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Odors elicit spatiotemporal patterns of activity in the brain. Spatial patterns arise from the specificity of the interaction between odorants
and odorant receptors expressed in different olfactory receptor neurons (ORNs), but the origin of temporal patterns of activity and their
role in odor coding remain unclear. We investigate how physiological aspects of ORN response and physical aspects of odor stimuli give
rise to diverse responses in Drosophila ORNs. We show that odor stimuli have intrinsic dynamics that depend on odor type and strongly
affect ORN response. Using linear–nonlinear modeling to remove the contribution of the stimulus dynamics from the ORN dynamics, we
study the physiological properties of the response to different odorants and concentrations. For several odorants and receptor types, the
ORN response dynamics normalized by the peak response are independent of stimulus intensity for a large portion of the dynamic range
of the neuron. Adaptation to a background odor changes the gain and dynamic range of the response but does not affect normalized
response dynamics. Stimulating ORNs with various odorants reveals significant odor-dependent delays in the ORN response functions.
However, these differences can be dominated by differences in stimulus dynamics. In one case the response of one ORN to two odorants
is predicted solely from measurements of the odor signals. Within a large portion of their dynamic range, ORNs can capture information
about stimulus dynamics independently from intensity while introducing odor-dependent delays. How insects might use odor-specific
stimulus dynamics and ORN dynamics in discrimination and navigation tasks remains an open question.

Introduction
Insects and vertebrates olfactory receptor neurons (ORNs) proj-
ect to segregated regions of the brain called glomeruli, in which
they make synaptic connections with second-order neurons ac-
cording to the odorant receptor they express (Su et al., 2009).
Most odorants elicit distinct patterns of activity in the population
of ORNs and in the glomeruli, suggesting that odors are encoded
in spatial combinatorial maps (Malnic et al., 1999; Duchamp-
Viret et al., 2000; Hallem and Carlson, 2006).

In locusts, flies, and moths, odor-evoked firing patterns are
organized not only in space but also in time (Stopfer et al., 2003;
Daly et al., 2004; Lei et al., 2004; Wilson et al., 2004). Fruit flies
with only one functional class of ORNs can discriminate between
odors (DasGupta and Waddell, 2008). These and other studies in
vertebrates (Mozell, 1964b; Friedrich and Laurent, 2001; Spors et
al., 2006; Schaefer and Margrie, 2007; Junek et al., 2010; Smear et
al., 2011) suggested that information about odor stimuli might be

encoded in temporal patterns in addition to spatial patterns of
neural activity. In the locust, independent information about
identity and intensity of odor stimuli can be extracted from the
analysis of spatiotemporal patterns of activity of projection neu-
rons (PNs; the neural targets of ORN) (Stopfer et al., 2003), even
in the presence of temporally structured stimuli (Brown et al.,
2005). Temporally diverse PN responses likely originate from
temporally diverse ORN responses (Raman et al., 2010), raising
the question of what determines the dynamics of the ORN
responses.

In Drosophila, the diversity of ORN response dynamics has
been attributed to the kinetics of interaction between odorants
and receptors (Hallem and Carlson, 2006; Nagel and Wilson,
2011). However, characterization of the ORN response dynamics
has been complicated by their dependency on odor concentra-
tion (Hallem and Carlson, 2006). Moreover, with few exceptions
(Nagel and Wilson, 2011), previous studies have assumed that
stimulus dynamics are independent of odor identity, but recent
results show that response dynamics to a mixture of excitatory
and inhibitory odorants might be affected by the odor-specific
dynamics of the stimulus itself (Su et al., 2011) and depend on
odor-dependent physico-chemical processes (Andersson et al.,
2012). Hence, odor-receptor identity, odorant concentration,
and odor-specific stimulus dynamics may all contribute to ORN
response dynamics.

We combined single-sensillum recordings from the fly anten-
nae and maxillary palps with direct measurements of the time-
dependent concentration of the odor. To separate physiological
aspects of ORN response from physical aspect of the odor-
dependent stimulus dynamics, we used linear–nonlinear (LN)
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modeling. We found that, for a large portion of the ORN dynamic
range, response dynamics tend to be phasic and independent of
stimulus and background intensities. Near the bottom of the dy-
namic range, ORN response dynamics tend to be more tonic but
transition to phasic as odor concentration is increased. Saturating
stimuli tend to elicit prolonged responses. Removal of stimulus
dynamics from ORN response revealed that different odorants
induce different response delays (up to 18 ms in our dataset) and
only marginally affect the shape of the response function.

Materials and Methods
Fly stocks. Recordings from the ORNs ab3A, ab2A, ab7A, and pb1A were
performed on adult female Canton-S flies 5 d after eclosion. To facilitate
sorting of ab3B spikes, we killed the ab3A neuron by expressing UAS–
reaper (w; UAS–rpr; Or22a–GAL4 ) (Su et al., 2011); recordings were
performed on adult females flies 7 d after eclosion.

Electrophysiology. Single sensillum recordings were performed as de-
scribed previously (de Bruyne et al., 2001). Electrical signal was amplified
using an Iso-DAM amplifier (World Precision Instruments), bandpass
filtered (300 Hz to 2kHz), digitized at 10 kHz (NI-USB6221 digital ac-
quisition board), and acquired in LabView. Spikes were sorted using a
custom MATLAB routine.

Odor delivery. All odor dilutions were prepared in paraffin oil (volu-
metric ratio). (1) For single puffs (see Figs. 1, 3, 5), as described previ-
ously (de Bruyne et al., 2001), 50 �l of odor dilution was placed in a paper
filter contained in a Pasteur pipette; a three-way solenoid valve redirected
an airstream (3 ml/s) through the pipette that was manually placed into a
hole on the side of the main delivery tube in which a clean airstream (30
ml/s) was continuously running (see Fig. 1a). This setup allows the de-
livery of multiple concentrations of odor on the same neuron. When the
photoionization detector (PID) was not used, the main airstream was
humidified by passing it through a bottle containing distilled water. (2)
For random stimulation (see Figs. 7-9), 20 ml of odor dilution were
placed in a bottle (100 ml). A small three-way solenoid valve (The Lee
Company) was placed in a hole on the side of the main delivery tube and
was used to redirect the odor airstream from the exhaust to the delivery
tube. Before starting recordings, the odor bottle was placed in the setup
for 10 –15 min to let the odor gas-phase reach equilibrium. We used a
magnetic stirrer to facilitate equilibration of the liquid-phase prepara-
tion. A new solenoid valve was used for each odor. (3) For adaptation to
a background (see Fig. 4), a constant background was delivered through
the bottle into the main airstream, and puffs of increasing concentration
were delivered through the Pasteur pipette as described above. Note that
odor dilutions prepared in the Pasteur pipette do not result in the same
gas-phase concentration as odor dilution prepared in the bottle. For
methyl butyrate, the secondary airstream was 3 ml/s, and different back-
ground intensities were obtained with different dilutions of odor in par-
affin oil (10 �4, 3 � 10 �4, 10 �3). For ethyl acetate, we used two dilutions
(10 �2, 10 �3), but we observed a slow drift in the background intensity
due to the slow depletion of odor concentration in the bottle. The drift is
not significant within a trial but becomes significant when comparing
different trials. Therefore, for the data analysis of Figure 4, we grouped
the available trials based on PID measurements of the background stim-
ulus. For ethyl butyrate, we used a fixed dilution (10 �5) and changed the
secondary flow rate to obtain different background intensities (0.5 and
1.2 ml/s). A lower flow rate allows maintaining a stable background for
longer time. We checked that the specific method used to change the
background intensity does not affect the results. (4) “Natural” stimuli
used for Figure 2 were generated as depicted in Figure 2, a and b.

PID measurements. A fast-response mini-PID (200a; Aurora Scien-
tific) was used to measure gas-phase concentration of the odor stimuli
(Vetter et al., 2006; Schuckel et al., 2008). Linearity of the PID response
was tested using a tracer gas (propylene). Timescales plotted in Figures 1
and 2 were obtained by fitting Aon, off e�t/�on, off � Aon, off

1 e�t/�on, off
1

to the
rising and decaying phase of the PID traces. The first exponential cap-
tures the amplitude and the speed of the response to a change in stimulus,
and the corresponding parameters have been plotted in Figures 1 and 2.

The second exponential has a much smaller amplitude (A 1 �� A) and a
slower timescale (� 1 �� �).

Data analyses. Data analysis was performed in MATLAB. Unless oth-
erwise specified, peristimulus time histograms (PSTH) were calculated as
the average firing rate across n trials in 10 ms bins smoothed by a 50 ms
squared window (n � 10 –12 trials). PID measurements were averaged in
the same way (n � 4 –12 trials). For normalized responses, basal activity
(mean activity in 1 s before stimulus) was subtracted before dividing by
peak response. In Figure 3e, for each odor–receptor combination, we
considered all the trials (n � 10 –12) and three dilutions within the
dynamic range. We defined rid(t) as the normalized time-dependent
response of neuron i to concentration d and calculated the variance
between different trials averaged over all the dilutions as Ptrial �
���(rid(t) � �rid(t)�i)

2�i�t�d and the variance between different dilutions av-
eraged over all trials as Pdil � ���(rid(t) � �rid(t)�d) 2�d�t�i. In Figure 6, ab3A
firing rate was normalized, and the first 3 s after the stimulus onset were
considered for the analysis. Each time bin corresponds to a dimension,
and the time-dependent firing rate for each odor represents a point in an
n-dimensional space (n � 301 time bins). Principal component analysis
(PCA) was used to visualize the distribution of firing traces in the tem-
poral space and was performed using the MATLAB routine “princomp. ”
Dendrograms were built from pairwise Euclidean distances between the
normalized traces using the MATLAB routine “dendrogram.”

LN model. An LN model assumes that the neuron response can be
decomposed into a linear filter k(t) and a static nonlinear function N
such that the response rLN(t) to a time-dependent stimulus s(t) is
rLN�t� � N���	

t s�t
�k�t � t
�dt
� (Dayan and Abbott, 2001). We ex-
tracted linear filters from data by performing a linear regression to min-
imize the squared error between predicted rlin�t� � ��	

t s�t
�k�t
� t
�dt
 and measured response r(t). A random stimulus was generated
by opening and closing the valve placed on the delivery tube according to
a pseudorandom sequence of zeros (closed) and ones (open) (Geffen et
al., 2009; Nagel and Wilson, 2011). The state of the valve was updated at
time intervals of length �. We considered values of � between 30 and 100
ms. The full sequence was L � 30 – 60 s long depending on the dataset.
The resulting stimulus had a flat power spectrum up to a cutoff frequency
imposed by the minimum length of the on and off intervals, �. Because
the input stimulus has relatively low power at high frequencies, estima-
tion of the filter is very sensitive to high-frequency noise. Filters were
regularized using elasticnet method (Zou and Hastie, 2005) that allows
both L1 and L2 constraints to the linear regression: K � argminK (��R �
�K�� 2 � �2 ��K�� 2 � �1 ��K��1), where K is the linear filter, R is the neuron
response, � is the matrix of the time-shifted stimulus, and �1 and �2 are
regularization parameters. We used the same set of parameters for all the
datasets that we compare. Linear filters were normalized by their maxi-
mum value (normalization by the variance gave similar results but made
more difficult visualization of the change in the nonlinear function in
Fig. 7f ). The nonlinear function N was estimated by plotting the mea-
sured firing rate against the predicted linear response and fitting the data
with a Hill function, r � 1/(1 � (H/rlin)n), where H is the half maximum.
For filter estimation, the PSTH was calculated on 3 ms time bins and
smoothed with a 30 ms squared window. The accuracy of the filter pre-
diction was calculated as the ratio between the residual of the fit and the
noise in the response (Geffen et al., 2009), NR � �PR/PN where PN �
��(ri(t) � r(t)) 2�i)t, PR � �(r(t) � fLN(t)) 2�t, and r(t) � �ri(t)�i. A value of
NR smaller than one indicates a model prediction that is more accurate
than the variability in the data. We used two-thirds of the length of the
recording to estimate the filter and the remaining one-third to test the
prediction.

Results
Laboratory odor stimuli exhibit a large diversity
of odor-specific temporal dynamics
In a previous study, we showed that stimulus dynamics can de-
pend on odor identity (Su et al., 2011). We wondered how diverse
are the dynamics of odor stimuli delivered in the laboratory for a
larger set of monomolecular odors. We selected 27 compounds
from the panel used previously (Hallem and Carlson, 2006) that
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contains odorants from different chemical classes that are rele-
vant to the ecology of the fruit fly. Odor dilutions were prepared
in a Pasteur pipette, and the time-dependent concentration of
odorant reaching the fly position was measured with a PID (Fig.
1a and Materials and Methods). The timescales of the rise and
decay phases of the PID traces are broadly distributed (Fig. 1b,c)
between 30 ms and 1 s. Rise and decay phases are correlated but
not identical. Stimulus dynamics is fairly independent of concen-
tration for “fast” odors, but we measured differences up to hun-
dreds of milliseconds for different concentrations of “slow” odors
(Fig. 1d).

These observations suggest the presence of nonlinearity in the
delivery system, likely associated with interactions between odor
molecules and the surfaces of the delivery system. In the absence
of any interaction, we would expect the system to be linear with
the concentration of odor, and the on and off timescales to be
similar (except for a 10% difference due to the different flow rates
during the rising and decaying phases of the puff) and indepen-
dent of concentration. In contrast, when interactions with sur-
faces become significant, this linear scaling breaks down; the rates
of adsorption and desorption of odorant to surfaces depend on
the relative coverage of the surface by odor molecules, which itself
is a nonlinear function of the gas-phase concentration [e.g., a
hyperbolic function in the simple case of a Langmuir adsorption
isotherm (Langmuir, 1932), but more complex isotherms are also

possible (Rabe et al., 2011)]. Hence, in this case, we expect the
stimulus dynamics to depend on the odor concentration in the
gas phase (Fig. 1d).

The concentration of odor in gas phase depends on the con-
centration in liquid phase and scales linearly with vapor pressure
through the Raoult’s law (Teixeira et al., 2009). Accordingly,
stimulus dynamics also depends on the vapor pressure of the
odorant (Fig. 1e). In particular, all odors with long rising time
(�100 ms) had low vapor pressure (�1 mmHg). We noticed that
the three outliers (in orange) are all acyclic monoterpenes, sug-
gesting that other properties of the odorants (e.g., binding affinity
to the tube surface) likely contribute to the time dependency of
the odor signal as well.

Although the temporal dynamics of the stimulus reaching the
fly is likely determined by the particular delivery method used
(Vetter et al., 2006; Andersson et al., 2012), we found consistent
differences between slow and fast odors when using different
variations of our delivery system (Su et al., 2011). To make such
comparisons easier throughout the text, we use “cold” blue colors
to plot PID measurements of “slow” odorants and “warm” red
colors for “fast” odorant.

What about more natural conditions? We considered two sit-
uations likely to occur in nature. First, we investigated stimulus
dynamics in the absence of strong wind, mimicking what might
happen in the head space of a flower, for example, when an insect
is at close range. We placed 50 �l of odor dilution on a paper filter
and recorded the gas-phase concentration of the head space 1.5
cm above it (Fig. 2a). In this situation, odor dynamics is governed
by evaporation from the liquid source, transport by convection
and advection by small flow due to the PID suction. We observed
a continuum of dynamics ranging from fast depletion for ethyl
acetate to slow increase for diethyl succinate (Fig. 2a). In this case,
the dependency of the stimulus dynamics on vapor pressure
likely reflects the linear relationship between evaporation rate
(defined as minus the rate of change of the odor concentration in
liquid phase) and vapor pressure, which has been experimentally
observed (van Wesenbeeck et al., 2008), as well as deviations due
to interactions between the paraffin oil and the odorant mole-
cules in the liquid phase (Teixeira et al., 2009).

Next we asked whether differences between slow and fast
odors would still be noticeable if the odor was transported down-
stream from the source by wind but still in the vicinity of surfaces.
We blew a continuous airstream onto a paper filter containing 50
�l of odorant dilution and measured the odor concentrations 3
cm downstream from the odor source (Fig. 2b). To determine
whether an ORN can detect these differences, we recorded the
response of ab3A simultaneously with the stimulus concentra-
tion (Fig. 2b). Although the stimulus signal depends on the posi-
tion of the detector and the particular configuration of the
experiment, we found consistent differences in stimulus dynam-
ics between a fast and a slow odorant. The overall trend of the
stimulus concentration seems to reflect the evaporation dynam-
ics shown in Figure 2a (fast depletion for methyl butyrate and
slow increase for diethyl succinate). To quantify the statistics of
the fluctuations around the evaporation trend, we calculated the
autocorrelation function of the fluctuations around the mean for
the last 70 s of the traces. The decay time in the autocorrelation
function of the PID signal was longer for the slow odorant diethyl
succinate than for the fast odorant methyl butyrate. Importantly,
the autocorrelation functions for the ab3A responses show simi-
lar differences (Fig. 2c). This result suggests that the physico-
chemical properties of odorant molecules can affect the temporal
statistics of odor signals that reach the sensory system and that

Figure 1. Common odors exhibit a broad range of dynamics. a, Odor stimuli were generated
driving an airstream through a Pasteur pipette containing odor dilution (see Materials and
Methods). PID measurements were performed at the normal locus of the fly, 1.5 cm down-
stream from the exit of the delivery tube. b, Mean PID signal measured for 27 odors and nor-
malized by peak response (n � 3– 6). c, Rising and decay timescales �on(off) were estimated by
fitting a double-exponential function to the PID signal (see Materials and Methods). Rising and
decay timescales are correlated but not identical (r �0.84, p �10 �7). d, Dependence of rising
timescale on odor concentration. Connected dots represent different concentrations of the
same odor and are plotted as a function of peak PID signal. Different odors are colored as in b and
c. Inset, Normalized PID signal for linalool (dilutions, 3 � 10 �3, 10 �2, 3 � 10 �2, 10 �1). e,
Vapor pressure is anticorrelated with the rising timescale �on (r � �0.45, p � 0.018). The
odors include the following: 1, 2,3-butanedione; 2, 2-methylphenol; 3, 4-methylphenol; 4,
6-methyl-5-hepten-2-on; 5, �-terpineol; 6, benzaldehyde; 7, ethyl acetate; 8, linalool; 9,
methyl acetate; 10, methyl butyrate; 11, methyl hexanoate; 12, �-hexalactone; 13, 3-meth-
ylthio-1-propanol; 14, geraniol; 15, 	-citronellol; 16, 1-hexanol; 17, 1-octanol; 18, E2-hex-
enol; 19, ethyl octanoate; 20, diethyl succinate; 21, butyric acid; 22, pentanoic acid; 23,
hexanoic acid; 24, isobutyric acid; 25, nerol; 26, isobutyl acetate; 27, 1-octen-3-ol.
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ORNs can detect such differences. Farther away from the source
and away from surfaces, these differences should be eliminated by
turbulent mixing. Note that, even away from surfaces, the edges
of an odorant plume might still exhibit small delays between
compounds coming from the same source because of different
diffusivities of the odorants. What physiological properties en-
able the neuron to capture such differences in the temporal sta-
tistics of odor signals?

ORN response dynamics are independent of stimulus
intensity for a large part of their dynamic range
Previous studies have shown that the response of ORNs to odor
puffs exhibit diverse dynamics ranging from tonic to phasic de-
pending on the particular odor–receptor combination (Hallem
and Carlson, 2006; Nagel and Wilson, 2011). We reasoned that,
to compare the response of ORNs to different odors, we should
first characterize the dependence of the response on concen-
tration, thus taking into account the fact that ORNs have
odor-specific sensitivities (Ito et al., 2009). For this purpose,
we considered only fast odorants for which stimulus dynamics
is fairly independent from the particular dilution used (Figs.
1d, 3c).

ab3A response to 500 ms puffs (see Materials and Methods) of
ethyl acetate is tonic at low concentrations, more phasic at con-
centrations close to the half-maximal response, and prolonged

for saturating stimuli (Fig. 3a). A poststimulus silent period can
be observed with intermediate concentrations. We measured the
peak firing rate (Fig. 3b, black) and the degree of adaptation (Fig.
3b, green) defined as the decrease in firing rate relative to the
peak, as a function of the odor dilution. The peak response fol-
lows the typical sigmoidal dependency on concentration and
shows saturation for the two highest dilutions used. Surprisingly,
the degree of adaptation is nearly constant for all the dilutions in
the middle of the dynamic range in which the peak response is
nearly linear with log changes in concentration (between 10 and
90% of the maximum firing rate, p � 0.6, ANOVA).

To analyze the response dynamics independently from the
amplitude, we plotted the time-dependent firing rate normalized
by its peak response. In the middle of the dynamic range (Fig. 3b,
arrows), the curves are remarkably similar (Fig. 3c, p � 0.05,
ANOVA performed on each time bin). Thus, not only the degree
of adaptation but the entire response dynamics are independent
of odor dilution. We used the PID to measure the intensity of the
stimulus in the vicinity of the fly. A change in the dilution of ethyl
acetate only affected the amplitude of the stimulus reaching the
fly but not its dynamics (Fig. 3c).

We asked whether the invariance of normalized responses
(Fig. 3d) was a property of the population average or a property of
the individual ORNs. For all 12 neurons examined individually
within their dynamic range, the normalized response dynamics
are remarkably similar (Fig. 3d, first column, three individual
cells shown). For four ORNs (ab2A, ab3A, ab3B, and ab7A) and
the different odorants tested, normalized responses of single neu-
rons are also concentration invariant (Fig. 3d). Moreover trial-
to-trial variability of the normalized response dynamics is equal
or larger than dilution-to-dilution variability (Fig. 3e and Mate-
rials and Methods), suggesting that, for concentrations in the
middle of the dynamic range, invariance to stimulus intensity is a
robust feature of ORN responses.

In summary, we identified three regimes of response dynam-
ics. Stimuli at the lower end of the dynamic range usually elicit a
tonic response that is probably concentration dependent (Nagel
and Wilson, 2011). Response becomes more phasic and concen-
tration invariant for stimuli in the middle of the dynamic range.
Stimuli near the upper end of the neuron dynamic range elicit
saturated responses characterized by prolonged dynamics.

Independence of ORN response dynamics with
background intensity
In nature, odor stimuli are often encountered on top of a
background. This poses a challenge to sensory systems, which
must remain sensitive to changes in the signal over a wide
range of background intensities. We asked whether the invari-
ance of the normalized ORN response dynamics with respect
to odor intensity still holds in the presence of a background of
the same odorant.

We adapted ab3A to a stable concentration of methyl bu-
tyrate, and superimposed on this background, we administered
short puffs of increasing concentration of the same odorant (Fig.
4a and Materials and Methods). Prolonged stimulation with
methyl butyrate caused the neuron to adapt within few seconds to
a stationary firing rate that is concentration dependent. When
normalized by the peak response, the dynamics are independent
of odor intensity (Fig. 4a), confirming the results obtained with
short puffs (Fig. 3c).

Adaptation to the background induces a shift in the dose–
response curve toward higher doses and decreases the dynamic
range (Fig. 4b), similarly to what has been found in frog olfactory

Figure 2. Dynamics of odor stimuli in more natural delivery conditions. a, Odor concentra-
tion measured 1.5 cm above a liquid source in the absence of wind (apart for the small suction of
the PID): n � 4, all traces shown. The initial transient is due to the preparation of the odor
source. b, Odor stimulus carried by a wind downstream from the source. PID traces (colored) and
PSTH from ab3A responses (black). Distances are as follows: mouth of tube to odor source, 2.5
cm; odor source to fly and PID, 3 cm; fly to PID perpendicular to the flow, 0.7 cm. c, Autocorre-
lation of the fluctuations around the mean of odor stimulus (top) and ab3A response (bottom).
Only the last 70 s of data were used to calculate the autocorrelation. Mean value of the PID trace
was removed using the MATLAB function “detrend.”
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cells (Reisert and Matthews, 1999). Remarkably, in the middle of
the dynamic range of the different adapted states (Fig. 4b, ar-
rows), ab3A responds to odor puffs with firing dynamics that are
very similar across background intensities when normalized by
peak amplitude (Fig. 4c). Apart from one time point (Fig. 4c,
black point bottom left), the differences between the curves are
not significant (p � 0.05; Fig. 4c, bottom, tested on 30 ms time
bins). For ethyl acetate and ethyl butyrate, there was no signifi-
cant difference (p � 0.05) between the curves for all the time
points (Fig. 4, second and third columns).

Thus, adaptation capabilities of ab3A are responsible for gen-
erating response dynamics that are independent of stimulus in-
tensity, even in the presence of background stimuli. These results
suggest that the dynamics of odor stimuli may be encoded in the
ORN response independently of stimulus intensity.

Odor-dependent stimulus dynamics strongly affect ORN
response dynamics
We showed in Figure 1 that the odor stimulus reaching the fly
exhibited different temporal profiles depending on the odor
used. We therefore asked to what extent ORN dynamics depend
on stimulus dynamics in addition to the different physiological
processes that can affect the response.

We measured the responses of ab3A, ab3B, and ab7A to five
odorants ranging from fast to slow (Fig. 5). For fast odorants
(methyl butyrate and propyl acetate in red), the stimulus mea-

sured at the fly closely follows the opening
and closing of the valve, whereas ORNs
(ab3A, ab7A, and ab3B) show a phasic re-
sponse with a degree of adaptation 0.5
(as defined above). In contrast, for slow
odorants, PID signals and neuron re-
sponses do not follow the opening and
closing of the valve as well. ORN re-
sponses to slow odorants tend to be more
tonic (lower degree of adaptation) and ex-
hibit prolonged dynamics that reflects the
long decay of the odor after the closing of
the valve (ab3A and ab3B responses to
1-octen-3-ol and diethyl succinate).

Although for fast odors a change in di-
lution only affects the amplitude of the
stimulus (Figs. 1d, 3c, 5, top), for slower
odors a change in dilution can affect both
the amplitude and the dynamics of the
stimulus (Figs. 1d, 5, bottom). Thus, un-
like for fast odors (Figs. 3, 5 top), the
ORNs responses to puffs of slow odorants
should not be expected to rescale with liq-
uid dilution because the signal arriving on
the fly does not rescale (see ab3A and ab3B
responses to 1-octen-3-ol and diethyl suc-
cinate; Fig. 5, bottom). However, we ex-
pect the ORN response to rescale with
the intensity of the odorant reaching the
fly for both slow and fast odors as con-
sidered below (see Fig. 10). For very
slow odorants, the dependency of stim-
ulus dynamics on odor dilution can
cause concentration-dependent delays
in the neuron response to odor puffs
(diethyl succinate; Fig. 5a), possibly re-
lated to the time needed for the odor

concentration to reach the neuron detection threshold.
Although these examples indicate that odor-dependent stim-

ulus dynamics does affect ORN response dynamics, Figure 5 also
shows that physiological processes alone can introduce differ-
ences in the ORN dynamics as reported previously (Nagel and
Wilson, 2011): for example, the responses of ab3A and ab3B to
1-octen-3-ol are different, with ab3B response being more tonic.

To quantify to what extent stimulus dynamics might affect
ORN response dynamics, we asked how easy it would be to dis-
criminate between odorants on the basis of the time-dependent
activity of ab3A only. Following the same approach that was used
in previous studies (Stopfer et al., 2003; Raman et al., 2010), we
performed PCA and hierarchical clustering on ab3A responses to
the four odorants used in Figure 5a. Because of the similarity of
ab3A response to different concentrations of the same odorant,
responses to the same odor fall very close to each other in the PCA
plot (Fig. 6a). Responses to different concentrations of diethyl
succinate are relatively more distant from each other than for
other odorants, probably because of the stronger concentration
dependency of the stimulus dynamics. Responses to all the con-
centrations of the same odor cluster together, and different odor
types rank according to their characteristic “speed” (Fig. 6a and
Materials and Methods). In contrast, ab3A responses to four
odors with more similar dynamics do not cluster accordingly to
odor type (Fig. 6b).

Figure 3. Intensity invariant ORN response dynamics. a, Raster and PSTH of ab3A response to 500 ms puffs (gray) of increasing
concentrations of ethyl acetate (dilutions prepared in paraffin oil as labeled). Dark gray, Standard error on 12 ORNs from 4 flies. b,
Black, Peak response of ab3A as a function of ethyl acetate dilutions. Green, Degree of adaptation measured as the peak response
minus the adapted response (measured 500 ms after stimulus onset) divided by the peak response. c, PSTHs and PID signals
normalized by peak response collapse onto single curves for the odor concentrations arrowed in b. d, Normalized PSTH of single
neuron responses are independent of stimulus intensity. Three neurons showed for each odor–receptor combination (2ac, ethyl
acetate; 2hept, 2-heptanone; 1but, methyl butyrate; pac, propyl acetate). In each plot, different curves represent the response to
different concentrations of the same odorant. e, Variability of normalized responses (see Materials and Methods) calculated across
dilutions is smaller or equal than the variability across trials (repetition of the experiment were performed on 12 ORNs of the same
type recorded from 3 to 4 animals). Circles correspond to the same odor–receptor combinations as in d, blue triangles correspond
to ab3A response to methyl butyrate, methyl acetate, and 1-pentanol, and red triangles correspond to ab2A response to methyl
acetate and ethyl acetate.
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Using an LN model to extract ab3A
response function
The data shown so far indicate that the
observed ORN response dynamics is the
result of the convolution of the odor-
dependent stimulus dynamics and the
ORN response function. To separate this
two contributions, we estimated LN mod-
els (Dayan and Abbott, 2001; Kim et al.,
2011; Nagel and Wilson, 2011) for the de-
livery system and for ab3A responses.

An LN model consist of a linear filter
k(t) and a static nonlinear transformation
N (see Materials and Methods). We ap-
proximated a white-noise stimulus by
randomly opening and closing a three-
way solenoid valve to redirect an odor
stream into the delivery tube (Fig. 7a, top
trace). The valve state (On–Off) was up-
dated every � � 30 ms (see Materials and
Methods). In the following, we refer to �
as the “stimulus correlation time ” (the
time for the autocorrelation function to
decay to zero). We performed simultane-
ous recordings of the odor concentration
reaching the fly together with ab3A firing
activity (Fig. 7).

First, we built an LN model for the
odor stimulus using the binary state of
the valve as the input and the PID signal as
the output (Fig. 7b). The resulting linear
filter k(t) peaks at 56 ms, consistent with
the air travel time, and exhibits a long tail
(200 ms, hereafter “integration time”)
indicative of some integration of the sig-
nal within the delivery tube. The function
N is a straight line revealing that the deliv-
ery system is linear.

Next, we built a LN model using the
state of the valve as the input and ab3A
response as the output (Fig. 7c). Comparing the time-to-peak of
this filter with the time-to-peak of the filter obtained for the
signal (Fig. 7b), we estimated a 12 ms delay between the stimulus
arrival and the ORN response. The function N has the shape of a
rectifier (Fig. 7c) and was fitted with a Hill function (see Materials
and Methods).

Finally, we built an LN model using the PID signal as input
and ab3A firing rates as output (Fig. 7d). In this case, the ORN
response function is deconvolved from the dynamical proper-
ties of the stimulus, and the filter only reflects the effects of
physiological processes. We call this filter the response func-
tion of the ORN. As reported previously (Kim et al., 2011;
Nagel and Wilson, 2011), the filter shows a positive and a
negative lobe, suggesting that the neuron is taking a derivative
of the odor stimulus. The area under the filter is not zero, in
agreement with the fact that this ORN does not return to
baseline activity after a step stimulus (Fig. 4a). The integration
time for this ORN (estimated as the width of the filter) is 100
ms, much shorter than the integration time of the delivery
system. Cross-validation (see Materials and Methods) shows
that the estimated LN model can accurately predict the re-
sponse of ab3A (NR � 0.41) (Fig. 7a, bottom, red).

Adaptive properties of ab3A response to a flickering stimulus
To what extent does the LN model depend on the statistics of the
stimulus signal? Figure 7e shows LN models for the odor signal
and ab3A extracted using stimulus sequences with different cor-
relation times (� � 30, 50, and 100 ms). The LN model for the
valve-to-odor transformation is independent of �, suggesting that
our method to estimate the model is not affected by the stimulus
correlation time (for the range of � values considered here). In
contrast, ab3A response function does exhibit a small depen-
dency on �. The filter becomes slightly wider as the correlation
time of the input signal is increased, suggesting that the neuron
may adapt its response kinetics to the dynamics of the stimulus
(Hosoya et al., 2005). We will investigate this issue further in
future studies.

The short 100 ms integration time of ab3A response func-
tion (Fig. 7d) is consistent with the initial phasic response of this
neuron to step increases in methyl butyrate (Figs. 4a, 5a). How-
ever, it is too short to explain the slower adaptation of the ab3A
response to prolonged stimuli reported in Figure 4b. To quantify
how the neuron might adapt to the flickering stimulus, we fol-
lowed a procedure used for the analysis of adaptation in the retina
(Baccus and Meister, 2002). We estimated LN models for the
early (first 10 s) and the late (last 10 s) response of ab3A to the

Figure 4. Normalized response dynamics is independent of background intensity. Experimental procedure (top and Materials
and Methods): a constant stable background of odorant was used to adapt the neuron response. After 1 min, 500 ms puffs of
increasing concentrations of the same odor were applied. a, PSTH of ab3A response to the background stimulus normalized
by peak response. Labels correspond to the peak response used to normalize each curve (methyl butyrate, n � 12; ethyl
acetate, n � 5– 8; ethyl butyrate, n � 12). b, Peak response to the puffs applied on top of the background as a function of
dilution for different background intensities. Dots indicate mean � SEM peak response; error bars are too small to be

visible. Lines are fit with y � B � A
xn

xn � Kn. c, Top, PSTH of the response to 500 ms puffs normalized by peak

response. One concentration for each background as arrowed in b. Bottom, p value obtained by ANOVA performed on the
mean responses at each time point (bins of 30 ms); red indicates p � 0.05.
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flickering signal (Fig. 7f). Although the
linear filter k(r) remains invariant, the
nonlinear function N becomes less steep
as the neuron adapts to the flickering
stimulus. This result is consistent with our
finding that the presence of an odor back-
ground induces a change in the dose re-
sponse of ab3A but does not affect ab3A
response dynamics (Fig. 4). We obtained
similar results for the response of ab3A to
ethyl acetate, 1-octen-3ol (Fig. 7f),
2-butanone, and 1-pentanol (data not
shown), as well as for the response of the
maxillary palp neuron pb1A to 2-butanone
and isoamyl acetate (Fig 7f).

The change observed in the nonlinear
function during adaptation depends on
the particular odor–receptor combina-
tion: for example, pb1A shows greater ad-
aptation to 2-butanone than to isoamyl
acetate. Note that the early response func-
tion was estimated from the first 10 s of
the time series, and it is very likely that
some adaptation already takes place dur-
ing this time. The limited amount of data
does not allow us to extract LN models for
segments shorter than 10 s.

Different odorants induce small
temporal delays in the response
functions of two ORNs located in the
antenna and the maxillary palp
Finally, we investigated how the response
function of ab3A and pb1A depend on
odor identity. We generated a flickering
stimulus of the slow odorant 1-octen-3-ol
and compared the PID and ab3A re-
sponses (Fig. 8a) with those obtained with
the fast odorant methyl butyrate (Fig.
7a). With 1-octen-3-ol, the PID trace is
smoother and ab3A response appears
more tonic. Neither odor concentration
nor neuron firing goes to zero when the
valve is closed (Fig. 8a). To identify the
origin of such differences, we compared
the filters obtained for the two odorants.
The valve-to-odor filter peaks at the same
time for both odorants but exhibits a lon-
ger tail for 1-octen-3-ol (Fig. 8b, left) with
an integration time twice as long as for
methyl butyrate, consistent with the
slower stimulus dynamics of that odorant.
The valve-to-ORN filter also shows a lon-
ger integration time with 1-octen-3-ol
(Fig. 8b, middle). In addition, we observe
a small 4 ms delay in the peak of the filter,
which is consistent across single-neuron
recordings (data not shown). Interest-
ingly, apart from the same 4 ms delay, the
filters obtained for the odor-to-ORN
transformation (the response function of
ab3A) exhibit less difference between the
two odorants than those obtained for the

Figure 6. Temporal differences in ORN responses could enhance discrimination between odors of different speed. a, PCA and
hierarchical clustering of ab3A response dynamics shown in Figure 5a normalized by peak response (only concentrations within the
sensitive regime of the neuron were used). The 3 s after stimulus onset were considered for the analysis. Projection onto the first
two principal components shows that responses to different concentrations of the same odor cluster together and odor types are
clearly separated in this representation. 1but, methyl butyrate; 5ol, 1-pentanol; 1o3ol, 1-octen-3-ol; dsucc, diethyl succinate.
Inset, PID measurements of the same four odorants illustrate the differences in stimulus dynamics. b, Same analysis as in a for the
response of ab3A to four odors with similar dynamics (inset). Responses to the different odors are very similar, and simple
classification algorithm cannot separate odor type from intensity. 1but, methyl butyrate; 2ac, ethyl acetate; 1ac, methyl acetate;
2hep, 2-heptanone.

Figure 5. Stimulus dynamics depends on odorant type and affect ORN response dynamics. a, Left column, Normalized PID
traces for multiple dilutions of the odor signal measured at the fly position when a short square puff is generated in the delivery
tube. For fast odorants, the stimulus dynamics is invariant with respect to concentration, whereas for slow odorants it depends on
the liquid dilution (Fig. 1d). Right column, Raster plot and PSTH of ab3A response to the corresponding odorants at increasing
dilutions. b, Same as a for different odor–receptor combinations. Note that we were not able to obtain a PID measurement for all
the dilutions used to stimulate the ORN due to the lower sensitivity of the PID compared with that of the ORN. Dilutions used for the
PID measurements: methyl butyrate, 10 �3, 5 � 10 �3, 10 �2, 10 �1; 1-pentanol, 10 �2, 3 � 10 �2,10 �1, 3 � 10 �1; 1-octen-
3-ol, 10 �3, 3 � 10 �3, 10 �2, 3 � 10 �2, 10 �1; diethyl succinate, 3 � 10 �2, 10 �1; propyl acetate, 10 �2, 3 � 10 �2, 10 �1.
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valve-to-odor transformation (Fig. 8b, right). In particular the
longer tail observed with 1-octen-3-ol in the valve-to-ORN filter
is gone.

These results suggest that the large differences observed in ab3A
dynamics between the two odorants (Figs. 7a, 8a) might be domi-
nated by differences in stimulus dynamics. If this is true, it should be
possible to use a single filter to predict the response to both odorants
once a measure of the stimulus is provided. To test this hypothesis,
we used PID measurements of 1-octen-3-ol concentration (appro-
priately scaled and shifted by 4 ms) as input into the LN model of
ab3A obtained with methyl butyrate (Fig. 8c). The prediction of the

response to the slow odor is remarkably good (NR � 0.44), compa-
rable with the one obtained for methyl butyrate itself (NR � 0.41).
Importantly, it was better than the prediction obtained doing the
same cross-prediction with the valve-to-ORN filters (NR � 0.62).
We attempted to extract similar LN models for other slow odors that
activate ab3A, such as �-hexalactone and diethyl succinate. How-
ever, ab3A is very sensitive to these odorants whereas the PID is not,
and we were unable to obtain reliable measurements of the stimulus
to use as input to the LN model.

We examined the response function of ab3A to a total of five
odorants: (1) methyl butyrate; (2) 1-octen-3-ol; (3) ethyl acetate;

Figure 7. Adaptive properties of ab3A response quantified using an LN model. a, Top to bottom, On–Off state of the valve driving the odor; PID response measured at the fly; and raster plot and
PSTH of ab3A response (black, n � 18) and prediction from LN model obtained using the filter shown in d (red). Stimulus sequence was 30 s long with 30 ms correlation time. b– d, LN models for
valve-to-odor, valve-to-ab3A, and odor-to-ab3A transformations. Left to right, Linear filter k(t) and nonlinear static transformation N. NR indicates the quality of the model prediction, and a value
�1 means that the prediction is within the variance of the response (see Materials and Methods). e, Adaptive response to flickering stimuli with different correlation times. All three correlation times
were tested on each neuron (n � 13), and the stimulus sequences was 30 s long. Left, Valve-to-odor transformation is independent from the stimulus correlation time. Right, Odor-to-ab3A
transformation shows a faster negative lobe for shorter correlation times. f, After the onset of a stationary flickering stimulus, ab3A and pb1A adapt their gain but not their response kinetics. Filters
and static functions were extracted for the first 10 s (early response) and the last 10 s (late response) of a 60-s-long flickering sequence with 100 ms correlation time. Top, Linear filters are identical
for early and late responses for all odor–receptor combinations. Bottom, The static function shows a decrease in slope of different degree for the different odor–receptor combinations.
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(4) 2-butanone; and (5) 1-pentanol (Fig. 9a– d). To reduce the
effect of cell-to-cell and fly-to-fly variability in our comparison,
we tested two odors on each neuron and compared LN models
obtained for each odor pair. A correlation time of 100 ms was
used for the flickering stimulus. For 1-octen-3-ol, we obtained
results similar to those measured with a 30 ms correlation time in
the input (Fig. 8): apart from a small temporal shift, the filter
extracted for methyl butyrate can be used to predict ab3A re-
sponse to 1-octen-3-ol (Fig. 9a). For ethyl acetate, 2-butanone,
and 1-pentanol, we do not observe any difference in the valve-to-
odor filters (apart from a small shift due to the different position
of the valves on the delivery tube) (Fig. 9b– d, top). The odor-to-
ORN filters estimated for pairs of odors have different response
delays with shifts of up to 12 ms and exhibit only minor differ-
ences in their shapes (Fig. 9b– d, middle). Given that the stimulus
contribution was deconvolved from the ORN response, these
differences in response delay can be entirely attributed to physi-
ological processes. Once shifted in time by the appropriate
amount, the filters obtained with methyl butyrate (in red) can be
used to predict with good accuracy the response of ab3A to the
other odorants (Fig. 9b–d, bottom) and this despite small differ-
ences in the filters shape. We note a larger difference for the ab3A
1-pentanol response. Consistent with the finding that the linear
response of ab3A was invariant over the course of the flickering
stimulus experiment (Fig. 7f), we found that the response delays
measured for pairs of odorants at the very beginning of the flick-
ering stimulus were the same as those measured at the end of the
flickering stimulus. These odor-dependent latencies in the re-
sponse of ab3A remained invariant, although the neuron sensi-
tivity was adapting to the flickering stimulus.

We also measured the response function of pb1A, a neuron
located in the maxillary palp, to 2-butanone and isoamyl acetate.
Despite the different vapor pressure (Fig. 2b, 71 mmHg for
2-butanone and 5 mmHg for isoamyl acetate), we did not observe
any difference in the dynamics of the two odor stimuli (Fig. 9e,
top), likely because of the very low concentration of 2-butanone

used to elicit a firing rate comparable with isoamyl acetate (100
Hz). The linear filter for the response of pb1A (Fig. 9e, bottom)
has a smaller negative lobe than what was found for ab3A, sug-
gesting that the response function depends on the neuron iden-
tity as reported previously (Nagel and Wilson, 2011). Like for
ab3A, the main difference between the response functions of
pb1A to the two odorants is a small delay (18 ms) between the
corresponding filters. We demonstrated this by predicting the
response of pb1A to a flickering stimulus of isoamyl acetate using
the filter measured for 2-butanone (appropriately shifted in
time by 18 ms) (NR � 0.49). A previous study reported larger
differences in the responses of pb1A to these two odorants (Na-
gel and Wilson, 2011). Differences are to be expected if one of the
two odorants is used at concentrations near the bottom of the
dynamic range in which neural responses are close to the tonic-
to-phasic transition. Indeed, the responses of pb1A to higher
odorant concentrations (Nagel and Wilson, 2011, their Fig. 6)
exhibit smaller differences between these two odorants. An-
other likely source of differences stems from the dependency of
the ORN response on the correlation time in the stimulus (Fig.
7e). The cutoff frequency of the flickering stimulus is 100 ms in
this study, much shorter that in the study by Nagel and Wilson
(2011). Finally, the dependency of the stimulus dynamics on the
delivery system configuration, odor type, and concentration may
also contribute to the differences. For example, we noticed that
the small difference in odor stimulus that we observed
between methyl butyrate and 1-pentanol when delivered
through the Pasteur pipette (Fig. 5a) is absent when the odor is
delivered using a bottle (Fig. 9d, top). Similarly, ab3A re-
sponse does not show a silent period after an odor puff, but it
does show silent periods after the closing of the valve during
the flickering odor stimulation. These observations support
the importance of taking stimulus dynamics and neuron ad-
aptation in account to study the contribution of physiological
processes to ORN response dynamics.

Figure 8. ab3A response to a slow odor can be predicted using the LN model fitted to the response to methyl butyrate. a, Top to bottom, On–Off state of the valve driving the odor; PID
response measured at the fly; and raster plot and PSTH of ab3A response (black, n � 18) and prediction from LN model obtained using the odor-to-ORN filter (blue). Both 1-octen-3-ol
and methyl butyrate (Fig. 7) were presented in series on the same neurons. A stimulus sequence was 30 s long with 30 ms correlation time. A recovery time of 3–5 min was allowed
between stimulations. b, Linear filters for valve-to-odor, valve-to-ab3A, and odor-to-ab3A transformations for both methyl butyrate (red) and 1-octen-3-ol (blue). c, Prediction (purple)
of the measured response of ab3A (black) to 1-octen-3-ol (PID; blue) using the model of ab3A (red) built from the response to methyl butyrate. Odor signal was shifted by 4 ms to take
into account the shift in the response function (see also Fig. 9). It was also appropriately normalized to take into account the different gains of the PID and ORN responses to the different
odorants.
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Discussion
Here we identified three key aspects of ORN response dynamics.
Our first result is that ORN response dynamics are independent
of stimulus intensity in the middle of the neuron dynamic range
(Fig. 3). Near the bottom of the dynamic range, responses be-
come more tonic and often depend on concentration. For satu-
rating stimuli, we observed prolonged responses that do not
rescale. Adaptation at the level of both transduction and firing
could be involved in the concentration invariance observed here
(Liu and Wang, 2001). In photoreceptors and vertebrate ORNs,
increases in stimulus intensity elicit faster response kinetics (Bay-
lor and Nunn, 1986; Reisert and Matthews, 1999). Similarly, local
field potential recordings from Drosophila ORNs show an in-
crease in onset kinetics (Nagel and Wilson, 2011). Additional
investigations are necessary to understand the mechanisms un-
derlying the concentration invariance of the firing rate. In vision,
adaptation to a background is usually accompanied by an accel-
eration of response kinetics (Baylor and Hodgkin, 1974; Burns
and Baylor, 2001). In contrast, adaptation to a background in
both vertebrate and insect ORNs has been shown to slow down
the kinetics of the response to low stimulus concentrations (Re-
isert and Matthews, 1999; Nagel and Wilson, 2011). Here we
show that adaptation to a background shifts and reduces the
dynamic range, but in addition, we find that, for a large part of the
adapted dynamic range, response dynamics to short puffs remain
independent of the concentration of stimulus and background
(Figs. 4, 7f).

These results suggest that, within a population of ORNs, neu-
rons activated in this regime are able to encode the dynamics of
the stimulus independently of its intensity. Hence, for each odor-
ant, a relatively small number of ORNs might be sufficient to
reliably capture the stimulus dynamics (Geffen et al., 2009). This
property could be useful to maintain olfactory-driven navigation
capabilities independent of signal intensity and background. A
previous study (Asahina et al., 2009) suggested that, when climb-
ing an odor gradient, Drosophila larvae rely on the response of
various individual ORNs with distinct but overlapping dynamic
ranges. A similar principle enhances the capability of bacteria to
navigate chemical environments (Sourjik and Berg, 2002; Lazova
et al., 2011). Additional investigations are needed to understand
the role of low, saturated, and super-sustained responses (Mon-
tague et al., 2011). Concentration invariance of behavior may be
achieved by processing in the antennal lobe (Asahina et al., 2009).
Local inhibitory neurons in the antennal lobe have been shown to
perform a normalization of the activity of a single glomerulus by
the total activity of the ORN population (Olsen et al., 2010).
These observations pose the question of whether processing in
the Drosophila antennal lobe may provide the means to extract
concentration-invariant information from temporal patterns of
activity in the ORN population.

Our second result is that, under several conditions, ORN re-
sponses can be strongly affected by the odor-specific dynamics of
the stimulus (Figs. 1, 2, 5, 6). In one case, we show that a single LN
model can be used to predict the temporal response of an ORN to

Figure 9. Odor-dependent delays in the ORN response function. Top and middle, Linear filters extracted for valve-to-odor and odor-to-ORN transformations for different odor–receptor
combinations. Odor pairs were tested on the same neurons by presenting two 60-s-long time series of stimulus flickering at 100 ms correlation time one after the other. A recovery time of 3–5 min
was allowed between stimulations. The shift between the two filters was estimated as the difference in the time-to-peak between the odor in red and the one in dark blue. A negative shift in the
valve-to-odor filters is due to the fact that the odor in dark blue is delivered through a valve that is slightly closer to the exit of the delivery tube. A variation in the secondary flow rate of 1% was
allowed to adjust stimulus concentration: this caused different values of the delay for different odor pairs. All delays measured in the valve-to-odor filters were consistent with the delay estimated
from the speed of the airstream and the relative position of the two valves. The delays quantified for the odor-to-ORN linear filters already account for the differences in the position of the valve and
represent delays in the physiological response of the neurons. Bottom, Cross-prediction of the response to the odor in blue given the filter extracted for the odor in red. Black, Mean firing rate in
response to the “blue” odor; blue, firing rate predicted using the filter in blue; purple, firing rate predicted using the filter in red.
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different odors, providing direct measurements of the odor stim-
uli reaching the fly (Figs. 8c, 9). In Figure 10, we use simulations
to explore how the differences in stimulus dynamics might affect
ORN dynamics. Assuming a single response function, ORN re-
sponses can be more or less phasic depending on the dynamics of
the input stimulus (Fig. 10a). Consistent with what we observed
in Figure 3, within the linear regime of the model, the ORN
responds to different stimulus intensities with the same dynamics
(Fig. 10b). Provided that the stimulus dynamics is concentration
invariant, the model predicts concentration-invariant responses
for fast and slow odorants (Fig. 10b,c). However, no rescaling of
the ORN response should be expected when both the dynamics
and intensity of the stimulus change (Fig. 10d). This seems sim-

ilar to what we observed with most slow odorants we tested (Figs.
1d, 5). A better control of the stimulus is required to investigate
experimentally the concentration dependency of the ORN re-
sponse dynamics for slow odorants. We showed recently that
ORNs respond to mixtures of excitatory and inhibitory odorants
with distinct dynamics that reflect the physico-chemical proper-
ties of the odorants (Su et al., 2011). The LN model for ab3A can
qualitatively account for the measured response dynamics solely
from the different dynamics of the constituent odorants, as-
suming the contribution of the excitatory and inhibitory
odorant to be additive (Fig. 11). Differences in stimulus dy-
namics alone could play an important role in the perception of
odor mixtures.

Our third result is that, when differences in stimulus dynamics
are carefully removed from the neuronal responses, ORN re-
sponse dynamics still exhibit odor-dependent delays (Fig. 9).
Other studies (Hallem and Carlson, 2006; Raman et al., 2010;
Montague et al., 2011; Nagel and Wilson, 2011) have reported
larger differences in the response of a single ORN to different
odorants, suggesting that a bigger dataset might reveal greater
variability than what we observed here. However, with few excep-
tions (Montague et al., 2011; Nagel and Wilson, 2011), most
previous studies assumed stimuli to be independent of odor type
and considered only one or few concentrations of the stimulus.
Here we first quantified the dose response of each ORN– odor
pair and then identified a regime of the dynamic range over which
dynamics are concentration invariant. The response dynamics

for different ORN– odor pairs were then
compared within this regime. Moreover,
we quantified the response function of the
delivery system for each odorant and re-
moved its contribution from the ORN re-
sponse, obtaining response functions that
only depend on physiological processes.
Within this limited dataset, the shape of the
response function only depends mildly on
odorant identity but shows odor-dependent
delays with differences up to 18 ms (Fig. 9).
These delays remained constant between
the beginning and end of the flickering
stimulus, although the neuron sensitiv-
ity adapted to the stimulus (Fig. 7f). Odor-
specific response delays have been observed
previously in vertebrates ORNs and M/T
cells (Spors et al., 2006; Junek et al., 2010). In
the fly, odor-dependent delays could origi-
nate at different levels of the transduction
process. For example, there could be rate-
limiting events in the capture of odorant,
their transport by odorant binding proteins,

and their interaction with ORs.
Can odor-dependent differences in stimulus dynamics and

odor-dependent delays in ORN response affect behavior?
Several experiments suggest that animals can use temporal

information to distinguish between two olfactory stimuli. For
example, mice can discriminate small delays of the order of 10 ms
in the activation of the ORNs (Smear et al., 2011). Bees can dis-
criminate two odor stimuli time shifted by only few milliseconds
(Szyszka et al., 2012). Flies can discriminate between two odors
using a single ORN type (DasGupta and Waddell, 2008). More-
over, odor speed affects the capacity of humans to discriminate
mixtures of odorants and tastants (Mozell, 1964a; Kuznicki and
Turner, 1988; Laing et al., 1994; Jinks and Laing, 1999).

Figure 10. Modeling the effect of different stimulus dynamics and intensity on ORN re-
sponse dynamics. The same LN model (Fig. 7d) is used for all simulations. Simulated stimuli
(first column) were all 500 ms long with exponential rising and decay timescale � and produced
nonsaturated responses. a, Response to stimuli with identical intensities but different time-
scales (� � 13– 800 ms). b, Response to stimuli with different amplitudes but identical time-
scales (� � 10 ms). c, Same as in b but for a slow odor (� � 300 ms). d, Same as in c but now
� decreases with stimulus intensity as we observed for slow odors (Fig. 1d) (� � 0.1–1 s).

Figure 11. Simulation of the response to a mixture of an excitatory and an inhibitory odor qualitatively reproduce recent
measurements (Su et al., 2011). a, Excitatory response to a puff of a fast odor. Top, Stimulus dynamics; middle, raster plot of the
response generated using an LN Poisson model cascade; bottom, corresponding firing rate. The neuron response was simulated
using the linear filter and the static nonlinear function estimated for ab3A (Fig. 7d). b, Response to a mixture of a fast excitatory and
a slow inhibitory odorant. Response was calculated as above, using a linear combination of the two odors as stimulus. This
simulation shows that a slow inhibitor can shorten and sharpen the response of a fast excitatory odor. c, Prolonged response to a
puff of slow excitatory odor. d, Biphasic response to the sum of slow excitatory and fast inhibitory odorants.
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It is widely accepted in perfumery that the composition of a
fragrance changes over time as a result of differential evaporation
of the individual components (Carles, 1962; Teixeira et al., 2009).
Here we show that the concentration of the individual compo-
nents can fluctuate differently depending on their physico-
chemical properties. In ecology, much attention has been paid to
the passive transport of odorants by turbulent flows (Murlis et al.,
1992; Cardé and Willis, 2008; Riffell et al., 2008). While most of
these works focused on situations in which the temporal dynam-
ics of the stimulus are dominated by those of the air flow away
from surfaces, here we examined what happens in the vicinity of
surfaces. This situation is ecologically relevant to the fruit fly that
spends a large amount of its lifetime walking (Carey et al., 2006).
Interactions between odorant and surfaces introduce retarda-
tions in the stimulus dynamics that are odor specific (Figs. 1,
2a,c,d), and our results suggest that insects may be able to detect
such relative temporal differences downwind of a nearby source
(Fig. 2c). Behavioral experiments suggest that animals use fluctu-
ations in odor concentration to identify different odor sources
(Hopfield and Gelperin, 1989; Hopfield, 1991). It would be in-
teresting in the future to investigate whether odor-dependent
dynamics might be used to reveal the presence of different com-
ponents within the same source.

Odor dependent differences in stimulus dynamics may affect
tracking performance as well. For example the structure of an
odor plume can greatly modify the way a moth tracks an odor
signal down to its source (Baker et al., 1985; Mafraneto and
Carde, 1994). Tracking capability in flies may also depend on
odor identity (Krishnan et al., 2011), but whether this is attribut-
able to differences in the input stimulus, ORN response, or
downstream processing remains unclear.

The temporal aspect of ORN responses may add coding ca-
pacity to the spatial representation of odors at the periphery of
the olfactory system. We have shown how ORN odor-specific
dynamics originate in part from the stimulus itself in addition to
the interactions between odorants and the periphery of the olfac-
tory system. Whether and how the olfactory system uses the di-
versity in stimulus dynamics to enhance odor discrimination and
tracking remains an open question.
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