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Modulation of Beta Oscillations in the Subthalamic Nucleus
with Prosaccades and Antisaccades in Parkinson’s Disease
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Elena Moro,! and Robert Chen'
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Toronto Western Research Institute, and *Department of Physiology, University of Toronto, Toronto, Ontario M5T 258, Canada

Increased oscillations in the beta band are thought to be related to motor symptoms of Parkinson’s disease (PD). Previous studies have
shown that beta-band desynchronization in the subthalamic nucleus (STN) is reduced just before and during limb movements. While the
STN is part of the basal ganglia (BG)-thalamocortical circuit controlling limb movements, it is also part of the BG-brainstem projection
controlling saccadic eye movements. Late-stage PD patients have deficits in saccades in addition to difficulties with limb movements
arising from impaired functions of the BG. We investigated saccade-related changes in beta-band (15-30 Hz) oscillatory activities in the
human STN while PD patients performed visually guided prosaccades and antisaccades, the latter requiring suppression of reflexive
responses and volitional initiation of saccades. We recorded local field potentials from deep brain stimulation electrodes implanted in the
STN in human PD patients 1-5 d after surgery and compared prosaccades and antisaccades with these and with limb movements.
Saccade-related beta-band desynchronizations were observed just before and during saccades in all subjects, suggesting that reduction of
beta-band oscillatory activity in the STN is related to preparation and execution of saccades. Furthermore, beta-band desynchronizations
for antisaccades started earlier, were sustained for longer periods, were of greater magnitude, and were observed more often than
prosaccades. Beta-band desynchronization in the STN may reflect the additional processes associated with suppression of reflexive

responses and volitional execution of saccades in the opposite direction.

Introduction

In Parkinson’s disease (PD), midbrain dopaminergic cell loss
leads to dysfunction of the basal ganglia (BG). The BG are
thought to be involved in response selection by determining
whether a given movement is suppressed or allowed by exerting
or removing tonic inhibition of the thalamocortical motor loops
controlling limb movements. The BG also tonically inhibit the
brainstem motor centers controlling innate movements, includ-
ing saccades (Hikosaka et al., 2000). Previous studies have docu-
mented that PD patients have delayed saccade latencies and
hypometric primary saccades, often showing a series of small
step-like saccades (White et al., 1983; Briand et al., 1999; Chan et
al., 2005). Furthermore, antisaccades are more impaired than
those of visually guided saccades in PD patients. Subthalamic
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nucleus (STN) deep brain stimulation (DBS) improves not only
somatomotor symptoms but also saccade initiation and inhibi-
tion in PD (Rivaud-Péchoux et al., 2000; Fawcett et al., 2010;
Yugeta et al., 2010).

Beta-band oscillatory activities in sensorimotor cortices
and in the BG have been observed both in nonhuman primates
and in humans (Murthy and Fetz, 1992; Sanes and Donoghue,
1993; Baker et al., 1997; Donoghue et al., 1998; Levy et al,,
2000; Cassidy et al., 2002; Williams et al., 2005). The beta-
band event-related desynchronization (8-ERD) is considered
to be involved in preparation and execution of limb move-
ments (Kithn et al., 2004). Although the oscillatory activity
change related to eye movements has been observed in human
BG (Fawecett et al., 2007), it is still unclear how the synchroni-
zation or desynchronization in each frequency band plays a
role in controlling saccadic eye movements. The aim of the
present study was to investigate saccade-related modulation of
oscillatory activities in the human STN. We used a prosaccade
task, in which subjects made saccade toward visual cues, and
an antisaccade task, in which subjects volitionally made sac-
cades away from visual cues. We recorded local field potentials
(LFPs) from DBS electrodes in the STN in PD patients during
these saccade tasks. We hypothesized that, similar to B-ERDs
for hand movements, the saccade-related beta-band (15-30
Hz) desynchronizations (8-SRDs) would be observed just be-
fore and during saccades. We further hypothesized that
B-SRDs for antisaccades would be larger than those for pro-
saccades, because antisaccades require the inhibition of reflex-
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Table 1. Characteristics of subjects

Medication Hoen

Duration of during Yahr  UPDRS-IIl LED
Patient Age Sex disease(y) DBS recording stage (off-medication) (mg/d)
1 61 F 17 R/L - On 3 65 790
2 5 M 6 R/L - On 2 20.5 2327.5
3 5 M 6 R/L On 3 45.5 600
4 63 M 22 R/L - On 3 46.5 1065
5 5 M 8 R/L On 2 305 900
6 61 M 17 R/L - On 3 425 1800
7 58 M 12 R/L - On 2 51 1199
8 64 M 8 RIL  Off 3 20 213
9 58 M 24 RIL  Off 2 335 1875
10 5% M 10 RIL Off 2 26 1075
n 5 F 13 RIL  Off 3 31 1330
12 52 M 13 R/L  Off 2 235 800
13 49 M 8 RIL Off 2 23 1300
14 48 F 19 R/L On 3 56 1875
15 60 M 13 R/— On 3 70 3792
16 1 F 2 R/— On 3 33 625.75
17 75 F 15 R/— Off 3 445 3192
18 61 F 10 R/— On 3 32 1750
19 M 20 —/L On 3 65 920
20 64 F 9 —/L off 3 43 1700
Average 594 — 135 —_ — 2.65 40.10 1456.5

LED indicates levodopa equivalent dose; R and L, right and left STN.

ive responses and greater driving signals for intended saccades
than prosaccades.

Because the ventral STN receives neural inputs from the fron-
tal eye field and the supplementary eye field (Monakow et al.,
1978; Huerta et al., 1986; Huerta and Kaas, 1990), whereas signals
for limb movements project from the primary and supplemen-
tary motor cortices to the dorsal STN (Monakow et al., 1978;
Nambu et al., 1996), we compared B-SRDs with B-ERDs for
self-paced wrist movements with a prediction that 8-SRDs might
be localized to the ventral STN, whereas B-ERDs for wrist move-
ment would be found in the dorsal STN.

Materials and Methods

Subjects. The clinical characteristics of the patients are listed in Table 1.
Twenty PD patients were studied, 12 in the on-medication state and 8 in
the off-medication state (~12 h off medications). There were 7 women
and 13 men, aged 59.5 * 7.2 years (mean = SD; range, 48—75) with
disease duration of 13.5 = 5.5 (range, 6—24) years. Their levodopa equiv-
alent dose was 1456.5 * 879.2 mg (range, 213-3792; for calculation, see
Tomlinson et al., 2010). All of the patients self-reported being right
handed. The study was approved by the University Health Network Re-
search Ethics Board. Written informed consents were obtained from all
participants.

Experimental procedure. One to 5 d after surgery, when DBS leads were
externalized and before implantation of the implantable pulse generator,
LFPs were recorded from DBS electrodes (model 3387; Medtronic) im-
planted in STN. The DBS electrodes have four platinum/iridium cylin-
drical contacts numbered 0-3, with contact 3 being the most dorsal and
0 the most ventral (Fig. 1). We calculated wavelet power in bipolar deri-
vations—Ileft contact 3 (L3)-L2 and right contact 3 (R3)-R2 as dorsal
contact pairs, L2-L1 and R2-R1 as middle contact pairs, and L1-L0 and
R1-RO as ventral contact pairs—to minimize far-field potentials. Elec-
trodes were 1.27 mm in diameter, 1.5 mm in length, and separated from
the next closest contact by 1.5 mm. The patients performed a prosaccade
task and an antisaccade task in which they were instructed to look in the
opposite direction to the visual cue (“look away”, see details below).

Experimental setup. LFPs were recorded from the DBS electrodes im-
planted in the STN using linked earlobes as references. Electrooculogra-
phy (EOG) was recorded with two Ag-AgCl electrodes placed on the
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Figure 1.  Sagittal section of the STN. Black bar represents the DBS electrode. Numbers from

0 to 3 represent positions of each contact. The scale is adjusted according to the average dis-
tance between the anterior and the posterior commissure (26.3 mm) for the subjects in this
study. SNr indicates substantia nigra pars reticulata.

bilateral outer canthi for horizontal eye movement. The high-pass filter
was set at 0.05 Hz and the low-pass filter at 500 Hz. The sampling rate was
2500 Hz. In addition, surface electromyography (EMG) was recorded
from the extensor carpi radialis (ECR) muscle while the subjects per-
formed self-paced wrist extension movements. Synamps and Neuroscan
4 software (Compumedics USA) was used for recording of LFPs, EOGs,
and EMGs.

Saccade tasks and wrist extension task. Visual fixation and target points
were indicated by red light-emitting diodes (LEDs) with diameter of 4.5
mm (visual angle ~0.3 degree) mounted on a blackboard. The subject’s
eyes were positioned 93 cm away from the board, which placed the left
and right LEDs at ~20 degrees from the central LED. A custom script in
Spike2 version 7 (Cambridge Electronic Design) was used to control the
LED:s. In the prosaccade task, the subjects initially fixed on the LED at the
center of the board. After 1500 ms, the central fixation point was turned
off and the target point (cue) was simultaneously turned on at 20 degrees
to the left or right randomly. The subjects were instructed to make a
saccade to the new position as quickly as possible. In the antisaccade task,
the fixation point and the cue were turned on and off in the same way as
in the prosaccade task, but the subject had to make a saccade toward the
location opposite to the cue. In other words, the actual target point for
the saccade was a point opposite to where the cue stimulus appeared.
Each task comprised a total of 50 trials to the right or left side that were
randomly presented with 50% probability. The saccade tasks were pre-
sented in a pseudorandom order in each subject and were counterbal-
anced across subjects.

For the wrist movement task, patients with bilateral or left STN DBS
extended their right wrist and patients with right STN DBS extended
their left wrist at their own pace every 5-10 s without any visual or
auditory cues ~50 times.

Confirmation of electrode contact locations. The methods to assess the lo-
cation of DBS electrode contacts within the STN have been described in
detail previously (Hamani et al., 2008; Kuriakose et al., 2010). Briefly, pre-
operative T2 and postoperative axial 3D inversion recovery images were
fused. The anterior and posterior commissures were registered and the loca-
tion of each electrode contact (center of the sphere-shaped MRI artifact) was
established relative to the midcommissural point and the STN.

Data analysis and statistics. Onset of saccades was detected using
EOG. Saccades with latencies of <60 ms were considered anticipatory
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Figure2. Raw LFPsand beta-band power spectrain case 6. 4, Saccade trace and LFPs for prosaccades. B, Saccade trace and LFPs for antisaccades. The first row shows eye positions recorded from

EQG; the other 6 rows show LFPs recorded from DBS electrodes. The beta-band power spectrum in contact R2—R1 for the baseline period (from 1500 to 500 ms before saccade onset) for prosaccades
is shown in Cand that for antisaccades is shown in E. The beta-band power spectrum in perisaccade period (from 100 ms before saccade onset to 900 ms after saccade onset) for prosaccadesis shown
in D and that for antisaccades is shown in F. Beta power shows two peaks in the baseline period. Reduction in beta power during prosaccades and antisaccades appeared to be slightly greaterin the

high-beta (20 —30 Hz) than in the low-beta (15-19 Hz) band.

(Kalesnykas and Hallett, 1987; Braun and Breitmeyer, 1988; Fischer and
Weber, 1992; Weber et al., 1993; Reuter-Lorenz et al., 1995; Delinte et al.,
2002). Error trials include trials with directional errors, anticipation sac-
cades, delayed onset of saccade after 1000 ms from cue onset, and those
without saccades and all were excluded from the analysis. Although we
analyzed the presence of desynchronization in the 5-100 Hz range using
joint time frequency wavelet spectrograms, we focused on changes in the
beta-band (15-30 Hz). Power change was calculated in bipolar deriva-
tions across DBS contacts by Morlet wavelets, with wavelet parameter set
at 4, averaged on saccade onset. The continuous Molet wavelet transfor-
mation contains both the time domain and the frequency domain infor-
mation, while the fast Fourier transformation (FFT) contains only the
frequency domain information. The continuous wavelet transformation
is therefore advantageous over the FFT because the time course of fre-
quency information can be observed. To detect the presence and the
timing of significant B8-SRDs and B-ERDs, the wavelet power from 500
ms before to 500 ms after saccade onset was compared with the power in
the baseline, defined as 1500 to 1000 ms before saccade onset (Fig. 3,
black bars on the abscissa) using the Z test with the threshold set at

1.51. Morlet wavelets and Z tests were calculated by a custom script in
MATLAB version 7.10 (MathWorks). The onset times of 3-SRDs and
B-ERDs were the times that the wavelet power fell below the threshold and
offset times were the time the wavelet power returned to above the threshold.
The time from the onset to the offset was considered the durations of
B-SRDs and B-ERDs. Areas of significant 8-SRDs and 3-ERDs are iden-
tified by black lines in Figure 3. The largest reduction in the amplitude of
the wavelet power is considered the amplitude of B-SRDs and B-ERDs.
The incidences of significant 3-SRDs for the DBS contact pairs studied
were compared between the right and left STN, between the STN ipsilat-
eral and contralateral to the saccade direction, and between prosaccades
and antisaccades using the Fisher’s exact test (FET). Onset of wrist move-
ments was detected using EMG of the ECR muscle. The wavelet power of
LFPs during self-paced wrist movements was calculated by averaging
over the onset of wrist extension. Onset, duration, and amplitude of
B-SRDs and B-ERDs were compared between tasks (prosaccades, anti-
saccades, and wrist extension) and between contact positions (dorsal,
middle, and ventral contact pairs) using two-way ANOVA. In addition,
post hoc Tukey—Kramer multiple-comparison tests were applied when
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ANOVA showed significance. The difference /A Saccade traces and power spectrums during leftward prosaccades
in distances from the STN to the contact pairs g
showing B-SRDs and -ERDs were evaluated g‘
by Kruskal-Wallis rank-sum test. If both con- 3
tacts were inside the STN, then a value of 0 was o -
assigned to the distance; if one contact was in- " e - - - SQ—r} %
side the STN and another was at the border of E et & 3 o g
the upper or the lower edge of the STN, a value " 2ok . b . e 1 §
of 0.5 or —0.5 was assigned to the distance. If ° -105
the contact pairs were 1 or 2 contacts away E_1§§: ' ‘ ' 1
from the border, then a value of 1.5 or 2.5 was [ 4o QM\&, i d
assigned to the distance. Correlations were cal- 0 : :
culated between B-SRDs or B-ERDs for wrist 'SP T T 7
movements and clinical variables such asageat ~ E g sor ]
surgery, onset age of disease, disease duration, g 28 £ | 3
Unified Parkinson’s Disease Rating Scale part & ;) : :
IIT (UPDRS-III) motor scores, and Hoehnand ~ * 3 8F 1
Yahr stages. Onsets, durations, and amplitudes - 28 | e ]
of B-SRDs for prosaccades or for antisaccades =
were compared between the right and the left <"%F ' ‘ ] ]
STN, between the ipsilateral and contralateral S 8OF @Z/\\_’} |
STN, and between on-medication and off- X L ! I |
medication states using two-way ANOVA. We 100 T T :
considered p = 0.05 as significant and 0.05 < g ;g; E
p = 0.10 as a nonsignificant trend. 20 4 _— ’ =
1.5 -1.0 -0.5 Time [s] 0 0.5 1.0

Results . B saccade traces and power spectrums during rightward antisaccades
The onset latencies of prosaccades were 5
323.6 = 47.2 ms, whereas those of antisac- %
cades were 426.9 = 77.4 ms from the onset %
of the visual cue (averaged visual cue onsets ¢ o 6l =
are indicated by the dash-dot lines in Fig. 100 . | | S e S
4A,B). The percentage of errors trials were s s & i 0o
22 * 14% (mean * SD) for prosaccades 2R . T — _10§
and 42 = 23% for antisaccades. _100 : : <

Raw LFPs and baseline and perisac- g §§E ]
cade FFT power spectra during prosac- 28 ! 3
cades and antisaccade are shown in Figure 100 :
2. Typical wavelet spectrograms during — F & §§: d
prosaccades and antisaccades are shown g Zg: . y L : ]
in Figure 3 (case 6). Reductions of beta- & i . . .
band (15-30 Hz) power in the STN were  * 3 &[ 7
observed just before and during saccades B §§: , , | ]
in both the dorsal contact pairs on the 100 . . .
right side and the middle contact pairs on Iar a
both the right and the left sides for both ok . i Ié%}_.;, . -
prosaccades and antisaccades (Fig. 3). °

100 — - . .

This saccade-related reduction in beta- J28 1
band power in the STN was observed in all - '8 . ‘ '3
subjects in either the contralateral or the s 1.0 -05 0 05 1.0

ipsilateral STN or bilaterally (Table 2).
B-SRDs were observed with similar fre-
quencies in both the right (15 of 18, or
83.3%) and the left STN (12 of 16, or
75.0%; p = 0.68, FET). We found 3-SRDs
in 25 of 34 (73.5%) STN ipsilateral to the
saccade direction and in 25 of 34 (73.5%)
STN contralateral to the saccade direction, indicating that sac-
cades are associated with bilateral B-SRDs. In addition, B-SRDs
occurred more often during antisaccades (in 27 of 34, 79.4% of
STN) than prosaccades (in 18 of 34, 52.9% of STN; p = 0.039,
FET). B-SRDs were observed in 13 of 34 (38.2%) ipsilateral STN
and in 11 of 34 (32.4%) contralateral STN during prosaccades
and in 22 of 34 (64.7%) ipsilateral STN and in 21 of 34 (61.8%) of
contralateral STN during antisaccades. Therefore, the frequen-

Figure 3.

Time [s]

Saccade-related changes in the wavelet spectrograms of LFPs in case 6. 4, Averaged wavelet spectrograms obtained
from 40 leftward prosaccades. B, Averaged wavelet spectrograms obtained from 36 rightward antisaccades. Time 0 represents
saccade onset. The first rows of each panel show traces of saccades recorded from EOG; the other 6 rows show wavelet spectro-
grams of LFPs recorded from DBS electrodes. Red represents synchronization of LFPs, blue represents desynchronization. Desyn-
chronizations appeared to be more prominent in the high-beta (20 -30 Hz) than in the low-beta (15-19 Hz) band.

cies of B-SRDs were similar in the ipsilateral and contralateral
STN nuclei during both prosaccades and antisaccades, although
B-SRDs occurred more often for antisaccades than for
prosaccades.

B-SRDs in the STN started a few hundred milliseconds before
the saccade onset and were sustained during saccadic eye move-
ment (Fig. 3, Fig. 4A,B). The onsets of 3-SRDs and B-ERDs
showed normal distributions (p > 0.1, Kolmogorov—Smirnov test)
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Table 2. B3-SRD in each pair of DBS contacts

Pairs of DBS contacts
(ase Saccade direction Task R1-R0O R2-R1 R3-R2 L1-10 [2-11 13-12
1 Rightward Pro - - - - - -
Anti + - - - - -
Leftward Pro - - - - - -
Anti + - — — — _
2 Rightward Pro - - - - - -
Anti - — — — — _
Leftward Pro - - - - - -
Anti - - - - + -
3 Rightward Pro - + + - + -
Anti - + + + - -
Leftward Pro + - + + - -
Anti - - + + + +
4 Rightward Pro + - - - - -
Anti - - - - - -
Leftward Pro - - - + - -
Anti - + — + — +
5 Rightward Pro - - - + - -
Anti - — — — — _
Leftward Pro - - - - - -
Anti - - - - - -
6 Rightward Pro - - - - - -
Anti - + - - + -
Leftward Pro - - - - - -
Anti + + — + - -
7 Rightward Pro - + - - - -
Anti + + — - + -
Leftward Pro + + - - + -
Anti + + + - + _
8 Rightward Pro - - - - - -
Anti + - + — — _
Leftward Pro - - - - - -
Anti - - - - - +
9 Rightward Pro - - - - - -
Anti - - - + - +
Leftward Pro - - + - - -
Anti - - - - - -
10 Rightward Pro - - - - - -
Anti - + + - - -
Leftward Pro - + - - - -
n Rightward Pro - + - - - -
Anti + + + — — _
Leftward Pro + - - - - -
Anti - - + - - -
12 Rightward Pro - - - - - -
Anti + + + + + +
Leftward Pro - - + + + -
Anti + + + + + +
13 Rightward Pro - + - - + -
Anti - + — — — _
Leftward Pro - - - - + -
Anti - — + — — _
14 Rightward Pro - - - - - -
Anti — + — — + _
Leftward Pro - - - - - -
Anti + - - - - -
15 Rightward Pro + - + (] (] [/]
Anti + + - [/ [/] [/]
Leftward Pro + + - [/] (] [
Anti + + + 1 [/ [/]
16 Rightward Pro - - - [/] [] [/]
Anti - - - 1 [/] [/]
Leftward Pro + - - [/] (] []
Anti + - - 1 [/] [/]

(Table continues)
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Table 2. Continued
Pairs of DBS contacts
(ase Saccade direction Task R1-RO R2-R1 R3-R2 L1-L0 L2-11 13-12
17 Rightward Pro - + + n [/] [/]
Anti - + - 1 [1 [
Leftward Pro - - - [/] [] (/]
Anti - + - 1 [/] [/]
18 Rightward Pro - + - [7] (/] (]
Anti - - - [ [/] [/]
Leftward Pro - - - 1 [7] [7]
Anti - + - 1 [/] [/]
19 Rightward Pro 1 /] [/ - - -
Anti [/] [/ [7] + - +
Leftward Pro [7] [/1 [ - - -
Anti [/] [/] [7] - + +
20 Rightward Pro [7] (/1 [/ - - -
Anti [7] 1 [ + + +
Leftward Pro [7] [/ [ - - -
Anti [ [/] [/ - + +
Pro indicates prosaccades; anti, antisaccades; [ /], no data because of unilateral cases.
and were §hfferent among the tasks: prosac- Right STN Left STN
cades, antisaccades, and self-paced wristex- A Prosaccade
tensions (p < 0.001, two-way ANOVA; Fig. : ! o ! : P
5A). Nonsignificant trends were observed Emal: Ipsi P ! : porsal > w
both in the effect of the positions (dorsal, i contra —_— i i contr —
middle, and ventral) of contact pairs (p = J s NN E i tpsi .
0.066, two-way ANOVA) and in the inter- 'dd'l contral ] | i M99 ontra rw
action between the tasks and the positions i i I I N i _ i
of contact pairs (p = 0.055, two-way o 177 ! J{venerdi®” i
ANOVA). The onsets of 3-SRDs during an- i I R T ] i

tisaccades occurred earlier than those dur-
ing prosaccades (p = 0.002, Tukey—Kramer
test). Moreover, the onsets of 3-ERDs dur-
ing self-paced wrist extensions were earlier
than the onsets of 3-SRDs during antisac-
cades (p = 0.003, Tukey—Kramer test; Fig.
5A). During wrist extension, onsets of
B-ERDs in the dorsal and the middle con-
tact pairs were earlier than those in the ven-
tral contact pairs (p = 0.005 and p = 0.003,
Tukey—Kramer test), although onsets of
B-SRDs during prosaccades and antisac-
cades were not significantly different among
the positions of contact pairs.

The durations of B-SRDs and B-ERDs
showed normal distributions (p > 0.1, Kol-
mogorov—Smirnov test) and were different
among the tasks (p < 0.001, two-way
ANOVA). The duration of B-SRDs during
antisaccades were longer than those during
prosaccades (p = 0.007, Tukey—Kramer
test) and the duration of B-ERDs during
self-paced wrist extensions were longer than
duration of B-SRDs during antisaccades
(p < 0.001, Tukey—Kramer test; Fig. 5B).
The effect of the positions of contact pairs
were not significant, but the interaction be-
tween tasks and positions of contact pairs
was significant (p 0.032, two-way
ANOVA; Fig. 5B). During wrist extension,

durations of B-ERDs in the middle contact pairs were longer than
those in the ventral contact pairs (p = 0.032, Tukey—Kramer test).
During prosaccades, durations of 3-SRDs in the ventral contact
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Figure 4. Ranges of 3-SRDs and 3-ERDs. Averaged ranges of 3-SRDs recorded from each pair of DBS contacts in each tasks.

Time 0 represents saccade or movement onset. The dash-dot lines represents the averaged visual cue onset time. Hatched bars
represent the ranges of 3-SRDs in the STN ipsilateral to saccade direction. White bars represent the ranges of 3-SRDs in the STN

contralateral to saccade

direction.

pairs showed a trend of being longer than those in the middle contact

pairs (p = 0.088, Tukey—Kramer test), but were not significant. Du-
rations of 3-SRDs during antisaccades were not significantly differ-
ent among the positions of contact pairs.
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The amplitudes of B-SRDs and B-ERDs showed normal dis-
tributions (p > 0.1, Kolmogorov—Smirnov test) and were differ-
ent among the tasks (p < 0.001, two-way ANOVA), although
these did not differ among the positions of contact pairs (Fig. 5C).
The interaction between the tasks and the positions of contact
pairs was not significant (Fig. 5C). Amplitudes of 3-SRDs for
antisaccades were larger than those of B-ERDs for wrist extension
(p = 0.049, Tukey—Kramer test), and amplitudes of B-ERDs for
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wrist extension were larger than those of B-SRDs for prosaccades
(p = 0.008, Tukey—Kramer test).

The onsets, durations, and amplitudes of B-SRDs were not
correlated with Hoehn and Yahr stages, UPDRS-III scores, age
at surgery, onset age of disease, or disease duration. The dura-
tions of B-ERDs with wrist movements correlated with Hoehn
and Yahr stages (r = 0.639, p = 0.004) and UPDRS-III scores
during both the off-medication (r = 0.531, p < 0.001) and
on-medication states (r = 0.745, p = 0.023). The onsets, du-
rations, and amplitudes of B-ERDs for wrist movements were
not correlated with age at surgery, onset age of disease, or
disease duration. The onset latencies of prosaccades were cor-
related with the durations (r = 0.615, p = 0.025) but not the
onsets of B-SRDs (r = 0.076, p = 0.805). The onset latencies of
antisaccades showed a nonsignificant trend for correlation
with the B-SRD onsets (r = —0.424, p = 0.071), but not the
durations of B-SRDs (r = —0.293, p = 0.223).

The onsets of 3-SRDs in the right STN were earlier than those
in the left STN during both prosaccade and antisaccade (p =
0.001, two-way ANOVA), although durations and amplitudes of
B-SRDs did not differ significantly between the right and left STN
(Fig. 6). The onset, duration, and amplitudes of 3-SRDs did not
differ between the ipsilateral and contralateral STN (Fig. 6). The
onsets of B-SRDs were earlier in the on-medication state than in
the off-medication state during both prosaccades and antisac-
cades (p = 0.016, two-way ANOVA). The durations and ampli-
tudes of B-SRDs did not differ significantly with medication
status (Fig. 6).

The locations of DBS contacts demonstrated by postoper-
ative MRI are shown in Figure 7. Contact pairs in which
B-SRDs were observed with prosaccades appeared to be more
dorsal than those with antisaccades or with wrist movements,
but the differences were not significant (p = 0.159, Kruskal—
Wallis rank-sum test).

Discussion

The observation of 3-SRDs in the STN in PD patients extends
previous studies showing changes in neuronal firing of single
units in the STN with eye movements (Fawcett et al., 2005) and
saccade-related premovement potentials (Fawcett et al., 2007).
Beta-band desynchronization in the STN is thought to be in-
volved in the preparation (Kiihn et al., 2004) and execution of
limb movements (Cassidy et al., 2002). Our findings suggest that
beta-band desynchronization in the STN plays a role also in the
preparation and execution of saccades. Indeed, we observed a
trend in the correlation between the onsets and durations of
B-SRDs in the STN and saccade onsets.

We observed that B-SRDs started earlier, were sustained for lon-
ger, and had larger amplitudes for antisaccades than for prosaccades,
suggesting that 8-SRDs in the STN are involved not only in execu-
tion of movements, but also in the inhibition of unwanted move-
ments. This finding in the STN is in agreement with the greater
modulations of neuronal activities in the globus pallidus (pars ex-
terna and pars interna) in monkeys with antisaccades compared
with prosaccades, the areas that have direct input and output con-
nections with the STN (Yoshida and Tanaka, 2009).

Bilateral B-desynchronization for saccades

We observed B-SRDs in either the ipsilateral or the contralateral
STN and bilaterally in different subjects for both the prosaccade and
the antisaccade tasks, suggesting that the STN is involved in saccades
to both the ipsilateral and contralateral space. Although variations in
contact locations from patient to patient may account for some of
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these results, both ipsilateral and contralat-
eral circuits are likely recruited to prepare
for an upcoming saccade. We predicted
that B-SRDs in the contralateral STN
might start earlier and be sustained for
longer than those in the ipsilateral STN,
because both fixation and saccades are
controlled predominantly by the neural
connections from the superior colliculus
contralateral to the saccade direction
(Takahashi et al., 2005). However, we did
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STN (Paradiso et al., 2003; Kiihn et al., 2004;
Alegre et al., 2005) with unilateral hand
movements, which is consistent with our
observation of bilateral 3-SRDs and bilat-
eral B-ERDs for wrist movements in the
STN.

right STN

Figure 6.

Differences of B-desynchronizations among the tasks
B-SRDs for antisaccades were observed in 19 of 20 patients,
whereas B-SRDs for prosaccades were observed in 13 of 20 pa-
tients, suggesting that the generation of antisaccades likely in-
volves more neurons or neurons in different locations than
prosaccades for both fixation and saccades in the STN. This is
consistent with the observation of neurons involved in both fix-
ation and saccades in the monkey STN (Matsumura et al., 1992).
More than three quarters of the contact pairs with 8-SRDs for
prosaccades overlapped with those for antisaccades (21 of 27 con-
tact pairs, or 77.8%), whereas the contact pairs with 3-SRDs for
antisaccades overlapped less with those for prosaccades (21 of 53
contact pairs, or 39.6%). This suggests that greater areas on the
STN related to saccades and fixation are involved in antisaccades
than prosaccades. Only 4 of 27 (14.8%) contact pairs showed
B-SRDs for both ipsilateral and contralateral prosaccades,
whereas 20 of 53 (37.7%) contact pairs showed B-SRDs for both
directions during antisaccades. Selectivity of saccade direction
was observed in the saccade-related neurons in the monkey STN
(Matsumura et al., 1992), so distribution of neuronal activity
changes for prosaccades or antisaccades may be different for sac-
cades toward the ipsilateral and contralateral directions.
B-ERDs for wrist movements started earlier and were sus-
tained for longer than B-SRDs, whereas the amplitudes of
B-ERDs for wrist movements were larger than 8-SRDs for pro-
saccades but smaller than B-SRDs for antisaccades. Self-paced
wrist extensions were executed without external cues, whereas
the prosaccade and antisaccade tasks were executed with visual
cues. Therefore, the different results may be because of a differ-
ence between internal- and external-cued movements, or may be
due to longer duration of muscle activities or greater muscle involve-
ment in wrist extension than simple horizontal saccades.

left STN

ipsilateral STN contralateral STN on medication off medication

Effects of STN laterality and medication on 3-SRDs and 3-ERDs. Upper row shows average onset of 3-SRDs during
prosaccades and antisaccades. Middle and bottom rows show duration and amplitude of 3-SRDs. Left column shows comparison
between the right and the left STN. Middle and right columns show comparison between ipsilateral and contralateral STN to
saccade direction and between on-medication and off-medication patients.

Localization of B-SRDs in the STN

In nonhuman primates, the ventral STN receives neural inputs
from the frontal eye field and the supplementary eye field
(Monakow et al., 1978; Huerta et al., 1986; Huerta and Kaas,
1990), whereas signals for limb movements project from the
primary and supplementary motor cortices to the dorsal STN
(Monakow et al., 1978, Nambu et al., 1996). We observed that
B-ERDs for wrist movements in the middle contact pairs,
which generally represent the dorsal part of the STN (Fig. 7),
were sustained for longer than those in the other contact pairs,
which represent ventral STN or were outside the STN. The
onsets, durations, and amplitudes of B-SRDs for saccades did
not differ significantly with the positions of contact pairs. It is
consistent with sparse distribution of eye movement-related
cells in the dorsal STN and greater concentration in the middle
and the ventral STN of PD patients (Fawcett et al., 2005). This
discrepancy between our results and animal studies may be
because the recording sites were limited in human DBS elec-
trodes compared with animal studies, because the DBS elec-
trode was larger than the microelectrodes used in animal
studies, or because the LFPs we recorded represent popula-
tions of neurons whereas the single unit recordings used in
animal studies represent activity of each neuron. The different
distributions of beta activities in the STN between normal
monkeys and PD patients reported here may also be related to
the parkinsonian state. B-SRDs and B-ERDs for wrist move-
ments were observed also in the dorsal contact pairs that are
sometimes outside of the STN, possibly in the zona incerta
(Z1). B-SRDs have been recorded from saccade-related neu-
rons in the ZI (Hikosaka and Wurtz, 1983), and B-ERDs for
wrist movements have been recorded from the ZI neurons
projecting to the motor thalamus (Bartho et al., 2002).
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Limitations of this study
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with prosaccades. Furthermore, 3-SRDs
were found bilaterally, suggesting both
the ipsilateral and contralateral STN is in-
volved in saccade generation. 3-SRDs in
the STN started earlier, were sustained for
longer, and had a larger amplitude during
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B-desynchronizations and laterality, medication,

and symptoms

B-SRDs started earlier in the right STN than in the left STN in our
study. This may be due to the fact that visually guided saccades
require spatial attention that is known to be dominant in the right
hemisphere (Khonsari et al., 2007; Petit et al., 2009). B-SRDs also
started earlier in patients on antiparkinsonian medication than in
those off medication, although we could not rule out a selection
bias because there were different patients in the two groups. Pre-
vious studies showed that levodopa reduced the baseline beta-
band oscillation in the STN in PD patients (Levy et al., 2002).
Therefore, earlier onset of B-SRDs with medication may be be-
cause beta-band power reduction reaches the threshold earlier
due to the reduced baseline beta-band oscillations.

We found correlations only between the durations of B-ERDs
for wrist movements and UPDRS motor score and Hoehn and
Yahr stage. This may be related to the longer time required for
movement initiation or slower movements in more advanced PD
patients. Because these motor scores represent only somatomo-
tor impairment, it is not surprising that 8-SRDs were not corre-
lated with these motor scores. Baseline beta-band oscillations did
not appear to be correlated with motor impairment in off-
medication PD patients (Giannicola et al., 2010), which may ex-
plain why the amplitudes of B-ERDs for wrist movements
showed no correlation with parkinsonian motor signs.

Location of DBS contacts and 3-SRDs. Hatched area represents the STN. Black circles with the character 3 represent
locations where the 3-SRDs or 3-ERDs were observed. R and L represent the right and the left STN. Each patient is represented by

antisaccades than during prosaccades,
suggesting that B-SRDs may be involved
in both inhibition of reflexive responses
and volitional execution of saccades.
Moreover, the changes seen for both limb
and eye movements suggest that oscilla-
tory activities in the BG are related to both
the BG-thalamocortical loops and to BG-brainstem projections
such as the BG-substantia nigra pars reticulata-superior collicu-
lus circuit involved in the control of saccades.
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