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Threat evokes a variety of negative emotions such as fear, anger, and disgust. Whereas they elicit distinct and even opposite facial,
sensory, and autonomic reflexes, threat-related emotions often converge in the actions they prompt (e.g., negative evaluation and
avoidance). Here, we tested a unifying hypothesis that threat processing initially involves specialized encoding of individual subtypes to
support discrete reflexive operations that later gives way to generalized elaborate analysis to facilitate convergent defensive behavior.
Combining event-related potentials (ERPs) and a defensive context in human subjects, we compared temporal courses of perceptual
analysis of two threat subtypes—fear and disgust. Indeed, fear enhanced and disgust suppressed early (115 ms) response in visual cortex,
accentuating specialized sensory encoding of threat subtypes in accordance with the opposite behavioral and autonomic reflexes they
typically elicit. By contrast, later ERP waveforms evoked by fear and disgust merged gradually over time (130 – 425 ms). Consistently,
visual ERPs to anthropomorphic Greeble objects presented after fear versus disgust images also overlapped despite their clear departure
from the neutral condition, paralleled by comparable exaggeration in Greeble imminence perception in the two threat (vs neutral)
conditions. This later confluence of neural and behavioral response between fear and disgust thus highlights general threat categorization
in high-level, downstream perception of threat. By delineating the temporal dynamics in perceiving individual threat emotions, our
findings thus provide some of the first evidence to reconcile multidimensional and unidimensional aspects of information processing
within the domain of threat, shedding new light on symptom heterogeneity across the anxiety disorder spectrum.

Introduction
Threat is typically associated with heightened neural and auto-
nomic responses (LeDoux, 2000; Dolan, 2002; Phelps, 2006).
However, such conceptualization fails to account for the diverse
subtypes of threat capable of evoking heterogeneous and even
opposite response profiles. In contrast to fear that provokes the
sympathetic nervous system to prepare the body for fight or
flight, disgust (another primary threat subtype) activates the
parasympathetic system, facilitating freezing and fainting behav-
ior (Ekman et al., 1983; Gray, 1987; Rozin and Fallon, 1987).
These contradictory yet adaptive autonomic reflexes also coin-
cide with opposing biomechanical properties of facial expres-
sions of fear and disgust. Fearful expressions encompass widened
eyes and nostrils to enhance sensory acquisition, whereas disgust
expressions entail narrowed eyes and nostrils to impede sensory

intake (Susskind et al., 2008). In keeping with this, recent neural
evidence demonstrates that these two threat subtypes incite qual-
itatively different basic sensory responses in the extrastriate visual
cortex (Krusemark and Li, 2011), resulting in amplified versus
suppressed early visual response in fear and disgust, respectively,
along with opposing effects on bottom-up visual spatial atten-
tion. These disparate response patterns within the threat domain
therefore accentuate the need to characterize threat processing
beyond an overarching unidimension of response amplification
(represented almost exclusively by fear processing).

Nevertheless, the prevalent unidimensional theorization of
threat processing holds true in many situations where we consis-
tently observe convergent actions in response to fear and disgust
stimuli (e.g., negative evaluation and affect; avoidance behavior).
Presumably, high-level perception and cognition are evolution-
arily pressed to culminate in motivationally appropriate actions
(Bruner and Minturn, 1955; Gibson, 1979; Lang et al., 1997) and,
as such, cognitive analysis of hedonically salient stimuli could be
especially malleable to accommodate biological needs of the or-
ganism. Therefore, despite highly specialized sensory encoding,
disgust and fear perception at later phases could converge to
facilitate similar defensive responses (Gray, 1987; Rozin and Fal-
lon, 1987; McNaughton and Corr, 2004). This dynamic progres-
sion would represent an extraordinary feat of the visual and
emotion systems in the brain, maintaining a relatively fixed, la-
beled line of threat representation in sensory processing to pre-
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serve sensory fidelity and subtype-specific
reflexes while permitting flexible higher-
order perceptual processing to support a
rich assortment of adaptive actions in var-
ious biological environments. However,
this evolving process remains obscure;
how would early sensory specialization of
threat subcategories give way to later gen-
eralized analysis?

Toward this end, we modeled a defensive
context by presenting neutral, anthropo-
morphic Greeble objects of varying sizes
after fear, disgust, and neutral images. Com-
bining high-density event-related potentials
(ERPs) with cortical source estimation, we
tested the hypothesis that ERP waveforms
would demonstrate early specialization of
visual encoding of fear and disgust images,
followed by a trend to progressively merge these two conditions over
time. Importantly, we predicted that visual ERPs to ensuing Greebles
would also overlap between the threat subtypes, accentuating gen-
eral visual perturbation due to threat stimuli at later stages. Finally,
we anticipated that fear and disgust would similarly exaggerate per-
ceived Greeble imminence, provoking overlapping defensive behav-
ior (Fanselow and Lester, 1988; McNaughton and Corr, 2004).

Materials and Methods
Participants
Forty right-handed students with normal or corrected to normal vision
participated in the study. All participants denied a history of neuropsy-
chological trauma or current use of psychotropic medication. One par-
ticipant with extreme behavioral responses (�3 SD) was not included,
resulting in a final sample of 39 participants (mean age: 19.19 years, 6
men). All participants provided informed consent, which was approved
by the University of Wisconsin Institutional Review Board.

Stimuli
Emotion images. Images of natural objects were selected from the Inter-
national Affective Picture Set (IAPS; Lang et al., 2008) to convey fear
(IAPS 1012, 1050, 1201, 1120, 6260, 6263; depicting snakes, spiders, and
guns), disgust (1274, 7380, 9300, 9302, 9322, and two non-IAPS images;
depicting roaches, feces, and vomit), or neutral (1450, 1640, 1670, 7010,
7021, 7025, 7030, 7035, 7045, 7053; depicting animals and artifacts) con-
tent. Independent ratings of these images on valence, arousal, fear, and
disgust dimensions using a visual analog scale (VAS) confirmed that the
picture sets evoked the intended emotions (Krusemark and Li, 2011).

To establish the validity of the emotion picture sets among the partic-
ipants, we acquired a set of ratings of the images at the end of experiment.
On a visual analog scale of 0 (not at all) to 10 (extreme), participants rated
fear images as highly frightening [6.45(2.35)] and disgust images equally
highly disgusting [6.63(2.39); t(38) � 0.76, p � 0.45], which were both
above ratings for their alternate emotions [disgust rating for fear images:
2.92(2.48); fear rating for disgust images: 3.08(2.12); p values � 0.001].
Neutral images evoked very little fear [0.43(0.61)] or disgust
[0.23(0.49)]. On a VAS of �10 (extremely unpleasant) to �10 (ex-
tremely pleasant), participants further validated that fear and disgust
images had equivalent affective values [fear: �5.38(2.69); disgust:
�5.30(2.37); t(38) � 0.24, p � 0.81], both more negative than neutral
images [1.99(1.66); t(38) values � �15.18, p values � 0.001]. Finally, fear
images provoked the highest arousal [4.33(3.01)], followed by disgust im-
ages [1.18(1.91); t(38) � 9.70, p � 0.001] and the lowest arousal for neutral
images [�2.94(2.27); t(38) � 7.84, p � 0.001; arousal rating range: �10].
These valence and arousal patterns thus were compatible with the nature of
the intended emotions (Ekman et al., 1983).

As early visual ERPs are sensitive to low-level physical differences in
the stimuli, we carefully matched the image sets for basic visual proper-
ties, including spatial frequency, luminance, gray scale, and size (see

Krusemark and Li, 2011). We also conducted a control ERP experiment
using Fourier phase-scrambled versions of the emotion images that
evoked equivalent visual ERP waveforms across the three image sets,
further ruling out such confounds (Krusemark and Li, 2011).

Greeble images. Greebles are a set of novel anthropomorphic objects
that have been used as comparison stimuli in electrophysiological examina-
tions of face processing (Gauthier and Tarr, 1997). Due to their novelty and
face-like formations, we decided to employ Greeble objects (n � 30) as
targets in the distance judgment task. These Greebles appeared in one of four
sizes (subtending 6.29° � 5.34°, 5.11° � 4.77°, 4.86° � 4.05°, and 4.15° �
3.58° of visual angle, from largest to smallest) with equal probability. An
independent sample (N � 22) rated these Greeble images on a VAS
ranging from �10 (extremely unpleasant) to �10 (extremely pleas-
ant), establishing that these images were neutral [M(SD) � �0.24(1.15),
t(21) � �0.98, p � 0.34].

Distance judgment task
Participants were seated in a dimly lit room during the task, approxi-
mately 120 cm from a CRT monitor. Each trial began with a crosshair
presented at the center of the screen, followed by a centrally presented
emotion image displayed for 240 ms, subtending a visual angle of 7.2° �
7.2°. Following a jittered interval lasting from 13 to 347 ms (eight differ-
ent durations:13, 40, 93, 147, 200, 240, 293, and 347 ms with equal
probability) that was designed to dissociate ERPs between the two suc-
cessive stimuli, a Greeble image was displayed randomly in one of the
four sizes for 400 ms. Subsequent to Greeble onset, individuals were
instructed to respond as quickly and accurately as they could to indicate
how close or distant the Greeble appeared to be on a two-polar, six-point
scale (1 � closest, 6 � farthest; response buttons counterbalanced across
participants; Fig. 1). Egocentric distance judgments of Greebles were
used to index perceived object imminence that could reflect behavioral
avoidance (Fanselow and Lester, 1988; McNaughton and Corr, 2004).
Two blocks, each consisting of 150 trials from the three emotion condi-
tions, were randomly presented (totaling 100 trials per emotion).
Greeble stimuli were counterbalanced according to emotion conditions.
Participants performed this experiment after a separate visual search task
involving horizontal and vertical bars (Krusemark and Li, 2011).

EEG recording and data analysis
EEG was recorded from a 96-channel (BioSemi ActiveTwo) system at a
1024 Hz sampling rate with a 0.1 to 100 Hz bandpass filter. Electroocu-
lograms (EOGs) were recorded at two eye electrodes at the outer canthi
and one infraorbital to the left eye. EEG signals were referenced offline to
the average of the left and right mastoid recordings. Horizontal EOG
channels were referenced to each other, and the vertical EOG channel was
referenced to the EEG channel located directly above it. EEG/EOG sig-
nals were digital bandpass filtered from 0.1 to 40 Hz, down-sampled to
256 Hz, segmented around picture onset (from �200 ms to 400 ms) and
Greeble onset (�100 to 400 ms), and corrected to the respective 200/100

Figure 1. Experimental paradigm. Each trial began with a central crosshair, followed by an image of fear (shown), neutral, or
disgust emotion. After a jittered interval, a Greeble was presented (randomly in one of four sizes) to which participants made an
egocentric distance judgment on a 6-point bipolar scale.
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ms pre-stimulus baseline. Trials with EEG/EOG voltages exceeding � 75
�V (relative to baseline) were excluded from analysis.

Stimulus presentation was linked to the refresh rate (75 Hz) of the CRT
screen and delivered using Cogent2000 software (Wellcome Department
of Imaging Neuroscience, University College London, London, UK) as
implemented in Matlab (MathWorks). Event synchronization was veri-
fied by placing a photodiode at the center of the CRT monitor sampled by
the EEG acquisition computer, determining image onset consistently
aligned with the event trigger across repeated trials (Krusemark and Li,
2011).

Response to IAPS images
The P1 ERP component is a well-accepted index of early visual percep-
tion, including emotion perception (Mangun et al., 1993; Pizzagalli et al.,
1998; Eimer and Holmes, 2007; Vuilleumier and Pourtois, 2007; Li et al.,
2008a; Forscher and Li, 2012), and was thus adopted in our previous
study to characterize threat specialization in early visual analysis (Kruse-
mark and Li, 2011). Here, the P1 component was extracted to replicate
our earlier finding. Inspection of the grand average waveforms indicated
a distinct P1 component that peaked at 115 ms post-image onset, maxi-
mal at central occipital sites (Oz; Fig. 3 A, B). Mean P1 amplitudes were
extracted at the central occipital locus (collapsed across five electrodes
surrounding Oz) over 36 ms intervals centered on the peak (i.e., peak �
4 samples). To describe the temporal evolution of visual processing of
these threat subtypes following basic sensory encoding, we examined
electrical signals at this occipital site from the conclusion of the P1 win-
dow (130 ms) to the (average) Greeble onset (425 ms). Using a data-
driven approach, we submitted voltage amplitude at each data point (out
of a total of 75 points) to paired t tests (comparing fear vs disgust, fear vs
neutral, and neutral vs disgust) to depict the relationship dynamics
among these stimuli over time. To minimize type I error, a corrected p �
0.05 was set based on a Monte Carlo simulation using the AlphaSim
program (http://afni.nimh.nih.gov/afni/doc/manual/AlphaSim) incor-
porating the autocorrelation and variance across the time points—re-
sults exceeding the threshold of p � 0.01 over six consecutive data points
were specified as statistically significant.

Response to Greeble images
As face-like Greebles reliably elicit face-related visual ERPs, including P1
and N170 (Rossion et al., 2002), these two visual ERPs were extracted and
submitted to statistical analyses. In keeping with the fact that face pro-
cessing is strongly lateralized (Kanwisher et al., 1997), the P1 and N170
responses to Greebles were maximal at lateral rather than at midline
sites. We thus considered the two hemispheres separately in the
Greeble analysis.

Greeble images evoked a distinct P1 component peaking at 112 ms
post-Greeble onset (P1g), maximal at lateral occipital sites O1 (left hemi-
sphere) and O2 (right hemisphere; Fig. 4A–C). We extracted P1g mean
amplitude at each bilateral locus (collapsed across two electrodes sur-
rounding the O1/O2 sites) over 36 ms intervals centered on the peak (i.e.,
peak � 4 samples).

A clear N170 component in response to Greeble images was identified,
peaking at 154 ms post-Greeble with maximal negative voltage at bilat-
eral sites P7 (left hemisphere) and P8 (right hemisphere). Mean N170
amplitudes were extracted (collapsed across five electrodes surrounding
the P7/P8 loci; see Fig. 4 E, G) over 44 ms intervals centered on the peak
(i.e., peak � 5 samples). Since the current investigation focused on visual
perception of emotion, events beyond Greeble P1 and N170 were out of
the scope of interest (especially given that the later waveforms con-
formed to the P1 and N170 components) and thus were not specifi-
cally described.

Low resolution brain electromagnetic tomography
We isolated the cortical sources of significant ERP effects using low res-
olution brain electromagnetic tomography (LORETA: Pascual-Marqui
et al., 2002). As an inverse solution, LORETA has been validated using
neuroimaging in visual and cognitive processes. LORETA uses a three-
shell spherical head model registered to standardized space from a digi-
tized MRI at the Montreal Neurological Institute (MNI). Solutions are
restricted to cortical gray matter, spanning 2394 voxels with a spatial

resolution of 7� 7 � 7 mm 3. We estimated voxelwise current densities
during respective intervals for each subject in response to fear, disgust,
and neutral conditions that were then submitted to voxelwise statistical
analyses. To minimize false positives in intracranial source localization,
we applied two constraints in our analysis. First, we constrained LO-
RETA analysis to the time windows and tests where surface ERP effects
were significant (Thatcher et al., 2005). Second, based on the actual voxel
spatial correlation in the current dataset, we conducted a Monte Carlo
simulation in AlphaSim to set a corrected statistical threshold of p � 0.05.
Applying the actual Gaussian filter widths (FWHMx � 4.02 mm,
FWHMy � 4.68 mm, FWHMz � 3.76 mm), the actual voxel size (7 �
7 � 7 mm 3), and a connection radius (7 mm), we derived a corrected
threshold consisting of a voxel level p � 0.005 over three contiguous
voxels. All coordinates are reported in MNI space.

Statistical analysis
We first validated the paradigm using one-way repeated measures anal-
yses of variance (ANOVAs; with Greenhouse–Geisser corrections) of
Greeble size on distance judgments and response time (RT). Then, two-
way repeated-measures ANOVAs (emotion by Greeble size) were per-
formed on distance judgments, P1 and later ERPs to IAPS pictures.
Lastly, three-way repeated-measures ANOVAs (emotion by Greeble size
by hemisphere) were performed on P1g and N170 amplitudes. Signifi-
cant ANOVA effects were followed by t tests to contrast different exper-
imental conditions (using the least significant difference test, LSD).
Analysis of later ERPs (from post-P1 to Greeble onset) was also per-
formed using a data-driven approach as mentioned above. RTs over �2
standard deviations from the mean were excluded, and remaining RTs
were log-transformed before analysis to reduce skewness.

Results
Paradigm validation
We adopted an imminence manipulation to elicit defensive re-
sponses. Due to the high temporal sensitivity of electrophysiolog-
ical recordings, we chose to apply a static Greeble image on a
given trial (rather than moving or shrinking/expanding objects in
typical looming paradigms) to ensure precise Greeble locking
while varying Greeble sizes across trials to manipulate object im-
minence. Below, we established our imminence manipulation by
demonstrating defensive avoidance in participants as Greebles
grew bigger in size.

A one-way ANOVA of Greeble size as the independent vari-
able (trials were collapsed across all emotion conditions) in-
dicated that the object was perceived to be systemically more
proximal with increasing size [F(1.10, 41.87) � 118.38, p � 0.001,
� 2� 0.76; Fig. 2A]. From the smallest to the largest size,
estimated egocentric distance [M(SD)] decreased linearly
[4.11(0.81), 3.19(0.60), 2.39(0.67), and 1.80(0.84)], differing sig-
nificantly between any two sizes [t(38) values � 9.97, p values �
0.001, d values � 1.5]. RT results paralleled the distance judg-
ment: larger Greeble size led to faster response in a monotonic
fashion [F(1.69, 64.24) � 22.76, p � 0.005, � 2� 0.38; Fig. 2B]. From
the largest to the smallest size, RT was 796 ms (135), 825 ms
(146), 854 ms (163), and 884 ms (155), respectively. All pairwise
RT contrasts were significant, t(38) values � 3.12, p values � 0.01,
d values � 0.48. Furthermore, RT and distance judgment were
closely correlated, r � 0.45, p � 0.005, with greater proximity
being associated with faster speed. Finally, consistent with the fact
that defensive responses tend to be exacerbated in anxiety, we
observed close correlations between these measures and anxiety
severity (measured by the Beck Anxiety Inventory; Beck et al.,
1988); higher anxiety was associated with increased proximity
(r � � 0.35, p � 0.05) and faster reaction time (r � � 0.33, p �
0.05). Therefore, these findings align with the account of “defen-
sive distance” that imminent novel objects evoke defensive re-
sponse, providing coherent support for our paradigm at
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effectively provoking the defense system
(Fanselow and Lester, 1988; McNaughton
and Corr, 2004).

Behavioral evidence: fear and disgust
images similarly increased
Greeble imminence
Within such a defensive context, threat
emotion exerted a significant effect on esti-
mated Greeble imminence, F(1.67, 63.35) �
8.02, p � 0.001, � 2� 0.18. Greebles
following fear and disgust images ap-
peared closer [fear: M(SD) � 2.86(0.58);
disgust: 2.84(0.57)] than did those follow-
ing neutral images [2.96(0.55); t(38) val-
ues � �2.86, p values � 0.01, d values �
0.45; Fig. 2C], but there was no difference
between fear and disgust conditions, p � 0.51. This emotion
effect was somewhat independent of Greeble size, p � 0.15. Post
hoc analyses showed that at a trend level, the linear effect of
Greeble size (greater size3 greater proximity) was more prom-
inent in the threat (fear and disgust combined) than neutral con-
dition, t(38) � �1.68, p � 0.10, albeit the two threat conditions
did not differ, p � 0.45. Overall, our behavioral results suggest that
fear and disgust emotions comparably increased perceived proxim-
ity of Greeble objects, marking convergent perceptual consequences
of the two threat subcategories.

Neural evidence (1): fear and disgust images elicited distinct
P1 response
Replicating our previous finding (Krusemark and Li, 2011), a
significant effect of emotion emerged in P1 amplitude, F(1.93,73.23) �
19.14, p � 0.001, � 2� 0.34 (Fig. 3A,B). Indicative of early diver-
gence between fear and disgust emotions, fearful images evoked
larger P1 amplitude [M(SD) � 5.94 �V (4.00)] relative to neutral
baseline images [5.18 �V (4.33); t(38) � 2.47, p � 0.02, d � 0.39],
whereas disgust images suppressed P1 relative to neutral images
[4.18 �V (4.15); neutral vs disgust: t(38) � 3.51, p � 0.001, d �
0.56; fear vs disgust: t(38) � 6.83, p � .001, d � 1.09].

In light of the opposite patterns of P1 to fear and disgust
conditions, we then searched for the neural substrates underlying
such discrimination in LORETA. A voxelwise t contrast of esti-
mated current density (fear � disgust) localized the source to the
left fusiform gyrus [5 voxels, maximal at �45, �39, �20; t(38) �
4.58, p � 0.005; Figure 3C], exhibiting greater current density in
response to fear over disgust images.

Neural evidence (2): later ERP responses to fear and disgust
images converged over time
As illustrated in Figure 3, A and D, our data-driven analysis of
subsequent emotion perception (from post-P1 to Greeble onset:
130 – 425 ms post-image onset) revealed a steady course of aug-
mented fear response relative to neutral images, spanning
182–210 ms post-image [ANOVA over this window: F(1.84, 69.82) �
7.25, p � 0.001, � 2� 0.16] and 221– 425 ms post-image
[ANOVA over this window: F(1.81,68.66) � 27.29, p � 0.001, � 2�
0.42]. Interestingly, the disgust waveform first overlapped with
the neutral waveform but then (at 288 – 425 ms) rose above its
counterpart [ANOVA over this window: F(1.81,68.78) � 36.27, p �
.001, � 2� 0.49; Figure 3A,D]. Importantly, the disgust waveform
converged with the fear waveform toward the end of the obser-
vation window (388 – 425 ms). A 99% confidence interval was
plotted for each condition to provide a point-by-point illustra-

tion of the dynamic relationships among the three emotion types
(Fig. 3A).

Given the general departure of threat from neutral conditions
in this later interval (288 – 425 ms), we examined the source of
this effect (threat � neutral) in LORETA. Source analysis re-
vealed two voxels at p � 0.005 in the right middle temporal gyrus
(peak: 67,�32,�13) and one in the left middle temporal gyrus
(�59, �39, �13). At a less stringent threshold of p � 0.01, these
two areas extended into bilateral fusiform regions [four voxels in
the right hemisphere (cluster-level pcorrected � 0.05) and three
voxels in the left (cluster-level pcorrected � 0.19); Figure 3E]. This
analysis thus localized sources of this later threat processing to
downstream visual cortical areas.

Neural evidence (3): Greeble P1 and N170 overlapped
between fear and disgust conditions
Finally, we isolated Greeble-related visual ERPs (P1g and N170)
to investigate how fear and disgust modulated visual processing
of a subsequent novel anthropomorphic stimulus to provide
supplemental information about threat-related impacts on
perception. There was a main effect of emotion on P1g ampli-
tude, F(1.93, 73.24) � 5.84, p � 0.01, � 2� 0.13, and a significant
emotion-by-hemisphere interaction, F (1.90,72.29) � 3.99, p � 0.05,
�2� 0.09 (Fig. 4 A,B). The interaction was driven by a simple main
effect of emotion at the right occipital O2 site [F(1.86,70.61) � 9.11, p �
0.001, �2� 0.19]. Emotion did not influence P1g amplitude at the
left hemispheric O1 site [F(1.99,75.85) � 1.84, p � 0.17]. Pairwise com-
parisons indicated differential P1g at O2 between neutral [5.83 �V
(4.00)] and threat emotions [fear: 4.98 �V (3.96); disgust: 4.83 �V
(3.94); t(38) values � 3.09, p values � 0.005, d values � 0.48]. Nev-
ertheless, disgust and fear evoked comparable P1g potentials [ t(38) �
0.67, p � 0.51; Figure 4C]. Finally, there was no Greeble size effect
(independent or interactive), p values � 0.60.

Similar to the P1g effect, there was a significant effect of emo-
tion on N170 amplitude, F(1.94,73.58) � 5.01, p � 0.01, � 2� 0.12,
and a significant emotion-by-hemisphere interaction, F(1.84,70.01) �
9.96, p � 0.001, � 2� 0.21. Follow-up ANOVAs revealed an emo-
tion effect at the right hemispheric site, P8 [F(1.89,71.78) � 12.81,
p � .001, � 2� 0.25; Figure 4F,G], but not at the left hemispheric
site, P7 [F(1.99,75.75) � 0.28, p � 0.79]. Pairwise contrasts indi-
cated comparable N170 amplitudes for fear and disgust trials
[fear: �0.53 �V (2.72); disgust: �0.26 �V (2.82); t(38) � �1.22,
p � 0.23], which were significantly more pronounced than the
N170 for neutral trials [0.54 �V (2.85); t(38) values � 3.65, p
values � 0.001, d values � 0.58]. Finally, except for an isolated
trend-level main effect at P7 [p � 0.07; greater size 3 greater

Figure 2. Egocentric distance judgment results. A, B, Distance estimations were more proximal (A) and faster (B) with increas-
ing Greeble size. C, Fear and disgust emotions equally exaggerated Greeble imminence relative to the neutral condition. *p�0.01;
error bars, � SEM.
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N170], Greeble size did not influence N170, either independently
or interactively.

Finally, exploratory trial-by-trial correlation analyses were
conducted between perceived imminence and P1g and N170
amplitude, which yielded very weak associations (r values �
0.10). Given that perceptual decisions rely on long-latency
rather than short-latency visual analysis (Jolij et al., 2011), the
absence of tight relations between early visual ERPs and per-
ceptual outcome was in concordance with this principle. We
caution, however, that single-trial ERP data are often highly
noisy, which could greatly attenuate correlations on a trial-by-
trial basis.

Given that Greeble P1g and N170 effects were driven by dif-
ferences between general threat and neutral conditions, our
LORETA localization focused on the neural structures subserv-
ing differential processing of threat (fear and disgust combined)
versus neutral information. Voxelwise comparisons in LORETA
in the P1g window did not reveal any cluster meeting the preset
statistical threshold. However, a few clusters (�4 voxels) in the
extrastriate visual cortex emerged at a less rigorous threshold of
p � 0.01 (equivalent to cluster-level pcorrected � 0.05; e.g., lingual
gyrus centering on �17, �81, �13 and 18, �46, 1; Fig. 4D). In
the N170 window, LORETA revealed a cluster in the right inferior
temporal gyrus [five voxels, maximal at 60, �32, �20; t(38) �
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3.19, p � 0.005; Figure 4H] with greater current density for threat
emotions than the neutral condition. Again, threat, regardless of
subtype, enhanced visual cortical activity.

Discussion
By examining two primary threat subtypes, fear and disgust, the
current study provides some first evidence characterizing the
temporal progression of visual perception of individual threat
emotions. Despite early specialized encoding (115 ms), threat
perception gradually fuses between fear and disgust (130 – 425
ms). This later convergence was paralleled by overlapping visual
response to and similar perceived proximity of Greebles that fol-
lowed fear versus disgust images relative to the neutral condition.
Therefore, threat perception systematically evolves from nu-
anced early specialization to generalized higher-order processing,
promoting concordant defensive behavior to potential dangers.
As such, these findings help reconcile the multidimensional view
(with accumulating support) and the (currently dominant) uni-
dimensional theorization of threat processing. This paradoxical
temporal development has the potential to unify highly hetero-
geneous symptoms in psychopathologies such as anxiety disor-
ders, thereby affording novel insights into clinical research and
intervention. To the extent that fear heightens sensory processing
and disgust dampens it, potentially driving distinct symptoms
(e.g., obsessive worrying versus trauma-related amnesia) by in-
fluencing object encoding in opposite directions, the two threat
subtypes also entail motivationally similar responses, fueling gen-
eral avoidance behavior in anxiety.

As arousal can impact attention and motivation, it may con-
tribute to the current ERP and behavioral effects, independent of
specific emotions. However, we observed weak correlations be-
tween arousal ratings and the reported behavioral and ERP effects
(r values � �0.18�0.26, p values � 0.11�0.60), suggesting that
arousal-driven processes were unlikely to account for these re-
sults. Specifically, if arousal drove the P1 effect, then the greater
arousal level of disgust (vs neutral) stimuli would contradict the
suppressed P1 to disgust (vs neutral) images. If arousal under-
pinned later ERPs or ERPs or Greeble effects, then the significant
disparity in arousal level for fear and disgust could not be recon-
ciled with the convergent profiles for fear and disgust trials. Fi-
nally, underlying sources of scalp effects were localized in the
extrastriate and fusiform cortices (as opposed to emotion/atten-
tion areas such as orbitofrontal and parietal cortices), further
ruling out alternative accounts related to general arousal/atten-
tion influences. Additionally, all Greebles were rated as neutral
and thus did not exert an emotion effect in and of themselves. To
the extent that precision of temporal locking decays with increas-
ing response latency, signal sensitivity of later ERPs to IAPS im-
ages could be somewhat blunted, potentially precluding the
observation of fear-versus-disgust differentiation in the later
window. However, this possibility is very low based on three facts:
Firstly, these later ERP effects mirrored Greeble ERP effects that
were closely time locked and possessed adequate signal sensitiv-
ity. Importantly, three lines of evidence related to later processing
(later IAPS ERPs, Greeble ERPs, and behavioral judgments) con-
verged on a general departure of threat from neutral conditions,
providing solid support to the notion of generalized later threat
processing. Secondly, the later threat convergence was driven by a
sustained increase in response to disgust over time, substantiated
by a series of significant effects (positive evidence). Thirdly, from
the early opposite direction to the later same direction, the man-
ner in which fear and disgust deviated from the neutral condition
suggests that processing of specific threats evolved from being

qualitatively distinct to qualitatively similar. Finally, all ERP ef-
fects reported here were localized to fairly close/overlapping vi-
sual cortices, largely eliminating the possibility that variable
distances of neural substrates to the scalp and related signal sen-
sitivity disparity contributed to these distinct ERP result patterns.

These results mapped precisely onto our previous finding of
P1 enhancement in fear versus suppression in disgust (relative to
neutral images; Krusemark and Li, 2011). That fear and disgust
diverged in opposite directions relative to a neutral baseline
around 100 ms highlights a qualitative characterization of indi-
vidual threats in basic visual encoding, akin to the ecological
function of sensory acquisition in fear versus rejection in disgust
(Gray, 1987; Rozin and Fallon, 1987). Notably, in contrast to the
current defensive context and a perceptual decision task, our
previous study involved a low-level visual search task demon-
strating divergent behavioral consequences of fear and disgust
stimuli. Reliability of P1 discrimination despite these significant
discrepancies in context, task demand, and behavioral outcomes
accentuates the idea of mandatory specificity in sensory encoding
of threat and its immunity to high-level motivational influences.

This early sensory encoding, supporting both response ampli-
fication and suppression in the visual cortex, extends beyond a
generic gain increase in sensory and attentional processing of
threat (Desimone and Duncan, 1995; Luck, 1995). Given that the
amygdala often exhibits a general response augmentation to fear
and, to a lesser extent, disgust stimuli (LeDoux, 1995; Anderson
et al., 2003) and requires a response latency well over 100 ms (Oya
et al., 2002; Krolak-Salmon et al., 2004), the current finding im-
plicates specialized emotion processing systems outside the pre-
dominant amygdala pathways (LeDoux, 1995; Tamietto and de
Gelder, 2010). That is, beyond amygdala threat processing via
subcortical routes (Rotshtein et al., 2010; Garrido et al., 2012)
and coarse threat decoding in the orbitofrontal cortex (Barrett
and Bar, 2009) that pose general response amplification to threat
by fast feedback to the visual cortex, we propose an intriguing
neurosensory account: a feedforward sensory pathway can allow
for specialized early threat processing (albeit not the later gener-
alized response), supporting concrete representations of individ-
ual threat categories independently and/or interactively with the
limbic and prefrontal systems. By this token, the current data
would resonate with accruing evidence that threat representation
can be stored in the sensory cortex and be activated during basic
sensory processing (Weinberger, 2007; Li et al., 2008b; Tsuchiya
et al., 2009; Pessoa and Adolphs, 2010; Sacco and Sacchetti,
2010). This idea also echoes long-standing theories of affective
primacy (Zajonc, 1984), emphasizing the evolutionary need of
quick deciphering of the biological landscape (LeDoux, 1995).
Furthermore, fear and disgust, although both threat relevant, are
posited to represent independent biological systems—the “self-
protection system” and “the disease avoidance system,” respec-
tively (Oaten et al., 2009; Neuberg et al., 2011)—such that they
can be endowed with dedicated lines of sensory processing. Given
that this early threat specification may similarly underpin other
reflexive responses, including opposing autonomic responses for
fear and disgust (Levenson, 1992; Bradley et al., 2001), future
research is warranted to simultaneously assess early neural pro-
cesses and peripheral physiological activities (e.g., pupil size or
heart rate) to confer additional corroboration.

Nevertheless, this sensory specificity holds only in the first
couple tenths of a second, to gradually give way to more general
threat processing, at least in a defensive context. While fear re-
sponse stays above the neutral condition, disgust response ap-
pears rather dynamic, rising first above the neutral condition to
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eventually merge with fear response. This intermediate window
(130 – 425 ms) thus bridges early sensory specialization and later
perceptual generalization, revealing a systematic progression of
threat perception over time. Therefore, to the extent that at a
subcortical level later responses to fear and disgust may remain
distinct, cortical perceptual analysis of individual threats eventu-
ally merge, contributing to congruent perceptual distortions to-
ward a subsequent object.

Visual ERPs to (fully counterbalanced) Greeble objects fol-
lowing fear or disgust images provided supplemental evidence of
generalized threat perception at later phases. Convergent P1g and
N170 to Greebles in fear and disgust (vs neutral) conditions,
along with comparable exaggeration in Greeble proximity esti-
mation, implicate the nondiscriminant influence of threat sub-
types on visual processing. To note, these Greeble ERP effects
were right hemisphere lateralized, in line with extensive evidence
of right hemisphere dominance in threat and face processing
(Kanwisher et al., 1997; Davidson et al., 2004). Akin to the ac-
count of “defensive distance,” object imminence manipulation
can effectively provoke the defense system (Schiff et al., 1962;
Gibson, 1979; Mobbs et al., 2007), eliciting avoidance behaviors
including fight, flight, and freezing (Blanchard and Blanchard,
1988; Fanselow and Lester, 1988; McNaughton and Corr, 2004).
Given that fight and flight tend to accelerate and freeze to decel-
erate reaction speed, the coupling of faster RT with heightened
imminence aligns more with fight and flight (than freeze) reac-
tions. Nevertheless, the absence of a clear emotion effect on RT
(p � 0.16; based on a one-way ANOVA of emotion) suggests that
threat moderation of defensive response could be manifold, con-
tributing to a complex combination of active and passive avoid-
ance. Overall, in a defensive context the close mapping between
later IAPS ERPs and subsequent Greeble responses (neural and
behavioral) highlights nonspecific delayed processing of threat
that promotes defensive avoidance rather than rigidly tracking
specialized sensory encoding. However, to the extent that specific
cognitive mechanisms underlying these consistent IAPS and
Greeble effects are highly related, they may not be identical. The
later ERPs to threat pictures could reflect (downstream) negative
affective and perceptual evaluation, whereas the Greeble visual
ERPs may represent (basic) visual attention and monitoring in
the presence of biologically salient stimuli.

The current temporal dynamic of threat perception dovetails
with our previous functional magnetic resonance imaging data,
which similarly revealed a parallel of specific threat representa-
tion in the primary sensory cortex and general threat evaluation
in the higher-level orbitofrontal cortex (OFC; Li et al., 2008b). As
downstream visual perception is informed by both sensory affer-
ents and endogenous feedback modulation, this later conver-
gence across subtypes would very well reflect top-down influence
from the OFC that is densely innervated by ventral tegmental
dopamine neurons conveying rich motivational information
(Lamme and Roelfsema, 2000; Miller and Cohen, 2001; Rolls,
2004). Importantly, this later general enhancement in visual cor-
tical response could also result from reentrant input from the
amygdala that is potentiated by threat information (LeDoux,
1995; Tamietto and de Gelder, 2010). Altogether, the current
delineation of temporal progression in threat perception pro-
vides a viable account unifying subtype-specific reflexes at an
early latency with general elaborate/voluntary actions to threat
later on (Ratcliff and McKoon, 2008; Jolij et al., 2011).

To the extent that fear of heights makes buildings seem ex-
ceedingly high (Stefanucci and Storbeck, 2009) and depression
renders a slope to appear dauntingly steep (Riener et al., 2011),

threat (fear and disgust alike) heightens the perception of the
imminence of a novel object. Whether it is our intention to see
what we want to see (Bruner and Minturn, 1955), or that mental
and physiological states unconsciously modify our view (Tami-
etto and de Gelder, 2010), perception, especially threat percep-
tion, is intricately tied to motivation. Whereas early threat
perception is evolutionarily equipped with stable specification of
discrete threats to maintain signal fidelity and incite specific re-
flexive responses, later threat perception gradually dissociates
from early segregation and fuses into general threat response pro-
files, striking a fine balance between sensory input and biological
pressure in the here and now.
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