of human brain networks can be related to
their information processing functions.

Previous studies have shown that individual differences in the
global efficiency of normal human brain networks are associated
with individual differences in the IQ or working memory task per-
formance (Hampson et al., 2006; Li et al., 2009; van den Heuvel et al.,
2009). These results are compatible with some contemporary net-
work theories of information processing in the brain [like the “brain-
web” (Varela et al., 2001) or “workspace” theories (Dehaene et al.,
1998; Baars, 2002)] that predict that fast and automatic processing
may be computed in spatially localized and topologically segregated
brain regions, but slower, more consciously effortful or attentionally
demanding task performance is dependent on a more topologically
integrated and spatially distributed network architecture. By this ac-
count, superior cognitive performance should be associated with
greater efficiency of information transfer (shorter characteristic path
length) and less topological clustering, subtended by greater mean
anatomical distance between connected nodes.

We tested these hypothetical predictions directly using a novel
experiment designed to measure brain functional networks under
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experimentally controlled conditions of two
factors—nicotine and fatigue-inducing sus-
tained task performance—that were ex-
pected, respectively, to enhance and impair
cognitive function in healthy cigarette
smokers. Nicotine abstinence in dependent
cigarette smokers is associated with a state of
relative cognitive impairment, which
can be restored by nicotine replacement
(Newhouse et al., 2004); nicotine-induced
improvements on behavioral performance
have also been described in the absence of
nicotine withdrawal (Pritchard et al., 1992;
Warburton and Arnall, 1994). We therefore
expected that nicotine administration
would be associated with improved task
performance as well as greater efficiency and
connection distance of brain functional net-
works in briefly abstinent cigarette smokers.
Conversely, fatigue is well known to be asso-
ciated with impaired cognitive performance
(Smit et al., 2004; Holtzer et al., 2011). We
therefore predicted that, as the duration of
task performance was increased and partic-
ipants became subjectively more fatigued,
functional networks would adopt a less
globally efficient, more locally clustered,
configuration with shorter distances be-
tween functionally connected nodes.

Materials and Methods
Participants. Eighteen healthy right-handed
cigarette smokers were recruited (mean �
SEM, age, 27.56 � 1.84 years; range, 19 – 44
years; 11 men and 7 females). Subjects smoked
on average 16.3 � 2.02 cigarettes/d (mean �
SEM; range, 6 –35 cigarettes/d). The Fagerström scale scores (range,
0 –10; Fagerström, 1978; Heatherton et al., 1991) indicated mild-to-
moderate degrees of nicotine dependence (mean � SEM, 3.47 � 0.55;
range, 0 – 8.5). Subjects with �4 mm translation or 4° of head rotation in
any plane during fMRI scanning were excluded from additional analysis
(n � 1).

Ethical approval was obtained from the ethics committee of the Ger-
man Psychological Association. All procedures were performed with
written informed consent of all subjects and in accordance with the prin-
ciples of the Declaration of Helsinki.

Nicotine administration. Participants were studied in a double-blind,
randomized, placebo-controlled, crossover design: once after nicotine
and once after placebo. Nicotine was delivered in the form of a 4 mg
nicotine polacrilex gum (Nicorette; McNeil AB), a nicotine dose that has
strong effects on attentional performance in cigarette smokers (Parrott
and Craig, 1992). A form-, taste-, and size-matched gum served as pla-
cebo (McNeil AB). To control for effects of chew rate, subjects were asked
to chew the gum at a rate of one chew per 1.5 s (controlled by a metro-
nome; Nemeth-Coslett et al., 1988). The gum was chewed for 30 min,
which is approximately the time of maximum plasma concentration of
nicotine reported previously after gum administration (Benowitz et al.,
1988). Scanning started immediately after chewing had finished and
lasted for 43 min. It has been reported that plasma concentrations of
nicotine remain stable over this time period after administration of a
single dose by gum chewing (Benowitz et al., 1988; Hukkanen et al.,
2005).

Design and fMRI paradigm. The two sessions were separated by at least
2 weeks. All subjects were instructed to refrain from smoking 2 h before
the experiment, and indeed they reported that they smoked their last
cigarette on average �2 h before the beginning of the experiment

(mean � SEM, 144.72 � 11.43 min). The self-reported duration of nic-
otine abstinence before testing did not significantly differ between drug
conditions (mean � SEM, placebo, 155.83 � 20.04; nicotine, 133.61 �
9.39; t(17) � 1.03, p � 0.31). Furthermore, to corroborate self-reported
assessments of recent smoking behavior, the carbon monoxide concen-
tration in exhaled air was measured (CO-Check; NeoMed). The carbon
monoxide level is correlated with the blood level of carboxyhemoglobin
and is a marker of tobacco smoke absorption and smoking behavior
(Wald et al., 1981; Cunnington and Hormbrey, 2002). The breath test of
carbon monoxide level for each subject revealed no significant differ-
ences in smoking behavior before the two test conditions (t(17) � 0.56,
p � 0.58; mean [CO] before placebo, 24.11 � 2.77 ppm; mean [CO]
before nicotine, 23.22 � 2.76 ppm).

Each scanning session was divided into different time periods in which
either resting-state oscillations or task-related activations were measured
using fMRI (Fig. 1 A, B). There were three resting-state blocks comprising
256, 256, and 512 scans; each block of 256 scans corresponded to 6.4 min.
The third resting-state block was subsequently divided into two halves,
resulting in four resting-state periods with 256 scans each. There were
two task blocks, each comprising 339 scans acquired during presentation
of task instructions and 238 trials over the course of 8.5 min. Thus, the
scanning experiment lasted 43 min in total.

During task blocks, participants performed a version of the reversed
continuous performance test (Conners, 1995). Sets of three letters were
serially presented at a central location (Fig. 1B). Participants were in-
structed to press a button when the central letter was a prespecified go
stimulus (“C,” “G,” “D,” “W,” “K,” or “Y”) and not to press the button
when the central letter was one of two no-go stimuli (“X” or “O”; bal-
anced over subjects). Each central letter was flanked by a pair of identical
letters (“X” or “O”). Between letter presentations, fixation crosses were
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Figure 1. Experimental task and nicotine effects on behavior. A, Paradigm. Subjects were assessed in two fMRI sessions, once
after placebo and once after nicotine in a double-blind crossover design. Each fMRI session consisted of four resting-state and two
task periods. B, Task. During task periods, subjects performed a continuous performance test; during rest periods, subjects kept
their eyes open and looked at a centrally presented stimulus (%%%). C, Behavioral effects of nicotine. Left, Nicotine significantly
reduced reaction times to go trials (error bars indicate mean � SEM); right, scatter plot of the effect of nicotine on errors in no-go
trials [no-go errors (nicotine) � no-go errors (placebo); y-axis] versus no-go errors at baseline, after placebo (x-axis). Participants
who performed the task least well at baseline demonstrated the greatest performance-enhancing effects of nicotine (gray areas
within the regression plot represent the 95% confidence interval for the fitted regression line).
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presented (“���”). Behavioral performance was measured by the la-
tency of correct response to the go trials and by the accuracy of response
to the no-go trials. No-go commission errors entailed incorrectly making
a motor response to one of the designated no-go stimuli.

During the resting-state periods, participants were instructed to lie
quietly with their eyes open (Raichle et al., 2001, p 680) and to attend to
a centrally presented stimulus (“%%%”).

Before and after each scanning session, participants completed ques-
tionnaire measures of subjective fatigue, including the German Multidi-
mensional Mood State Questionnaire (Steyer et al., 1997) and the
Stanford Sleepiness Scale (Hoddes et al., 1996).

fMRI data acquisition. A Siemens MAGNETOM Sonata MRI system
(1.5 T) was used to obtain T2*-weighted echo-planar images with BOLD
contrast. A total of 1729 volumes of 17 4-mm-thick axial slices were
acquired sequentially with between-slice gap of 1.6 mm, repetition time
of 1.5 s, echo time of 50 ms, matrix size of 64 � 64, and voxel size of
3.125 � 3.125 � 4 mm 3.

Preprocessing and time series analysis. The brain scans were corrected for
head motion by spatially realigning them to the first brain volume, and the
time series of each voxel was corrected for slice timing offsets using SPM5
(http://www.fil.ion.ucl.ac.uk/spm/). The functional images were spatially
normalized to standard stereotaxic MNI space (Montreal Neurological In-
stitute; http://www.mni.mcgill.ca/). Based on an anatomically parcellated
and labeled T1 volume provided by the AAL toolbox (Tzourio-Mazoyer et
al., 2002), a brain template with 477 cortical and subcortical brain regions
was generated by randomly subdividing each parcel of the AAL template into
smaller subparcels. To avoid possible biasing effects of parcel sizes on func-
tional connectivity (Salvador et al., 2008; Fornito et al., 2010), we ensured
that the range in size of the 477 nodes generated by subparcellating the AAL
template was substantially smaller (0.10–6.81 cm3; sixfold smaller) than the
range in size of the 90 nodes of the template (1.76 – 40.83 cm 3, regions of
cerebellum were excluded).

This template was used to extract the mean fMRI time series for each
region for each participant during each resting-state period (Zalesky et al.,
2010).

To account for signal changes attributable to head movements, each re-
gional mean time series was regressed on the estimated time series of six head
movement parameters (translations and rotations in all three planes).

To assess the possible impact of small, transient head movements on
functional connectivity measures, we measured framewise displace-
ments of the preprocessed time series and removed all frames of data that
might have been affected by head motion [total framewise displacement
�0.5 mm or when the root mean square of voxelwise percentage signal
change is �0.5%] following previously published methods for “scrub-
bing” (Power et al., 2012). We calculated the relationship between �R
(“scrubbed” correlation matrix minus “unscrubbed” correlation matrix)
and the Euclidean distance between pairs of brain nodes. We first com-
puted this at the single-subject level and subsequently averaged �R values
across subjects for the group-level analysis, as described by Power et al.
(2012).

Using the maximal overlap discrete wavelet transform (Percival and
Walden, 2006), each regional time series was bandpass filtered into five
wavelet scales corresponding to different frequency intervals. The wavelet
correlation was estimated between each pair of regional time series at each
wavelet scale. This resulted in a set of five wavelet scale-specific association
matrices for each subject and resting-state period. The global strength of
functional connectivity was estimated simply as the mean of each association
matrix. In a first step, the global connectivity strengths were compared be-
tween different drug conditions, resting-state periods and frequency ranges
in an overall ANOVA. In a second step, effects of nicotine and placebo were
compared in each frequency scale with paired t tests.

Graph analyses. Binary graphs of arbitrary connection density were
constructed by thresholding each association matrix to create an adja-
cency matrix. A thresholding algorithm based on the minimum spanning
tree (MST) was used to ensure that all regional nodes were connected by
at least one edge to the rest of the network even at the sparsest connection
density (Alexander-Bloch et al., 2010).

Networks were constructed at 15 different connection densities, in the
range 1.7–50%, with smaller sampling intervals at the sparser or less

densely connected end of the range. The connection density defines the
number of edges in a graph and is expressed as the number of edges in the
graph as a percentage of the maximum possible number of edges: (N �
N � N )/2 � 113,526. Three key topological metrics were estimated for
each graph at each connection density: (1) the global efficiency; (2) the
nodal efficiency; and (3) the local efficiency (Latora and Marchiori,
2001).

Global efficiency (Eglobal) is a measure of the capacity of the network
for parallel information transfer and is estimated by the inverse of the
harmonic mean of the minimum path lengths (the smallest number of
intervening edges) between each pair of nodes Li,j, and N is the number of
nodes within the graph G:

Eglobal �
1

N�N � 1	 �
i
j�G

1

Li, j
.

Thus, networks that have a highly integrated organization, characterized
by short minimum path length between any pair of regional nodes, will
have high global efficiency. The nodal efficiency is likewise inversely
related to the path length of connections between a particular node and
the rest of the network:

Enodal�i	 �
1

�N � 1	 �
j�G

1

Li, j
.

Local efficiency is closely related to the clustering coefficient (Watts and
Strogatz, 1998) and reflects the capacity of the network for information
transfer between the nearest neighbors of a particular node i:

E local �
1

NGi
�NGi

� 1	 �
j,k�Gi

1

Lj,k
,

where NGi
is the number of nodes in the nearest neighborhood subgraph

Gi (nodes with a direct connection to node i). This can be averaged over
all nodes to estimate the local efficiency of the graph as a whole. Thus,
networks that have a cliquish organization, characterized by many con-
nections between the nearest neighbors of any given node, will have high
local efficiency or clustering. To avoid terminological confusion with
global and nodal efficiency, we will refer to this metric here as a measure
of clustering.

Physical distance of functional connections. The physical distance be-
tween connected nodes was estimated simply as the Euclidean distance
between the centroids of each region in a standard stereotactic space. Like
the metrics of network topology, mean physical connection distance was
estimated for each graph at each connection density in the range 1.7–
50%. For each network at 50% connection density, we also estimated the
distribution of connection distance by counting the number of edges in
each of several bins ranging from shortest distance (0 –10 mm) to longest
distance (160 –170 mm).

Statistical analyses of behavioral and topology measures. Repeated-
measures ANOVA models were used to estimate the main effect of drug
(placebo vs nicotine), the main effect of time-on-task, and the drug �
time interaction for each behavioral variable and each resting-state net-
work metric. For the analysis of resting-state network metrics, each met-
ric was averaged over the connection density range (1.7–50%) defined a
priori. Because our graph-building algorithm was based on the MST, we
used a multiple of the number of edges of the MST (476 � N � 1) for the
first sampling point [4 times the number of edges of the MST � (476 �
4)/((477 2 � 477)/2) � 1.7% connection density]. In agreement with
previous studies on functional brain topology (Lynall et al., 2010), we
stopped at 50% connection density because connections at higher costs
are likely to be nonbiological and influenced by noise. Furthermore, a
cost range up to 50% covers the cost levels in which previous analyses
found drug effects on functional brain network topology (Achard and
Bullmore, 2007). We averaged graph metrics across the entire cost range
to avoid multiple comparisons at individual sampling points and to re-
duce the dependency of any significant differences in network topology
on the arbitrary choice of a single connection density. This approach has
been used in previous graph analyses (Bassett et al., 2008; Lynall et al.,
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2010), and its theoretical background was discussed in detail by Ginestet
et al. (2011). For the behavioral data, time-on-task was modeled as a
categorical factor with two levels, corresponding to the two task blocks
during which behavior was recorded. For the network data, time-on-task
was modeled as a categorical factor with four levels, corresponding to the
four resting-state periods during which fMRI data were recorded. In all
regression modeling of the effects of time-on-task, this factor was coded
in minutes, corresponding to the midpoint in time of each of the task or
resting-state blocks.

We estimated Pearson’s correlations to explore the relationships be-
tween the effects of nicotine on network metrics and its effects on behav-
ior and to explore the relationships between nicotine consumption and
the behavioral and network effects of nicotine replacement. For statistical
inference on behavioral and global network metrics, we used p � 0.05 as
the threshold for significance. To control type 1 error in the context of the
multiple comparisons entailed by analysis of nodal efficiency and clus-
tering at each of 477 regional nodes, we used p � 0.002 (1 of 477) as the
threshold for significance, so that less than one false positive test is ex-
pected for each whole-brain analysis of nodal network properties. Effects
on nodal level were investigated in networks with 10% connection den-
sity (i.e., the connection density associated with the strongest network
effects of nicotine and time-on-task; see Fig. 2).

Overlap between task-related activations and changes in network topol-
ogy. In an additional analysis, we investigated how nodal changes in
resting-state network topology might be related to brain regional activa-
tion by task-related processing. Therefore, fMRI data acquired during
the two different task periods within the placebo condition were cor-
rected for head movements and slice timing offsets and were spatially
smoothed with a three-dimensional Gaussian filter (8 mm full-width at
half-maximum). Task activations for go and no-go trials were modeled
for each subject separately using a general linear model. For each subject,
the contrast between correct no-go and go trials was estimated. In a
group-level analysis, these contrasts were tested for significance by a
one-sample t test with one-sided p � 0.001 uncorrected and also at
a more conservative p value to control the familywise error rate at 5%.
This thresholded brain activation map (with p � 0.001 uncorrected) was
used as inclusive binary mask that was combined with the parcellated
regions that demonstrated significant drug effects on nodal topology. If
there were �20 continuous task-activated voxels that anatomically over-
lapped with the volume of a node that also showed drug effects on
resting-state topology and if these overlapping voxels covered �20% of
the volume of a node, we identified this heuristically as a region of overlap
between task-related activation and drug effects on resting-state network
topology. As shown in Figure 3, there were several such regions identified

in which nicotine-related effects on network topology occurred in re-
gions that were also normally activated by task performance. The same
approach was used to find regions of overlap between task-related acti-
vations and time-on-task effects on resting-state topology.

Results
Go/no-go task performance: behavioral data
Participants generally performed the task well (Table 1). Nicotine
treatment significantly reduced latency of correct response to go
trials [go reaction time (RT)], whereas greater duration of time-
on-task tended to increase no-go errors (Fig. 1C; Table 4, Behav-
ioral data). There was no significant correlation between no-go
error rates and go RT (r(16) � �0.18, p � 0.46) nor between
no-go error rates and RTs for incorrect no-go trials (r(16) �
�0.32, p � 0.20).

Self-reported sleepiness: questionnaire data
Participants maintained wakefulness throughout testing proce-
dures. Time-on-task significantly increased subjective sleepiness
measured by both questionnaires; nicotine tended to reduce
sleepiness measured by the Stanford Sleepiness Scale (Tables 2, 4,
Questionnaire data).

Functional connectivity: resting-state fMRI data
In the resting-state data, an overall ANOVA testing for effects on
functional connectivity of drug, frequency bands, and time-on-
task revealed a significant drug effect (F(1,17) � 7.86, p � 0.01), a
significant frequency band effect (F(4,68) � 55.51, p � 0.001), and
a significant drug � frequency bank interaction (F(4,68) � 2.72,
p � 0.04). Post hoc analyses showed that connectivity was reduced by
nicotine compared with placebo in each of the five wavelet scales or
frequency intervals covering the range from 0.0208 to 0.3333 Hz.
Drug effects were most significant and showed the highest t value at
wavelet scale 2 (0.08–0.17 Hz); therefore, we focused additional
analysis on networks representing correlated oscillations in this fre-
quency range. Within this frequency range, there was no main effect
of time-on-task or drug � time interaction on strength of connec-
tivity (Table 4, Functional connectivity).

Drug effects at all wavelet scales are summarized for complete-
ness here: scale 1, t(17) � 2.210, p � 0.041; scale 2, t(17) � 2.709,
p � 0.015; scale 3, t(17) � 2.213, p � 0.041; scale 4, t(17) � 2.116,
p � 0.049; and scale 5, t(17) � 2.630, p � 0.018.

Functional networks: topological metrics of brain graphs
Nicotine tended to increase global efficiency and significantly
decreased mean clustering (Fig. 2A–C; Tables 3, 4); whereas the
effect of time-on-task was to significantly decrease global effi-
ciency and to increase clustering (Fig. 2D,E). Clustering mono-
tonically increased [t(68) � 2.46, p � 0.02, Markov chain Monte
Carlo (MCMC) estimated level of significance, p � 0.04; Baayen
et al., 2008] and global efficiency monotonically decreased as a
function of increasing time-on-task (t(68) � �3.26, p � 0.002,
MCMC, p � 0.008; Fig. 2F).

We further investigated the effects of nicotine on topolog-
ical metrics at the regional nodes (Fig. 3 B, C). In all nodes in
which nicotine or time-on-task significantly affected network
topology, both factors showed consistent effects: nicotine re-
duced clustering and increased nodal efficiency, whereas time-
on-task increased clustering and decreased nodal efficiency. In
most of the nodes, only one metric was significantly influ-
enced (clustering or nodal efficiency). Thus, drug-related
changes in nodal efficiency were located in different anatom-
ical regions compared with drug-related changes in nodal

Table 1. Sample means � SEMs for behavioral data

Go trials No-go trials

TP 1 TP 2 TP 1 TP 2

Behavioral data
RT (ms)

Placebo 410 � 9 407 � 7 395 � 36 397 � 33
Nicotine 395 � 9 393 � 10 359 � 14 362 � 13

Error (%)
Placebo 1.14 � 0.58 1.20 � 0.78 12 � 2.05 15 � 1.95
Nicotine 0.46 � 0.15 0.44 � 0.14 11 � 2.23 13 � 2.28

TP, Task period.

Table 2. Sample means � SEMs for questionnaires before and after each scanning
session

SSSa Awake–tired scale (MDBF)b

Before After Before After

Placebo 2.11 � 0.20 3.94 � 0.26 15.50 � 0.76 11.06 � 0.65
Nicotine 1.72 � 0.18 3.72 � 0.30 16.00 � 0.55 11.94 � 0.96

MDBF, German Multidimensional Mood State Questionnaire; SSS, Stanford Sleepiness Scale.
aHigher values: higher sleepiness.
bHigher values: higher awakeness.
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clustering. However, as shown in Figure 2, drug effects on
efficiency and clustering were correlated at a global level. This
suggests that the effect of nicotine to shift the network globally
to a more integrative configuration was mediated by comple-
mentary increases in nodal efficiency in some regions and by
decreases in nodal clustering in other regions.

Only in the right caudate nucleus did time-on-task both increase
clustering and decrease nodal efficiency (see slice Z � 16; Fig. 3C).
Furthermore, there was only one node in which both experimental
factors, nicotine and time-on-task, had a significant influence on
network topology. Within the right middle frontal gyrus, nicotine
decreased and time-on-task increased clustering (see slice Z � 10;
Fig. 3B,C).

In a second analysis, we further investigated whether the effects
nicotine and time-on-task at the level of regional nodes overlapped
with brain regions that were also activated in no-go trials (compared
with go trials). Nicotine reduced clustering at a number of mainly
posterior cortical nodes that overlapped with task activations during
no-go trials within the right middle frontal gyrus, left middle occip-
ital gyrus, right precentral sulcus, right superior temporal gyrus,
right posterior cingulate gyrus, and right angular gyrus (Fig. 3B). In
contrast, nicotine increased nodal efficiency in anterior nodes, in-
cluding the right and left inferior frontal gyrus and the right middle
frontal gyrus (Fig. 3B). Time-on-task increased clustering within the
middle temporal gyrus and middle frontal gyrus (Fig. 3C).

Nicotine and time-related changes in network topology
correlate with their behavioral effects
Participants who had most improved task performance (or re-
duced frequency of no-go errors) after nicotine also tended to
show greater nicotine-related increases in network global effi-
ciency (r(16) � �0.61, p � 0.007) and greater nicotine-related
decreases in network clustering (r(16) � 0.66, p � 0.003) (Fig.
4A,B). Effects of nicotine on nodal efficiency and clustering were
also correlated with its effects on no-go errors: for example, clus-
tering of connections to right posterior cingulate cortex was most
decreased in subjects who had greatest behavioral benefit from
nicotine (r(16) � 0.63, p � 0.005), and efficiency of connections to
right motor cortex was most increased in subjects for whom nic-
otine had most performance-enhancing effects (r(16) � �0.58,
p � 0.01). Additional significant correlations between the effects
of nicotine on nodal clustering and its effects on no-go errors
were found in the right middle frontal gyrus (r(16) � 0.51, p �
0.03), right superior temporal gyrus (r(16) � 0.50, p � 0.03), right
precentral sulcus (r(16) � 0.48, p � 0.05), and left long insular gyri
(r(16) � 0.58, p � 0.01). The effects of nicotine on efficiency also
correlated significantly with effects on no-go errors within the
right paracentral lobule (r(16) � �0.51, p � 0.03).

Nicotine-related changes in task performance were also cor-
related with baseline (pre-dose) performance levels (r(16) �
�0.59, p � 0.009; Fig. 1C) and network efficiency (r(16) � 0.52,

Table 3. Sample means � SEMs for functional connectivity, network topology, and distance metrics

RS 1 RS 2 RS 3 RS 4

Functional connectivitya

Placebo 0.1257 � 0.0141 0.1262 � 0.0151 0.1365 � 0.0163 0.1566 � 0.0202
Nicotine 0.1128 � 0.0121 0.1155 � 0.0213 0.1203 � 0.0172 0.1153 � 0.0159

Functional network topology and distance
Global efficiency

Placebo 0.5512 � 0.0006 0.5495 � 0.0009 0.5487 � 0.0010 0.5482 � 0.0012
Nicotine 0.5515 � 0.0007 0.5504 � 0.0012 0.5507 � 0.0007 0.5500 � 0.0009

Clustering
Placebo 0.5636 � 0.0078 0.5724 � 0.0087 0.5799 � 0.0089 0.5875 � 0.0117
Nicotine 0.5554 � 0.0080 0.5583 � 0.0124 0.5634 � 0.0091 0.5646 � 0.0102

Distance
Placebo 68.07 � 0.51 67.30 � 0.74 66.47 � 0.78 66.29 � 0.6
Nicotine 68.72 � 0.42 67.66 � 0.99 67.49 � 0.56 67.12 � 0.86

RS, Resting-state period.
aWavelet scale 2; 0.08 – 0.17 Hz.

Table 4. ANOVA results for the effects of drug, time-on-task, and drug � time on behavioral data, questionnaires, functional connectivity data, and functional network
topology and distance metrics

Drug Time-on-task Drug � time

F dfs Pr(�F) F dfs Pr(�F) F dfs Pr(�F)

Behavioral data
RTs of go trials 7.08 1,17 0.02** 0.58 1,17 0.46 0.05 1,17 0.82
Errors of no-go trials 0.44 1,17 0.52 3.42 1,17 0.08* 0.11 1,17 0.75

Questionnaire data
SSS 3.15 1,17 0.09* 67.62 1,17 �0.0001** 0.14 1,17 0.72
Awake–tired scale (MDBF) 2.59 1,17 0.13 36.45 1,17 �0.0001** 0.08 1,17 0.78

Functional connectivitya

Global correlations 7.34 1,17 0.01** 1.04 3,51 0.38 1.20 3,51 0.32
Functional network topology and distance

Global efficiency 3.94 1,17 0.06* 5.17 3,51 0.003** 0.85 3,51 0.47
Clustering 8.85 1,17 0.009** 3.62 3,51 0.02** 0.80 3,51 0.50
Distance 1.41 1,17 0.25 5.65 3,51 0.002** 0.18 3,51 0.91

MDBF, German Multidimensional Mood State Questionnaire; SSS, Stanford Sleepiness Scale; Pr(�F), p values associated with the reported F-statistics. *p � 0.10; **p � 0.05 (two-sided).
aWavelet scale 2; 0.08 – 0.17 Hz.
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p � 0.03). In other words, participants who had poorest perfor-
mance on the task and least efficient brain networks in the base-
line condition tended to demonstrate greatest improvements in
performance after nicotine replacement.

Network topological changes were less consistently correlated
with the behavioral effects of time-on-task. There was no signif-
icant correlation with global efficiency (r(16) � �0.29, p � 0.25).
However, subjects who performed more poorly as a function of
increasing time-on-task also showed greater increases of network
clustering (r(16) � 0.56, p � 0.02; Fig. 4C).

Functional networks: physical distance of
functional connections
We estimated the physical distance between functionally con-
nected nodes as the Euclidean distance between the centroids of
each regional node in a standard stereotactic space. Considering
first these connection distances averaged over all edges and all
connection densities in the range of 1.7–50% (Fig. 5A), we found
no significant effect of drug or drug � time interaction but a
significant main effect of time (Tables 3, 4, Functional network
topology and distance). Then focusing on the histogram of con-
nection distances for the networks at 50% connection density
(networks with only 50% of all possible connections), we found
that greater time-on-task significantly decreased the number of
long-distance connections and increased the number of short-
distance connections. In contrast, nicotine significantly increased
the number of long-distance connections and decreased the
number of short-distance connections (Fig. 5B,C).

Furthermore, we found that nicotine-induced changes in the
average connection distance were correlated with the effects of
the drug on network topology and behavioral performance (Fig.

5D–F). Participants who demonstrated increased distance of
functional connections after nicotine replacement also tended to
have increased global efficiency (r(16) � 0.77, p � 0.0002), re-
duced clustering (r(16) � �0.65, p � 0.004), and reduced no-go
error rate (improved performance, r(16) � �0.70, p � 0.001).

Effects of nicotine consumption on behavior and
brain function
There were individual differences in cigarette smoking that were
associated with variability in behavioral and brain functional re-
sponse to nicotine replacement. There was a significant correla-
tion between the effects of nicotine on no-go errors and the
number of cigarettes smoked per day (r(16) � �0.55, p � 0.02;
Fig. 6A). Thus, subjects who smoked more cigarettes showed
greater performance-enhancing effects of nicotine in reducing
the number of errors commissioned during the sustained atten-
tion task. More frequent smokers also demonstrated greater ef-
fects of nicotine replacement on (decreased) network clustering
(r(16) � �0.57, p � 0.01; Fig. 6B).

Possible impact of head movements on estimates of
functional connectivity
To check for possible effects of head movements, we calculated
the number of frames that would need to be removed from each
dataset by scrubbing according to the criteria of Power et al.
(2012). We found that only 74 of 144 (51%) datasets would need
more than one frame scrubbed, with 39 of 72 in the nicotine
condition and 35 of 72 in the placebo condition. We used the
percentage of frames that would need to be scrubbed as a metric
to compare the motion in our datasets between conditions and
between resting-state scans. We note that there is no significant
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difference in head movement between drug conditions or be-
tween resting-state scans. Next, we assessed whether scrubbing
changed the relationship between the functional connectivity and
the physical distances of pairwise nodes. In this analysis, we only
used datasets with the most head motion (i.e., we excluded all
datasets in which no frames had been scrubbed to avoid bias). We

observe that scrubbing did not change the relationship between
functional connectivity and physical distances when the un-
scrubbed correlation matrix is subtracted from the scrubbed cor-
relation matrix (�R). Thus, scrubbing time points (using the
thresholds described by Power et al., 2012) provide no additional
benefit to our data.
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Figure 3. Nicotine and time-on-task effects changed nodal topology of brain regions. A, No-go task activations. Brain regions in which BOLD activation signal significantly increased
during no-go trials compared with go trials within the placebo condition (averaged over both task periods). Significance threshold: red, familywise error corrected p � 0.05; yellow,
uncorrected p � 0.001. B, C, For each brain node, we tested whether nicotine and time-on-task significantly increased or decreased nodal efficiency or clustering in resting-state
networks. B, Nicotine increased nodal efficiency (red voxels) and decreased clustering (yellow voxels). C, Time-on-task decreased nodal efficiency (red voxels) and increased clustering
(yellow voxels; significance threshold, p � 0.002, two-sided). Brain nodes in which changes in network topology overlap with significant changes in task activation (threshold, p �
0.001, uncorrected) are marked by ovals.
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Discussion

The principal objective of this study was
to investigate how changes in the complex
network organization of the human brain
could be related to changes in cognitive
function. To interrogate this question ex-
perimentally, we measured attentional
task performance and fMRI network
properties under controlled conditions
(nicotine replacement and time-on-
task) known to have opposing effects on
cognitive proficiency. We found empir-
ically opposite but theoretically conver-
gent effects on network organization of
these two experimental factors. Nico-
tine, which enhanced cognitive perfor-
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mance, was associated with greater topological efficiency and
longer connection distance of brain networks, whereas time-
on-task, which caused fatigue and impaired task performance,
was associated with less efficient, more clustered network to-
pology and shorter connection distance.

Workspace theory and economical configuration of
brain networks
These results are compatible with theoretical predictions that
conscious perception or cognition will emerge from more in-
tegrated brain networks. For example, the workspace theory
that was first formulated by Baars in the late 1980s (Baars,
1988; Baars, 2005; Shanahan and Baars, 2005), and has since
been developed as global neuronal workspace theory by De-
haene and others (Dehaene and Naccache, 2001; Bartolomei
and Naccache, 2011; Dehaene and Changeux, 2011), predicts
that attentionally demanding or effortful cognitive processes
will be represented physiologically by the integrated activity of
a large ensemble of workspace neurons, anatomically distrib-
uted throughout the brain (Dehaene and Naccache, 2001;
Baars, 2005). The transient emergence of a global workspace is
expected to “break” the more modular or locally clustered
network architecture prevailing under relatively undemand-
ing cognitive conditions (Varela et al., 2001; Valencia et al.,
2009).

These theoretical predictions have been supported previ-
ously by various results. In a magnetoencephalography (MEG)
study investigating the effects of a working memory task at
various levels of difficulty (Kitzbichler et al., 2011), the more
difficult versions of the task were associated with increased
global efficiency and increased connection distance, as well as
reduced clustering and reduced modularity, of MEG net-
works. There have been previous reports of greater network
efficiency related to superior IQ and working memory task
performance in young adults (Bassett et al., 2009; Li et al.,
2009; van den Heuvel et al., 2009). There is also evidence for
age-related decreases of network efficiency, with reduced con-
nection distance, in healthy elderly volunteers, which might be
related to age-related decline in executive functions (Achard
and Bullmore, 2007; Meunier et al., 2009; Wang et al., 2010).

Moreover, it is notable that both the experimental factors
in this study had correlated effects on both network topology
(e.g., efficiency) and network anatomy or geometry (e.g., con-
nection distance). The coordinated effects of time-on-task on
clustering and connection distance reflect the fact that brain
regions more closely located in anatomical space, with shorter
connection distance between them, tend to be topologically
clustered in the same module (Laughlin and Sejnowski, 2003;
Kaiser et al., 2010; Meunier et al., 2010). The coordinated
changes in efficiency and connection distance attributable to
nicotine reflect the fact that topological shortcuts that will
increase global and nodal efficiency tend to be mediated by
long-distance connections between connector hubs in differ-
ent modules (Alexander-Bloch et al., 2013). In general, these
performance-related changes in network topology and geom-
etry are consistent with the idea that brain networks negotiate
an economical tradeoff between cost and value: longer-
distance connections entail greater network cost but enable a
topologically efficient workspace that adds value in terms of
superior cognitive task performance (Bullmore and Sporns,
2012; van den Heuvel et al., 2012).

Effects of nicotine and frequency of cigarette smoking on
network organization
In addition to these theoretically predicted effects of nicotine
on task performance and global network topology, we also
found effects of nicotine at a more localized nodal level of
network analysis, often in brain nodes that overlapped with
BOLD activations during inhibitory control. For example,
nicotine reduced clustering within the left middle occipital
gyrus, right precentral sulcus, and right posterior cingulate
gyrus, brain regions that have been consistently downregu-
lated by nicotine across different task conditions (Hahn et al.,
2007, 2009). In contrast, nicotine enhanced efficiency of in-
formation transfer in the right middle frontal gyrus, a region
that has been related previously to sustained attention (Kim et
al., 2006; Lim et al., 2010) and nicotinic stimulation (Thiel et
al., 2005; Hahn et al., 2009). These results are consistent with
the assumption that nicotine drives global workspace config-
uration by increasing the efficiency of long-range information
transfer to and from frontal cortex and decreasing (or break-
ing) locally clustered, short-range connections between more
posterior regions of the whole-brain network (Raffone and
Srinivasan, 2009).

It was notable that the participants who demonstrated the
most marked pro-cognitive and network integrative effects of
nicotine tended to be the more frequent cigarette smokers.
This association suggests that high-frequency cigarette smok-
ers are particularly likely to derive neurocognitive benefits
from nicotine (Newhouse et al., 2004), which could be behav-
iorally rewarding and therefore help to explain the highly re-
inforced value of cigarette smoking for some individuals
(Dinn et al., 2004; Yakir et al., 2007). Because these data are
correlational, it is not possible to assert whether the greater
effects of nicotine on behavior and brain networks observed in
the high-frequency cigarette smokers are a predisposing risk
for greater dependence or an effect of repeated previous nico-
tine exposure.

Network metrics as pharmacodynamic biomarkers
Many drugs are known to have cognitive effects by modulating
synaptic connections between neurons. It seems intuitive that
measures of functional connectivity and functional brain net-
works, estimated at the macro-scale of human neuroimaging,
might be useful systems-level biomarkers of pharmacody-
namic effects in the translational and early clinical develop-
ment of new drugs intended to enhance or maintain cognitive
function in disorders such as schizophrenia (Jacobsen et al.,
2004; D’Souza and Markou, 2012) or Alzheimer’s disease
(Engeland et al., 2002). However, it is perhaps surprising how
few studies have previously measured effects of centrally active
drugs on network organization in neuroimaging data (Millan
et al., 2012). Schwarz et al. (2009) measured effects of nicotine
on fMRI network topology in rats, demonstrating the poten-
tial utility of the approach for preclinical studies. Achard and
Bullmore (2007) demonstrated effects of sulpiride (a dopa-
mine D2 receptor antagonist) on efficiency of human fMRI
networks (Srinivas et al., 2007; Lee et al., 2011).

Effects of nicotine in human subjects have been quite ex-
tensively studied in terms of task-related activation (Thiel et
al., 2005; Giessing et al., 2006, 2007; Hahn et al., 2007;
Sutherland et al., 2011; Warbrick et al., 2011) and less fre-
quently in terms of functional connectivity (Hong et al., 2009;
Cole et al., 2010; Kobiella et al., 2011). In a recent study inves-
tigating effects of nicotine on resting-state topology (Wylie et
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al., 2012), there was a trend for nicotine to increase global
efficiency (as shown also in our data) and to increase cluster-
ing (whereas we found that nicotine decreased clustering).
However, Wylie et al. (2012) did not simultaneously measure
behavioral effects of nicotine in their sample of nonsmokers,
so it remains unclear how these network changes are related to
cognitive effects of the drug.

We propose that our demonstration of correlated effects of
nicotine on both attentional performance and integrative net-
work topology is proof-of-principle that fMRI network metrics can
provide theoretically principled markers of pro-cognitive
drug effects on human brain function, which could be useful
for future development of drugs intended to treat cognitive
impairment.

Methodological issues
We used an innovative rest–task–rest design that enabled us to
relate experimentally controlled effects on resting-state net-
works directly to effects of the same factors on performance of
an attentionally demanding task. Previous studies using simi-
lar rest–task–rest paradigms have shown that performance of
cognitive tasks can have prolonged effects (lasting several
minutes) on the endogenous oscillations of subsequently re-
corded resting-state fMRI data (Barnes et al., 2009; Lim et al.,
2010).

There is evidence that minor (�0.1 mm) and transient
head movements during scanning can influence measures of
network topology and connection distance (Power et al., 2012;
Van Dijk et al., 2012). To address this potential confound, we
used previously published methods (Power et al., 2012) to
evaluate the potential impact of movement on functional con-
nectivity between time series. We found that there were only a
few transient framewise displacements after standard realign-
ment and regression procedures for movement correction,
and scrubbing the time series to eliminate potentially
movement-biased images showed that our results were not
unduly influenced by head movement.

One important issue in psychopharmacological fMRI is
whether drug effects on BOLD signal reflect changes in neu-
ronal activity mediated by drug receptors on neurons or
changes in blood flow or neurovascular coupling mediated by
drug receptors on blood vessels. There are several previous
results arguing against a global change in neurovascular cou-
pling in response to nicotine (Ghatan et al., 1998; Jacobsen et
al., 2002). Furthermore, the correlations reported here be-
tween the effect of nicotine on behavior and its effects on
network metrics provide strong evidence that the pharmaco-
logical fMRI signals were mediated by the effects of the drug
on neuronal activity rather hemodynamics.
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