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Humans and animals take actions quickly when they expect that the actions lead to reward, reflecting their motivation. Injection of
dopamine receptor antagonists into the striatum has been shown to slow such reward-seeking behavior, suggesting that dopamine is
involved in the control of motivational processes. Meanwhile, neurophysiological studies have revealed that phasic response of dopamine
neurons appears to represent reward prediction error, indicating that dopamine plays central roles in reinforcement learning. However,
previous attempts to elucidate the mechanisms of these dopaminergic controls have not fully explained how the motivational and
learning aspects are related and whether they can be understood by the way the activity of dopamine neurons itself is controlled by their
upstream circuitries. To address this issue, we constructed a closed-circuit model of the corticobasal ganglia system based on recent
findings regarding intracortical and corticostriatal circuit architectures. Simulations show that the model could reproduce the observed
distinct motivational effects of D1- and D2-type dopamine receptor antagonists. Simultaneously, our model successfully explains the
dopaminergic representation of reward prediction error as observed in behaving animals during learning tasks and could also explain
distinct choice biases induced by optogenetic stimulation of the D1 and D2 receptor-expressing striatal neurons. These results indicate
that the suggested roles of dopamine in motivational control and reinforcement learning can be understood in a unified manner through
a notion that the indirect pathway of the basal ganglia represents the value of states/actions at a previous time point, an empirically driven
key assumption of our model.

Introduction
Dopamine has been suggested to control motivation and reward-
seeking behavior (Robbins and Everitt, 1996; Berridge and Rob-
inson, 1998; Dayan and Balleine, 2002; McClure et al., 2003; Niv,
2007). As a direct evidence, application of dopamine receptor
antagonists in the striatum has been shown to slow the subject’s
behavior (Salamone and Correa, 2002; Nakamura and Hikosaka,
2006), with distinct effects observed for the antagonists of D1-
and D2-type dopamine receptors (D1Rs and D2Rs), which are
expressed in distinct populations of striatal medium spiny neu-

rons (MSNs) projecting to the “direct” (dMSNs) and “indi-
rect” (iMSNs) pathways of the basal ganglia, respectively (Gerfen
and Surmeier, 2011). Clarifying mechanisms of such pharmaco-
logical effects is likely to help elucidating the exact roles of dopa-
mine in motivational control, and neural circuit modeling has
been used as one of the powerful approaches (Frank et al., 2004;
Hong and Hikosaka, 2011). However, these models are still not
self-contained in a sense that responses of either the dopamine
neurons or their hypothesized upstream globus pallidus (GP)
neurons were presumed rather than explained by inputs from
the rest part of the circuit.

Along with the suggested roles in motivational control, dopa-
mine has also been suggested to be centrally involved in rein-
forcement learning. Specifically, neurophysiological studies with
computational perspectives have revealed that phasic response of
dopamine neurons appears to represent the temporal-difference
(TD) reward prediction error (Montague et al., 1996; Schultz et
al., 1997; Bayer and Glimcher, 2005; Roesch et al., 2007), a key
quantity defined in reinforcement learning algorithms (Sutton
and Barto, 1998). Together with the finding that corticostriatal
synapses are plastically modified according to phasic dopamine
response (Reynolds et al., 2001), the central role of dopamine in
reinforcement leaning has become widely accepted (Glimcher,
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2011), leading to a proposal of a closed
neural circuit model (Potjans et al., 2011).
Despite these progressions, however, ex-
act circuit mechanisms for the computa-
tion of TD error in the upstream of
dopamine neurons had remained quite
elusive, making it difficult to combine
such a circuit model of reinforcement
learning with the models of motivational
control with distinct D1R and D2R effects
as introduced above.

Recently, detailed anatomical and
physiological features of the corticostria-
tal circuit have become revealed. Specifi-
cally, it has been shown that dMSNs and
iMSNs are predominantly targeted by
distinct corticostriatal neurons, named
crossed-corticostriatal (CCS) cells and
corticopontine/pyramidal-tract (CPn/PT)
cells, respectively (Lei et al., 2004; Reiner
et al., 2010). Moreover, it has been dem-
onstrated that the CCS cells unidirec-
tionally project to the CPn/PT cells
(Morishima and Kawaguchi, 2006), and
the CPn/PT cells (but not the CCS cells)
possess strong facilitatory recurrent exci-
tation (Morishima et al., 2011). These fea-
tures have led us to conjecture how the
activity of dopamine neurons is regulated
and can represent TD reward prediction
error (Morita et al., 2012). In the present
study, we constructed a closed neural cir-
cuit model based on this conjecture and

Figure 1. Simulated visually guided saccade task and hypothesized corticobasal ganglia circuit. A, The simulated task. On each
trial, a target appears pseudorandomly at the left or right, and a correct response is followed by either large or small reward.
Contingency between the target location and the reward amount is fixed for each block (20 –28 trials) and alternated across blocks.
B, Hypothesized structure and operation of the corticobasal ganglia circuit. Target location is represented by a subset of a major
subtype of corticostriatal neurons, CCS cells, that predominantly target striatonigral (direct pathway) dMSNs (Reiner et al., 2010)
(left). These CCS cells activate dMSNs, which then inhibit the SNr and thereby disinhibit the SC to initiate a saccade. Meanwhile, the
CCS cells also activate, via unidirectional projections (Morishima and Kawaguchi, 2006), another major subtype of corticostriatal
neurons, CPn/PT cells, which predominantly target striatopallidal (indirect pathway) iMSNs (Reiner et al., 2010). These CPn/PT cells
sustain their activity via strong facilitatory recurrent excitation (Morishima et al., 2011), whereas the activity of CCS cells declines
because of their weaker and depressive recurrent excitation. When reward is obtained (right), dopamine neurons in the SNc receive
excitatory inputs representing the value (amount) of the obtained reward from the neurons in the PPN. The SNc dopamine neurons
also receive inhibitory inputs from the collaterals of SNr neurons, which are disinhibited by the iMSNs downstream of the still active
CPn/PT cells. Given that the CPn/PT cells represent the location of the saccadic target and that the iMSNs represent the reward value
predicted from that location, the SNr3 SNc inhibition represents the reversed-sign predicted reward value. Thus, together with
the input from the PPN, the dopamine neurons compute reward prediction error. The resulting phasic dopamine response induces
proportional plastic changes of the synaptic strength between the CCS cells and dMSNs so that the activity of dMSNs can represent
updated reward value predictions. At the synapses between the CPn/PT cells and iMSNs, sustained inputs from the CPn/PT cells
cause adenosine accumulation and glutamate spillover. Phasic increase in dopamine then stimulates the signaling cascade down-
stream of the adenosine A2A receptors, leading to LTP, whereas phasic decrease in dopamine causes LTD through the signaling
cascade downstream of mGluR5. In consequence, the activity of iMSNs can also represent updated reward value predictions.
Notably, molecular mechanisms of plasticity induction, as well as structures between the striatum (Str) and the dopamine neurons,
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including the SNr, were not explicitly modeled, and our model
can be also compatible with recent findings that the dopamine
neurons are regulated by the LHb neurons, which are then
driven by GPb (Fig. 7A,B). Also notably, although not explicitly
illustrated here, we implicitly assumed that the striatum and
the SNr are topographically organized and only a portion of
neurons having the corresponding saccadic response fields,
rather than an entire population, is activated in the task. C,
Model equations used for the simulations shown in Figures 2,
4, and 5. xCCS and xCPn indicate the activity of the CCS cells and
the CPn/PT cells that represent the left-target location (value
of 1 is arbitrary; for details, see Materials and Methods), xdMSN

and xiMSN indicate the population activity of dMSNs and iMSNs,
respectively, xPPN indicates the activity of the PPN neurons,
and xDA indicates the response of dopamine neurons com-
pared with its baseline activity. w(n) indicates the strength of
the connections between the CCS cells and dMSNs and those
between the CPn/PT cells and iMSNs in the nth left-target trial
[note that we assumed that CCS– dMSN and CPn/PT–iMSN
connections are updated in the same way and so described
their strength by the single variable w(n)]. f1 and f2 represent
the input– output functions of dMSNs and iMSNs, respective-
ly: these functions are assumed to be a threshold–linear func-
tion under the presence of tonic dopamine (Fig. 3). �
represents the learning rate. � represents the (relative)
strength/efficacy of the direct pathway over the indirect path-
way, and it corresponds to the time discount factor defined in
the TD reinforcement learning algorithms (Fig. 6C). The gray
parts in the equations will be modified in the elaborated
model used for the simulations shown in Figure 6.
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tried to simultaneously explain the observed motivational effects of
dopamine receptor antagonists and the suggested roles of dopamine
in reinforcement learning by simulating two behavioral tasks.

Materials and Methods
Simulated saccade task. We first simulated a visually guided saccade task
(Fig. 1A) used in an experimental study (Nakamura and Hikosaka,
2006). In the experiment, a visual stimulus (saccadic target) appeared at
the left or the right of the screen on each trial, and the subject (monkey)
was required to make a saccade toward the target. If the subject made a
correct response, a liquid reward was given after 100 ms of fixation at the
target. There were two kinds of reward amount, “large” (0.4 ml) or
“small” (0.05 or 0 ml), each of which was associated with either left or
right target; contingency between the target location and the reward
amount was fixed for an individual task block consisting of 20 –28 trials,
and “left-large” and “left-small” blocks were switched alternately without
a preceding cue for a switch. The target location (left and right) was
pseudorandomly determined in each trial. We incorporated these fea-
tures into our simulations, although there are several points that differ
from the experimental study as we describe below. We constructed two
models: (1) a simpler one, which modeled neuronal activity only at the
timings of target presentation and reward reception, and (2) an elabo-
rated one, which modeled intertrial intervals as well. In both of the mod-
els, we did not directly model the amount of reward or neural processes
for reward sensation/consumption but instead assumed two different
levels of reward-representing inputs to the dopamine neurons for the
large- and small-reward conditions (see below). Also, we did not model
the two different amounts of reward for the small-reward condition (0.05
or 0 ml); in the experiment (Nakamura and Hikosaka, 2006), trials with
0.05 ml and those with 0 ml were not analyzed separately. With the
simpler model, we simulated only the trials with a left target for simplicity
and in the same manner as the previous modeling study (Hong and
Hikosaka, 2011). With the elaborated model, we simulated both left-
target and right-target trials, although only the results for the left-target
trials were shown in the figures unless otherwise mentioned. In the fol-
lowing, we first describe the details of the simpler model and, thereafter,
those about the elaborated one.

Simulated neural circuit for reward-oriented saccade. A series of exper-
imental studies have revealed that the cortex, basal ganglia, and the do-
pamine neurons in the substantia nigra pars compacta (SNc) play
essential roles in learning and execution of reward-associated saccade
tasks (Kawagoe et al., 2004; Takikawa et al., 2004; Hikosaka et al., 2006;
Nakamura and Hikosaka, 2006). We constructed a computational model
of the corticobasal ganglia–SNc circuit according to the conjecture
(Morita et al., 2012) derived from recent anatomical and physiological
findings (Fig. 1B). There are two distinct types of corticostriatal neurons,
the CCS cells and the CPn/PT cells, and there exist unidirectional pro-
jections from the CCS cells to the CPn/PT cells (Morishima and Kawa-
guchi, 2006) and strong facilitatory recurrent excitation only among the
CPn/PT cells (Morishima et al., 2011). The CCS cells and the CPn/PT
cells predominantly project to the striatal dMSNs and iMSNs, respec-
tively (Lei et al., 2004; Reiner et al., 2010), which presumably upregulate
and downregulate the dopamine neurons in the SNc (Aggarwal et al.,
2012; Morita et al., 2012) via the substantia nigra pars reticulata (SNr)
(Tepper and Lee, 2007). The SNc dopamine neurons receive significant
inputs also from other structures (Watabe-Uchida et al., 2012), including
excitation from the pedunculopontine nucleus (PPN) (Mena-Segovia et
al., 2004) and inhibition from the striatal striosomes (Gerfen et al., 1985;
Paladini et al., 1999; Fujiyama et al., 2011; Watabe-Uchida et al., 2012).
The former input could convey information of actually obtained reward,
because it has been shown (Okada et al., 2009) that a population of
neurons in the PPN represents such information. We did not incorporate
the latter, striosomal input to the dopamine neurons or many other
known connections. Exploring how these unincorporated connections
can be related to the circuit that we modeled is an important future issue.

We assumed that phasic dopamine response induces proportional
changes of the strengths of connections between CCS cells and dMSNs and
those between CPn/PT cells and iMSNs via plasticity mechanisms; in the case

of synapses on the iMSNs, presumably together with adenosine acting on the
A2A receptors and/or glutamate acting on the metabotropic glutamate recep-
tor 5 (mGluR5) that are assumed to be synaptically accumulated during
sustained inputs from CPn/PT cells (see below). Phasic dopamine response
may also gradually change the level of tonic dopamine (cf. Niv et al., 2007).
However, in the saccade task that we simulated (Nakamura and Hikosaka,
2006), as well as the other task that we also simulated as we describe below
(Roesch et al., 2007; Takahashi et al., 2011), such changes across blocks
would not be very significant, because large- and small-reward trials were
intermingled and also because the frequency of phasic release (on reward
reception) is relatively low (each task trial takes �4 s) and seems not to vary
much compared with self-paced free-operant tasks. We thus did not con-
sider changes in tonic dopamine; nevertheless, we did consider the effects of
tonic dopamine on the responsiveness of dMSNs/iMSNs and their blockade
by antagonists as we explain below.

Because the experimental results (Kawagoe et al., 2004; Hikosaka et al.,
2006; Nakamura and Hikosaka, 2006) suggest that the caudate is espe-
cially involved in the learning and execution of reward-associated sac-
cade tasks, “striatum” in our models for the saccade task basically refers
to the caudate. Likewise, “cortex” refers to the areas that project to the
caudate and exhibit saccade-related activity, e.g., the frontal eye field
(FEF), and we assumed that there exist CCS cells and CPn/PT cells in
those areas. However, other striatal regions could potentially operate in
similar ways given the suggested common architecture across the entire
striatum (Pennartz et al., 2011). There have been various types of neu-
rons in the striatum (Hikosaka et al., 2006), and not all of them are
incorporated into our model; in particular, neurons showing block-
indicating activity before the presentation of the target (Watanabe and
Hikosaka, 2005; Hikosaka et al., 2006) were not incorporated.

We assumed the following set of equations (Fig. 1C) describing the
time (t)-dependent neuronal activity of cortical CCS cells and CPn/PT
cells that represent the left-target location [xCCS(t) and xCPn(t)], the ac-
tivity of striatal dMSNs and iMSNs [xdMSN(t) and xiMSN(t)], the activity
of the PPN neurons that represent obtained reward [xPPN(t)], the re-
sponse of SNc dopamine neurons compared with its baseline activity
[xDA(t)], and the strength of connections between the CCS cells and
the dMSNs and those between the CPn/PT cells and the iMSNs [w(n),
where n represents the index of left-target trials, i.e., w(n) represents the
strength at the nth left-target trial]. Notably, w(n) represents both the
CCS– dMSNs and CPn/PT–iMSNs connection strengths, because we as-
sumed that the synaptic strength between CCS cells and dMSNs and the
strength between CPn/PT cells and iMSNs are modified in effect simi-
larly (see below). At the timing of target presentation in the nth left-target
trial [t � t(n)] in a given block,

xCCS(t(n)) � 1.

The CCS cells that represent the left-target location become active in
response to a presentation of the left target. Notably, it is arbitrary to set
this activity to what value; we set this to 1 for simplicity, but we can
equivalently set this to 10, for example, and scale down w(n) and also �
(learning rate; see below) to 1⁄10 of the original values:

xCPn(t(n)) � 0.

The CPn/PT cells that represent the left-target location presumably do not
show immediate response to a presentation of the target but rather gradually
become activated by the CCS cells via the unidirectional connections (Mor-
ishima and Kawaguchi, 2006), and so we assumed that their activity is 0 at
time t(n). More precisely, however, other CPn/PT cells could represent a
state preceding the target presentation and drive iMSNs. This point was not
incorporated into the model considered here for simplicity but was taken
into account in our elaborated model described below:

xdMSN(t(n)) � f1(w(n) � xCCS(t(n))) � f1(w(n) � 1) � f1(w(n)).

w(n) � xCCS(t(n)) (� w(n)) represents the inputs from the CCS cells to
the dMSNs. f1 is the input– output function of the dMSNs under the
presence of tonic dopamine (see below), and xdMSN(t(n)) presumably
represents the reward value (reward amount) predicted from the left-
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target location under the condition in which f1 operates in the suprath-
reshold linear regimen and is not affected by D1 antagonist:

xiMSN(t(n)) � f2(w(n) � xCPn(t(n))) � f2(w(n) � 0) � f2(0) � 0.

f2 is the input– output function of the iMSNs under the presence of tonic
dopamine (see below), which is assumed to take 0 when input is 0:

xPPN(t(n)) � 0.

This indicates that the visual stimulus (saccadic target) itself is neutral
(not rewarding):

xDA(t(n)) � xPPN(t(n)) � �xdMSN(t(n)) � xiMSN(t(n)).

This relationship was derived from the hypothesized upstream circuitry
of dopamine neurons (Fig. 1B) (Morita et al., 2012). � represents the
(relative) strength/efficacy of the direct pathway over the indirect path-
way (its value does not affect the results presented in Figs. 2, 4, 5). Nota-
bly, it has been suggested that narrower dynamic range of negative
dopamine response than positive response can significantly affect learn-
ing (Potjans et al., 2011), but such asymmetry was not considered in the
present study; considering it in our model could be a good theme for
future research.

At the timing of reward reception in the nth left-target trial [t � t(n) �
�, in which � includes a reaction time, period for fixation at target (100 ms
was required in the experiment) (Nakamura and Hikosaka, 2006) and
time for liquid reward delivery and sensation/consumption],

xCCS(t(n) � �) � 0.

The target-induced activity of the CCS cells is assumed to decline, because
the recurrent excitation among CCS cells is relatively weak and entails short-
term synaptic depression (Morishima et al., 2011). Therefore, we assumed
xCCS(t(n)��)�0. More precisely, however, other CCS cells could represent
a new state at time t(n) � � and drive dMSNs. This point was not incorpo-
rated into the model considered here for simplicity but was taken into ac-
count in our elaborated model described below:

xCPn(t(n) � �) � 1.

We assumed this because the CPn/PT cells presumably become active by
the input from the CCS cells via the unidirectional connections (Mor-
ishima and Kawaguchi, 2006) and then sustain activity via strong recur-
rent excitation (Morishima et al., 2011):

xdMSN(t(n) � �) � f1(w(n) � xCCS(t(n) � �))

� f1(w(n) � 0) � f1(0) � 0.

f1 (as well as f2) is assumed to take 0 when input is 0 (see below).

xiMSN(t(n) � �) � f2(w(n) � xCPn(t(n) � �))

� f2(w(n) � 1) � f2(w(n)).

This is equal to xdMSN(t(n)), thus representing the reward value (reward
amount) predicted from the left-target location, under the condition in
which f1 and f2 are in their suprathreshold linear regimens and are not
affected by dopamine receptor antagonists (see below):

xPPN(t(n) � �) � 5 or 10.

The 5 and 10 values correspond to the small- and large-reward condi-
tions, respectively:

xDA(t(n) � �) � xPPN(t(n) � �)

� �xdMSN(t(n) � �) � xiMSN(t(n) � �).

This relationship (Morita et al., 2012) indicates that the dopaminergic
neuronal response represents reward prediction error or, more specifi-
cally, TD error defined in the TD learning (Sutton and Barto, 1998), and

the parameter �, representing the (relative) strength/efficacy of the direct
pathway over the indirect pathway, corresponds to the degree of time
discount for future rewards, namely, time discount factor.

In reference to empirical findings (Kawagoe et al., 2004) and the re-
sults of the previous modeling study (Hong and Hikosaka, 2011), we
assumed a simple quasi-inverse relationship between the saccadic reac-
tion time [RT(n)] and the stimulus-induced response of the dMSNs:

RT�n) � C1/(C2 � xdMSN(t(n))),

where C1 and C2 are constants and were set to 3000 and 6, respectively, in
the simulations shown in Figures 2, 4, and 5.

Notably, as shown in the above, we did not explicitly model structures
between the striatum and the dopamine neurons, namely, the SNr, the
external segment of the GP (GPe), and the subthalamic nucleus. For one
thing, this was for simplicity; however, with such abstraction, our model
could be also compatible with recent findings (Matsumoto and Hiko-
saka, 2007; Hong and Hikosaka, 2008; Hong et al., 2011; Shabel et al.,
2012) that the dopamine neurons, in the SNc and the ventral tegmental
area (VTA), are regulated by the lateral habenula (LHb) neurons, which
are then driven by the border region of GP (GPb). Specifically, we as-
sumed that the same corticostriatal circuit mechanism for computing the
TD of values of the current and previous states/actions (Morita et al.,
2012) can operate with two different circuits connecting to the dopamine
neurons: (1) one via the SNr (see Fig. 7A) and (2) the other via the GPb
and the LHb (see Fig. 7B) (see Results, Reward prediction error compu-
tation in parallel with action selection and/or execution).

Presumed effects of dopamine receptor antagonists. Existence of tonic
dopamine is considered to affect the relationship between the strength of
cortical inputs and the firing rate of MSNs, in different ways for dMSNs
and iMSNs, and application of D1- or D2-type dopamine receptor antag-
onist presumably “demodulates” such a tonic dopamine-modulated re-
lationship to a certain extent. For simplicity, we assumed the following
threshold–linear function for the input– output functions of dMSNs and
iMSNs under the condition with a presumed certain level of tonic dopa-
mine and without antagonists (see Fig. 3 A, B, black lines):

f1(I) � 0 (I � 	),

I � 	 (	 
 I),

f2 (I) � 0(I � 	),

I � 	 (	 
 I),

where I is input to MSNs, and 	 represents a threshold level, which was set
to 5 in the simulations. The actual relationship between the input
strength and the output firing rate under this condition may entail a
certain degree of saturating nonlinearity, but we assumed the above
threshold–linear function for simplicity.

Dopamine is known to upregulate the activity of dMSNs via the acti-
vation of D1Rs and downregulate the activity of iMSNs via the activation
of D2Rs (Gerfen and Surmeier, 2011), although exact ways of modulation
in vivo remain elusive. As for the D1Rs, it has been suggested that their
activation enhances the NMDA current more significantly than the
AMPA current (Levine et al., 1996; Flores-Hernández et al., 2002; Moyer
et al., 2007). Because the NMDA receptor has voltage dependence (Schil-
ler and Schiller, 2001), the enhancement of the NMDA current would
become more prominent when dMSNs receive stronger glutamatergic
(cortical) inputs. Therefore, we assumed that the response of dMSNs to
strong (but not weak) inputs, which would normally be enhanced by
tonic dopamine, is attenuated by D1 antagonist (see Fig. 3A). In the
presence of D1 antagonist (see Fig. 3A, gray),

f1(I) � 0 (I � 5),

I � 5 (5 
 I � 12),

7 � 0.6 �I � 12)(12 
 I).
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Conversely, regarding the D2Rs, it was originally suggested that their
activation suppresses the AMPA current more significantly than the
NMDA current (Levine et al., 1996; Flores-Hernández et al., 2002;
Hernández-Echeagaray et al., 2004; Moyer et al., 2007), but later studies
(Azdad et al., 2009; Higley and Sabatini, 2010) have shown that D2R
activation does reduce the NMDA receptor-mediated excitation [and in
fact, Higley and Sabatini (2010) has shown that D2R activation did not
affect non-NMDA synaptic currents, apparently contradictory to the
results mentioned above]. At the same time, however, it was also shown
that, if A2A adenosine receptors, which are predominantly expressed in
iMSNs, are simultaneously activated, such a suppression of the NMDA
receptor-mediated excitation by D2R activation can be fully blocked (Az-
dad et al., 2009; Higley and Sabatini, 2010). It has been suggested (Cunha,
2001; Schiffmann et al., 2007) that the formation of extracellular adeno-
sine results from the action of ecto-nucleotidases on ATP released with
neurotransmitters, including glutamate, and thus the synaptic pool of
adenosine reflects neuronal firing. Together, it is conceivable that the
activation of D2Rs reduces the AMPA and/or NMDA receptor-mediated
excitation when iMSNs receive weak cortical inputs and there exist a
moderate amount of adenosine, whereas D2R activation could still re-
duce the AMPA current but would never reduce the NMDA receptor-
mediated excitation when iMSNs receive strong cortical inputs and there
exist a high amount of adenosine. Based on these considerations, we
assumed that the response of iMSNs to weak (but not strong) inputs,
which would normally be suppressed by tonic dopamine, is enhanced by
D2 antagonist (see Fig. 3B). In the presence of D2 antagonist (see Fig. 3B,
gray),

f2(I) � 0 (I � 2),

7 � 0.7 �I � 12)(2 
 I � 12),

I � 5 (12 
 I).

Notably, in our simulations shown in Figures 2, 4, and 5, I � w(n) [i.e.,
input to dMSNs at time t(n) and input to iMSNs at time t(n) � �] was
always, except for the initial transient, near the central part of the input
range shown in Figure 3, A and B, and therefore both D1 and D2 antag-
onists were able to properly cause their effects. Changing the assump-
tions about the effects of the antagonists on the input– output functions,
or the magnitude of rewards, can significantly alter the main results of
this study. Nevertheless, given the observed cortical neural representa-
tion of relative (rather than absolute) preference of rewards (Tremblay
and Schultz, 1999), matching between the range of reward amounts rel-
evant in a given situation (task) and the dynamic range of value-
representing neurons in the brain, including the MSNs, could actually be
achieved via certain mechanisms.

Presumed dopamine-dependent corticostriatal plasticity. We assumed
that the reward value (reward amount) predicted from the left-target
location is stored in the strength of corticostriatal synapses, in the man-
ner as described above, and it is updated through plasticity mechanisms
depending on phasic dopamine response after reward reception as in the
following equation:

w(n � 1) � w(n) � �xDA(t(n) � �).

The parameter � represents the learning rate, and it was set to 0.75, which
is close to an empirically estimated value (0.7) in a study using a different
task (Bayer and Glimcher, 2005). We checked that the central features of
our simulation results shown in Figures 2, 4, and 5 were successfully
reproduced even if the learning rate was set to 0.6 or 0.9 (data not shown).
We assumed the same form of dopamine-dependent changes of cortico-
striatal inputs as above for both the dMSNs and iMSNs. It might appear
odd to make such an assumption, given the distinct properties of the
D1Rs and D2Rs that are separately expressed in dMSNs and iMSNs (Ger-
fen and Surmeier, 2011). However, according to our hypothesis (Fig. 1B),
the synapses on dMSNs and those on iMSNs are in fact under quite
different conditions at time t(n) � �. Specifically, whereas the synapses
on iMSNs continuously receive inputs from the CPn/PT cells that sustain
activity, those on dMSNs no longer receive inputs from the CCS cells

representing the same target stimulus because those CCS cells presum-
ably have already become inactive. It has been suggested (Shen et al.,
2008) that, different from the case of dMSNs, induction of long-term
potentiation (LTP) or long-term depression (LTD) in iMSNs requires
activation of the A2A adenosine receptors or mGluR5, respectively. These
two receptor types are suggested to form oligomers with D2Rs (Cabello et
al., 2009), and they are presumably activated by adenosine, which is
generated around synapses from ATP released with glutamate (Cunha,
2001; Schiffmann et al., 2007) and glutamate that is spilled over from
synapses (Mitrano et al., 2010), respectively. We conjectured that the
sustained inputs from CPn/PT cells cause adenosine accumulation and
glutamate spillover at the synapses on iMSNs, and such adenosine and
glutamate can activate the A2A receptors and mGluR5, respectively (Fig.
1B, right, orange circle). Moreover, because it has been suggested that
effective generation of a response downstream of the A2A receptors needs
a stimulation of D2Rs (Azdad et al., 2009), we conjectured that phasic
increase in dopamine stimulates the A2A receptor-signaling cascade lead-
ing to LTP, whereas phasic decrease in dopamine results in LTD presum-
ably through the mGluR5-signaling cascade. Based on these conjectures,
we assumed that the above equation effectively holds for both the syn-
apses on dMSNs and those on iMSNs. Notably, however, it has been
shown that, at least under a certain condition, A2A receptor agonist in-
duced LTP in the presence of D2 antagonist (Shen et al., 2008, their Fig.
1 F). Possibly, afferent stimulation applied in that study caused phasic
dopamine release, and its effect on plasticity was not completely blocked
by D2 antagonist (although the responsiveness of iMSNs was likely to be
significantly affected by D2 antagonist). However, exploring how the
assumption of our model can be well reconciled with these experimental
results remains as an important future issue.

Plasticity induction depending on phasic dopamine response has been
demonstrated in vivo (Reynolds et al., 2001). However, the synapses
stimulated by contralateral cortical stimulation in that study would be
mainly between CCS cells and dMSNs, because CCS cells but not CPn/PT
cells target contralateral striatum (Reiner et al., 2010). For the synapses
on dMSNs, a precise intracellular mechanism has also been proposed
(Nakano et al., 2010). However, whether phasic decrease in dopamine
induces LTD as assumed in the above was not tested previously by Reyn-
olds et al. (2001) or Shen et al. (2008); in the latter study, effect of D1

antagonist was examined, but it can be different from effects of phasic
dopamine decrease. On the other hand, involvement of phasic dopamine
response in plasticity induction in the synapses on iMSNs remains un-
clear. The abovementioned study by Shen et al. (2008) has shown that
tonic activation of D2Rs (by bath application of D2 agonist in vitro) is
unnecessary for LTP induction and would rather induce LTD in those
synapses. However, again, afferent stimulation applied in that study pos-
sibly caused phasic dopamine release, and its effect was possibly masked
by bath application of D2 agonist [possible occurrence of such a masking
in vivo has been discussed previously (Klein et al., 2007)]. Potential dif-
ference between bacterial artificial chromosome transgenic mice and
wild-type animals (Bagetta et al., 2011; Kramer et al., 2011; Chan et al.,
2012; Nelson et al., 2012) may also need to be carefully considered.

Overall, our assumption on plasticity could be in line with, or at least
not inconsistent with, several experimental results as we explained above,
but there remain divergences and limitations that need to be clarified in
the future. An important limitation of our model, which would especially
affect plasticity, is that it modeled neural activity as a continuous variable
and did not model individual spike timings. In fact, a major finding by
the in vitro study mentioned above for plasticity (Shen et al., 2008) was
that the direction of induced plasticity (i.e., LTP or LTD) critically de-
pends on the precise timings of presynaptic and postsynaptic neuronal
firings (as known as spike-timing-dependent plasticity). Our model,
lacking spikes, cannot be directly compared with their experiments. It is
expected that more elaborated models using spiking neuron models will
be developed in the future, e.g., combining the existing spiking neuron
model for reinforcement learning (Potjans et al., 2011) with the circuit
architecture that we proposed in this study. Also notably, not only the
temporal resolution but also the spatial resolution of the model would
need to be improved, given recent suggestions that plasticity might actu-
ally be regulated not by somato-axonic firings but instead by dendritic
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local spikes (Poirazi and Mel, 2001; Golding et al., 2002; Morita, 2009;
Legenstein and Maass, 2011) in pyramidal cells and also possibly in the
MSNs as the author of the abovementioned plasticity study himself re-
cently pointed out (Surmeier et al., 2011).

Numerical simulations. We set the initial value of w(n) to 0 and simu-
lated successive 501 task blocks in three conditions: (1) without dopa-
mine receptor antagonists; (2) with D1 antagonist; and (3) with D2

antagonist. The simulations were conducted by using MATLAB (Math-
Works), and the presented data are the averages of the last 500 blocks for
each condition (the initial block was not included because there was
initial transient). For the simulations, we wrote codes (driven equations)
for 1⁄10 scaled-down values of the variables (except for xCCS and xCPn),
and then the results were 10 times scaled up when they were illustrated
(this is just for practical reasons, and it should be mathematically equiv-
alent to writing codes for the variables without scaling).

Elaborated model for the saccade task. In the simple model described so
far, we assumed that the activity of dMSNs at the timing of reward, which
represents the predicted value of the “end-of-trial” state, was 0. However,
given an empirical suggestion (Enomoto et al., 2011) that the response of
dopamine neurons can reflect multiple rewards over multiple trials, such
an assumption may not be very appropriate. Therefore, to examine ef-
fects of reward prediction (expectation) over multiple trials, we con-
structed an elaborated model for the same saccade task (Nakamura and
Hikosaka, 2006) (see Fig. 6A–C). At each time step (ti), the subject is
assumed to be in one of the states shown in Figure 6A. A subset of CCS
cells is assumed to represent that state, S(ti) (see Fig. 6B), and the input
from these CCS cells to dMSNs, denoted by I(S(ti)), is assumed to rep-
resent the predicted value of state S(ti) [denoted by V(S(ti))], shifted by
the amount of the threshold of the input– output function, i.e.,
V(S(ti)) � I(S(ti)) � 	. The activity of the dMSNs is assumed to be
determined by imposing the input– output function f1 (the same func-
tion defined above) on I(S(ti)), i.e., f1(I(S(ti))), which is equal to V(S(ti))
under the condition in which f1 operates in the suprathreshold linear
regimen and is not affected by D1 antagonist. Meanwhile, a subset of
CPn/PT cells is assumed to represent the state of the subject at the pre-
vious time step, i.e., S(ti � 1) (see Fig. 6B). The input from these CPn/PT
cells to iMSNs is assumed to encode I(S(ti � 1))), and the activity of the
iMSNs is assumed to be determined by imposing the input– output func-
tion f2 on it, i.e., f2(I(S(ti � 1))), which is equal to V(S(ti � 1)) under the
condition in which f2 operates in the suprathreshold linear regimen and
is not affected by D2 antagonist. We assume that individual subsets of
CCS cells or CPn/PT cells project to different subsets of dMSNs or
iMSNs, respectively, and define xdMSN and xiMSN as variables represent-
ing the population activity of all the subsets of dMSNs and iMSNs; be-
cause single subsets of CCS cells and CPn/PT cells are assumed to be
active at each time step as described above, this results in xdMSN �
f1(I(S(ti))) and xiMSN � f2(I(S(ti � 1))). If reward is obtained at a given state,
the activity of the PPN neurons, xPPN, is assumed to represent the reward
value Rew, Rew � 10 (large-reward case) or Rew � 5 (small-reward case);
otherwise, xPPN is assumed to be 0. Given the activity of dMSNs, iMSNs, and
the PPN neurons, dopaminergic neuronal response (deviation from the
baseline activity), xDA, is assumed to be determined by

xDA � xPPN � �xdMSN � xiMSN,

where � represents the strength/efficacy of the direct pathway (relative to
the indirect pathway) (see Fig. 6C). This indicates that the dopamine
response represents

xDA � Rew � �f1(I(S(ti))) � f2(I(S(ti � 1))).

Under the condition in which the functions f1 and f2 operate in their
suprathreshold linear regimens and are not affected by dopamine recep-
tor antagonists, this is equivalent to the following:

xDA � Rew � �V(S(ti)) � V(S(ti � 1)),

which is equal to the TD reward prediction error for state value (Sutton
and Barto, 1998), and � corresponds to the time discount factor. Such
dopaminergic response presumably induces plasticity in the corticostria-

tal (CCS– dMSNs and CPn/PT–iMSNs) connections, and it is assumed to
be represented by a modification of I(S(ti-1)):

I(S(ti � 1))3 I(S(ti � 1)) � �xDA,

where � is a constant representing the learning rate, and it was set to 0.75,
the same as in the original simple model described above. Notably, this
update (synaptic modification) is assumed to occur at every time step,
not limited to the time point at which reward is obtained (as in the
original model). The saccadic reaction time was assumed to be in the
same quasi-inverse relationship with the activity of dMSNs at target pre-
sentation (i.e., at S2 or S3) as assumed for the simple model described
above. The effects of D1 and D2 antagonists were also assumed to be the
same as assumed in the simple model (see Fig. 3). The number of trials in
individual blocks was set similarly to the case of the simple model de-
scribed above. Both left-target and right-target trials were simulated, and
Figure 6 shows the data for left-target trials [as for Fig. 6 D, E, the first
trials (shown in the left of the panels) were left-target trials and the
second trials were left- or right-target trials (mixed)]; the model is left–
right symmetric, and “left” and “right” are just labeling. Values of I were
initialized to 0, and 521 task blocks were simulated in the absence of
antagonists or with either D1 and D2 antagonist (the initial 10 blocks were
simulated without antagonist in any cases) for each value of �: � � 0.75
and 0.9 (see Fig. 6) and 0.3 and 0.5 (data not shown). Average for the last
500 blocks are shown in Figure 6. As in the case of the original model, for
the simulations, we wrote codes (driven equations) for 1⁄10 scaled-down
values of the variables, and then the results were 10 times scaled up when
they were illustrated.

As mentioned above, we ran simulations with different values of �
(strength/efficacy of the direct pathway relative to the indirect pathway).
We described its purpose and results in detail below (see Results). Here
we make another remark related to this point. As mentioned previously,
there are direct projections from the striatal striosomes to the SNc dopa-
mine neurons (Gerfen et al., 1985; Paladini et al., 1999; Fujiyama et al.,
2011; Watabe-Uchida et al., 2012), but they are not incorporated into our
model. At present, it is still somewhat ambiguous whether those projec-
tions are physiologically strong (Chuhma et al., 2011), and also the ratio
with which the striosomal neurons express the D1Rs or D2Rs and as well
as the ratio with which those cells receive inputs from CCS or CPn/PT
cells are not clear (for the latest views on this issue, see Reiner et al., 2010;
Crittenden and Graybiel, 2011). Our model would need to be revised
when these things are clarified in the future. Notably, it has been shown
previously (Fujiyama et al., 2011) that single striosomal neurons can
project to both the SNr and SNc. If these neurons target GABAergic
neurons (rather than dendrites of dopamine neurons) in the SNr and
dopamine neurons in the SNc and also if they receive inputs predomi-
nantly from the CCS cells, existence of such co-projections could reduce
the effective weight of the CCS– dMSNs–SNr–SNc pathway (i.e., CCS-
direct pathway influence on the SNc) assumed in our model. In contrast,
if the predominant upstream of the striosomal cells is the CPn/PT cells,
existence of the co-projections to the SNr and the SNc would affect the
presumed CPn/PT-indirect pathway influence on the SNc in our model.
It has been shown previously (Watabe-Uchida et al., 2012) that not only
the striosomal inputs but also dopamine neurons receive direct inputs
from a number of structures, including the GP (rodent homolog of GPe).
Any connections that were not incorporated into our model can poten-
tially affect the effective value of the parameter � (at the minimum, it is of
course likely that those connections have certain functions other than
modulating this parameter). As described in Results and shown in Figure
6, the elaborated model can well explain the observed distinct effects of
the antagonists on reaction times if � � 0.75 (actually, better than the
original simple model; see Results) and could still explain them to a
certain degree if � � 0.9. We further confirmed that those effects could
also be mostly reproduced if � is set to 0.5 or 0.3 (data not shown).
Therefore, at least in this sense, our model appears to have certain ro-
bustness against the unincorporated connections including the strio-
somal direct projections to the SNc.

Notably, the discrete time description of our model is certainly a very
rough approximation, and construction of more detailed model with
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continuous time is desired in the future. Nevertheless, some sort of tem-
poral discreteness might in fact exist in the actual operation of the dopa-
mine system, i.e., particular time points can be “marked” in a sense that
dopamine release is specifically enhanced through, for example, slowly
oscillating neural activity, in particular, the recently reported 4 Hz syn-
chronized oscillation in the prefrontal cortex, VTA, and hippocampus
(Fujisawa and Buzsáki, 2011), possibly coupled with cholinergic induc-
tion of dopamine release (Threlfell et al., 2012). A single time step (du-
ration between states) in our model is assumed to be approximately up to
a few (to several) hundred milliseconds, which seems broadly consistent
with this possibility. This timescale could also be in line with a different
line of experimental observation. Specifically, it has been shown that
dopamine neurons sometimes respond to events that should have zero
reward prediction error with a biphasic “excitation-then-inhibition”
pattern (Kakade and Dayan, 2002) whose duration looks to be approxi-
mately a few hundred milliseconds. The biphasic response could reflect
such a circuit architecture as the one assumed in our model, i.e., fast
excitation via the CCS-direct pathway and delayed inhibition via the
CPn/PT-indirect pathway, and the time interval from excitation to inhi-
bition could represent a canonical time step of the system.

Model of a task involving action selection. The saccade task we modeled
in the above consists of forced-choice trials only. To consider how our
proposed circuitry operates in a situation in which subjects can volun-
tarily select an action based on their learned evaluations, we constructed
an extended model of the corticobasal ganglia circuit incorporating a
mechanism for action selection and simulated (a half of) the task involv-
ing action selection used in recent studies (Roesch et al., 2007; Takahashi
et al., 2011); the latter study (Takahashi et al., 2011) has developed a
computational model, and we extended our model in reference to their
experimental results as well as the model. In the task, at the beginning of
each trial, the subject (rat) was presented with one of three odor cues, two
of which indicated that reward will be given if the animal entered either
the left or the right well, respectively (i.e., forced choice), whereas the
remaining cue indicated that the animal will be rewarded in both of the
directions (i.e., free choice). In any case, the amount of reward, either
small (one bolus of sucrose solution) or large (two boluses given sequen-
tially), was determined according to the predetermined direction-
amount contingency that was fixed during a block and then reversed. The
three types of cues were presented according to a pseudorandom se-
quence so that the free-choice cue was presented in 7 of 20 trials and the
two forced-choice cues were presented in equal numbers, and the same
cue was not presented on more than three consecutive trials.

Takahashi et al. (2011) examined the effects of a lesion of the orbito-
frontal cortex (OFC) on the dopamine neuronal activity and subjects’
behavior. Comparing the results with a computational model developed
within the work and also combining electrical stimulation, they have
revealed that, in intact subjects, the OFC contains information about the
“model” of the task structure, i.e., a diagram for transitions between
different “states,” and influences the VTA dopamine neurons so that they
can compute reward prediction error according to the model. Based on
these results and according to a demonstration of the existence of CCS
cells and CPn/PT cells in the OFC (Hirai et al., 2012), we assumed that the
CCS cells and CPn/PT cells in the OFC upregulate and downregulate
VTA dopamine neurons, respectively, through the pathways shown in
Figure 7B. At each time step (ti), the subject is assumed to be in one of the
states shown in Figure 9A, which is similar to (although not exactly the
same as) the states proposed by Takahashi et al. (2011). There are either
multiple options (at state S2) or a single option (at the other states) that
can be taken.

In the case with a single option (i.e., states other than S2), a subset of
CCS cells is assumed to represent the combination of that state and the
available choice option [A(ti)], and the input from these CCS cells to
dMSNs, denoted by I(A(ti)), is assumed to represent the predicted value
of option A(ti) [denoted by Q(A(ti))], shifted by the amount of the
threshold of the input– output function, i.e., Q(A(ti)) � I(A(ti)) � 	. The
activity of the dMSNs is assumed to be determined by imposing
the input– output function f1 on I(A(ti)), i.e., f1(I(A(ti))), which is equal
to Q(A(ti)) under the condition in which f1 operates in the suprathresh-
old linear regimen and is not affected by D1 antagonist. Meanwhile, a

subset of CPn/PT cells is assumed to represent the combination of the
state of the subject at the previous time step (ti � 1) and a choice option
that has been taken at that state [A(ti � 1)]. The input from these CPn/PT
cells to iMSNs is assumed to encode I(A(ti � 1)), and the activity of the
iMSNs is assumed to be determined by imposing the input– output func-
tion f2 on it, i.e., f2(I(A(ti � 1))), which is equal to Q(A(ti � 1)) under the
condition in which f2 operates in the suprathreshold linear regimen and
is not affected by D2 antagonist. We assume that individual subsets of
CCS cells or CPn/PT cells project to different subsets of dMSNs or iM-
SNs, respectively, and define xdMSN and xiMSN as variables representing
the population activity of all the subsets of dMSNs and iMSNs; because
single subsets of CCS cells and CPn/PT cells are assumed to be active at
each time step as described above, this results in xdMSN � f1(I(A(ti))) and
xiMSN � f2(I(A(ti � 1))). If reward is obtained at a given state, the activity
of the PPN neurons, xPPN, is assumed to represent the reward value Rew
(set to 10); otherwise, xPPN is assumed to be 0. Specifically, xPPN � Rew �
10 at S8 or S9 in the case of small reward, and xPPN � Rew � 10 at (S8 and
S10) or (S9 and S11) in the case of big reward.

In the state in which multiple options are available (i.e., in state S2), we
assumed that the “max” operation is implemented through the cortico-
striatal (CCS– dMSN) feedforward inhibition (Parthasarathy and Gray-
biel, 1997; Gittis et al., 2010) and possibly also through lateral or feedback
inhibition, i.e., xdMSN � f1(max{I(A(ti))}) so that the activity of dMSNs
reflects the predicted value of an option that currently has the maximum
predicted value [max{Q(A(ti))}] under the condition in which f1 oper-
ates in the suprathreshold linear regimen and is not affected by D1 an-
tagonist (see Fig. 8C). This assumption is based on a previous finding
(Roesch et al., 2007) that the VTA dopamine neurons appear to represent
TD reward prediction error for Q-learning (for a detailed explanation,
see below and Results). The activity of iMSNs was assumed to be the same
as the case with a single option described above.

Given the activity of dMSNs, iMSNs, and the PPN neurons, dopami-
nergic neuronal response (deviation from the baseline activity), xDA, is
assumed to be determined by

xDA � xPPN � �xdMSN � xiMSN,

where � represents the strength/efficacy of the direct pathway (relative to
the indirect pathway), and it was set to 0.75 in the simulations. This
indicates that the dopamine response represents

xDA � Rew � �f1(I(A(ti))) � f2(I(A(ti � 1)))

in the case in which there is a single-choice option, and

xDA � Rew � �f1(max{I(A(ti))}) � f2(I(A(ti � 1)))

in the case in which there are multiple options. Under the condition in
which the functions f1 and f2 operate in their suprathreshold linear regi-
mens and are not affected by dopamine receptor antagonists, these are,
respectively, equivalent to

xDA � Rew � �Q(A(ti)) � Q(A(ti � 1))

and

xDA � Rew � � max{Q(A(ti))} � Q(A(ti � 1)),

which equal to the TD reward prediction error for action value defined in
Q-learning (Sutton and Barto, 1998), except for decay of plastic changes
in the corticostriatal connection strengths that we also assumed as we
describe below.

In the case in which there are multiple (two) choice options, i.e., at
state S2 (the two options are A2 and A3), one of the options were assumed
to be selected according to a soft-max operation (see Fig. 9A, right graph)
through competitive neural dynamics among the CPn/PT cells receiving
the effects of dMSNs (Fig. 8C). Specifically, we assumed that the proba-
bilities that options A2 and A3 are selected, Prob(A2) and Prob(A3), are
given by

Prob(A2) � �1 � exp���� f1�I�A2�� � f1�I�A3�����,
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and

Prob(A3) � 1/(1 � exp(��(f1�I�A3�� � f1�I�A2��))) � 1 � Prob�A2�,

respectively, where � is a parameter determining the balance between
exploration and exploitation, and it was set to 0.5 in the simulations (for
a detailed explanation on the presumed circuit operation, see Results).
These are equal to

Prob�A2� � 1/�1 � exp����Q�A2� � Q�A3����, and

Prob�A3� � 1/�1 � exp����Q�A3� � Q�A2���� � 1 � Prob�A2�,

under the condition in which f1 operates in the suprathreshold linear
regime and is not affected by D1 antagonist.

Dopamine response is assumed to induce plasticity in the connections
between CCS cells and dMSNs and those between CPn/PT cells and
iMSNs at every time step, resulting in the following update rule:

I(A(ti�1)) 3 I(A(ti�1)) � �xDA.

A(ti � 1) represents an option that has actually been taken at time ti � 1,
which is not necessarily the same as the one that has been once selected at
the stage of dMSNs (i.e., the one with the maximum predicted value)
because of the assignments of the hard-max and soft-max operations to
the stages of dMSNs and CPn/PT cells, respectively, in our presumed
implementation of Q-learning (see Fig. 8C). We propose that the subset
of dMSNs corresponding to A(ti � 1), synapses on which should be mod-
ified according to xDA, could be marked as the target of plasticity by
receiving inputs from CPn/PT cells representing A(ti � 1) via CPn/PT–
dMSN connections, which are minor but known to still exist (Lei et al.,
2004; Reiner et al., 2010). Indeed, these minor inputs may cause only
dendritic spikes/plateaus, which have been suggested to promote plastic-
ity (Golding et al., 2002; Surmeier et al., 2011) as we mentioned above,
but not somatic spikes so that they do not affect the computation of
reward prediction error in the dopamine neurons or the action selection
process. Notably, in the cases of our proposed implementations of
SARSA (state–action–reward–state–action) (see Fig. 8 A, B), mismatch
between the maximally activated dMSNs and the eventually selected op-
tion never occurs. � is the learning rate and is set to 0.6. The reaction time
was assumed to be quasi-inversely related to the activity of dMSNs at cue
offset (at S4 or S5), in a manner similar to the assumption made in the
models for the saccade task above:

RT � C1/(C2 � xdMSN),

with different parameters: C1 and C2 were set to 2300 and 10, respec-
tively. The effects of D1 and D2 antagonists were assumed to be the same
as assumed in the models for the saccade task (see Fig. 3).

We explored parameters of the model with which the performance of
the model becomes comparable with the reported experimental data
(Roesch et al., 2007; Takahashi et al., 2011). In the course of this explo-
ration, we realized that an additional assumption seems to be necessary
to be added to the model to reproduce important features of the neural
activity data. In the experiment, the dopamine neuronal response to
reward clearly remained and was in fact stronger than the response to a
cue, even in the last 10 trials of a block (Roesch et al., 2007, their Fig. 4d).
This indicates that, for the dopamine neurons (not necessarily for the
animals), reward remained to be rather “surprising,” not fully predict-
able, through an entire task block. At the same time, however, the dopa-
mine neuronal response to a cue clearly increased or decreased
depending on whether the cue was associated with large or small reward,
respectively, indicating that the dopamine neuronal responses certainly
reflect the progression of learning. To reproduce both of these features
simultaneously, some sort of time-dependent decay of learned values
seems to be required to be incorporated into the model, while the
learning rate and the time discount factor, which are represented by
the (relative) strength of the direct pathway over the indirect pathway
in our model (Morita et al., 2012), should be kept reasonably high. We
achieved this by assuming time-dependent decay of plastic changes of
the corticostriatal connection strengths. Specifically, we made an ad-

ditional assumption that changes in the corticostriatal connection
strengths, or more precisely, deviations of I(A1), etc., from their ini-
tial (baseline) value, I0, are subject to time-dependent decay at every
time step:

I(Ai)3 I0 � (I(Ai) � I0) � 0.9 (1/16)

(we assumed 16 time steps within a single task trial, and thus the above
corresponds to the fact that changes in I(Ai) decay to 90% per trial). I0

was set to 4.5, which was below the threshold of the input– output func-
tions of the MSNs in the case without antagonists (	 � 5 as described
above). We explored parameters with which the model qualitatively re-
produced main features of the experimental results (Roesch et al., 2007;
Takahashi et al., 2011) and obtained the values described in the above.

In a separate set of simulations, in one of the two wells (left and right),
virtual optogenetic stimulation was applied to either dMSNs or iMSNs
coincidently with a reward bolus (at S8 or S9), in addition to giving an
extra bolus of reward at the subsequent timing in both of the wells.
Specifically, in addition to setting Rew to 10 at S10 and S11, which repre-
sents the extra bolus, the value of xdMSN or xiMSN at S8 or S9 was increased
by 10, representing the optogenetic stimulation (10 was added directly to
xdMSN rather than to the input term, on which f1 or f2 was imposed,
because currents induced by optogenetic stimulation would bypass the
AMPA and NMDA channels and so would not be directly affected by
the antagonists in the same way as the synaptic currents as we as-
sumed in Fig. 3). The contingency between the stimulation on/off and
the location of the well was fixed for a block and alternated across
blocks in a similar manner to the contingency between the presence/
absence of the extra bolus of reward and the location of the well in the
original experiments.

The number of trials in each block was set to 120 [in the experiments
by Roesch et al. (2007), it is described that at least 60 trials were collected
per block]. The three types of cues were presented pseudorandomly, in a
manner similar to the one in the experiment (Roesch et al., 2007) de-
scribed above: the free-choice cue was presented on 7 of 20 trials, and the
two forced-choice cues were presented in equal numbers, on average in
each session, and the same cue was not presented on more than three
consecutive trials. Values of I were initialized to I0 � 4.5, and 2021 task
blocks were simulated under seven conditions: (1) big versus small re-
ward, without antagonists; (2) big versus small reward, with D1 antago-
nist; (3) big versus small reward, with D2 antagonist; (4) dMSN
stimulation, without antagonists; (5) iMSN stimulation, without antag-
onists; (6) dMSN stimulation, with D1 and D2 antagonists; and (7) iMSN
stimulation, with D1 and D2 antagonists. The averages for the last 2000
blocks are shown in Figure 9. As in the cases of the abovementioned
models, for the simulations, we wrote codes (driven equations) for 1⁄10

scaled-down values of the variables, and then the results were 10 times
scaled up when they were illustrated.

Results
Corticobasal ganglia circuit for reward-oriented saccade
We first simulated a visually guided saccade task (Fig. 1A) used in
an experimental study (Nakamura and Hikosaka, 2006). On each
trial of the task, a visual target appeared at the left or the right of
the screen, and the subject (monkey) was required to make a
saccadic eye movement toward the target. If the subject made a
correct saccadic response, a liquid reward was given after 100 ms
of fixation at the target. There were two kinds of reward amount,
large and small, each of which was associated with either the left
or right target; contingency between the target location and the
reward amount was fixed for an individual task block consisting
of 20 –28 trials, and left-large and left-small blocks were alter-
nated. The target location (left and right) was pseudorandomly
determined in each trial.

A series of studies have revealed that the cortex, basal ganglia,
and the dopamine neurons in the SNc play essential roles in
the learning and execution of reward-associated saccade tasks
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(Kawagoe et al., 2004; Takikawa et al., 2004; Hikosaka et al., 2006;
Nakamura and Hikosaka, 2006). We constructed a computa-
tional model of the corticobasal ganglia–SNc circuit according to
a conjecture derived from recent anatomical and physiological
findings (Morita et al., 2012) (Fig. 1B) (for details, see Materials
and Methods). We assumed that there exist the two types of
corticostriatal neurons, CCS cells and CPn/PT cells, in the
saccade-related cortical areas, such as the FEF, and when a sacca-
dic target is presented, its location is represented by a subset of
CCS cells (Fig. 1B, left). These CCS cells activate dMSNs, which
then inhibit neurons in the SNr and thereby disinhibit the supe-
rior colliculus (SC) neurons to initiate a saccade (Kawagoe et al.,
2004; Hikosaka et al., 2006). Meanwhile, the CCS cells activate a
subset of CPn/PT cells through the unidirectional projections
(Morishima and Kawaguchi, 2006). These CPn/PT cells presum-
ably sustain their activity (Morita et al., 2012) via the strong
recurrent excitation (Morishima et al., 2011), whereas the activity
of the CCS cells presumably declines because recurrent excitation
among them is weaker and depressive. When reward is obtained
(Fig. 1B, right), dopamine neurons in the SNc are assumed to
receive excitatory inputs from the PPN neurons, which presum-
ably inform the value (amount) of the obtained reward (cf.
Okada et al., 2009). The dopamine neurons also receive inhibi-
tory inputs from the collaterals of SNr projection neurons (Tep-
per and Lee, 2007), which are disinhibited by the iMSNs
downstream of the still active CPn/PT cells via the indirect path-
way. Given that the activity of iMSNs represents the reward value
(reward amount) predicted from the target location represented
now by the CPn/PT cells [“chosen value” (cf. Lau and Glimcher,
2008); see below], the dopaminergic neuronal response repre-
sents a difference between the obtained and the predicted reward
values, i.e., reward prediction error (Morita et al., 2012). The
phasic dopamine response is then assumed to induce propor-
tional plastic changes of the synaptic strengths between CCS cells
and dMSNs (cf. Reynolds et al., 2001) so that the activity of
dMSNs can represent updated reward value predictions (cf.
Samejima et al., 2005; Lau and Glimcher, 2008). At the synapses
between CPn/PT cells and iMSNs, sustained inputs from CPn/PT
cells presumably cause adenosine accumulation (cf. Cunha, 2001;
Schiffmann et al., 2007) and glutamate spillover (cf. Mitrano et
al., 2010). Phasic increase in dopamine would then stimulate the
signaling cascade downstream of the adenosine A2A receptors (cf.
Azdad et al., 2009), and it is assumed to lead to LTP, whereas
phasic decrease in dopamine is assumed to cause LTD through
the signaling cascade downstream of mGluR5 (for details, see
Materials and Methods). In consequence, the activity of iMSNs
can also represent updated reward value predictions, effectively
in the same manner as the activity of dMSNs.

For simplicity, and in the same manner as the previous mod-
eling study (Hong and Hikosaka, 2011), we simulated only the
trials with a left target with our first model; later we simulated all
the trials with an elaborated model but show the results for left-
target trials unless otherwise described. We calculated the activity
of dMSNs, iMSNs, and SNc dopamine neurons for 500 task
blocks. Notably, we have not explicitly modeled structures be-
tween the striatum and the dopamine neurons, including the
SNr, and our model can be also compatible with recent findings
(Matsumoto and Hikosaka, 2007; Hong and Hikosaka, 2008;
Hong et al., 2011; Shabel et al., 2012) that the dopamine neurons
are regulated by the LHb neurons, which are then driven by GPb
(see Figs. 7A,B).

Behavioral modulation by reward amount and underlying
dopaminergic neuronal response
Figure 2A shows the stimulus-induced response of striatal
dMSNs downstream of the cortical CCS cells representing the
left-target location, averaged over trials in which the target was
presented in the left and aligned at the switches of blocks from
left-large reward to left-small reward and from left-small to left-
large. As shown in the figure, the response of dMSNs is greater in
the blocks in which the left target is associated with large reward
than in the blocks with small reward, accompanying gradual
changes after the switch of the two conditions. Because we as-
sumed that the activity of the CCS cells (upstream of dMSNs) is
transmitted to the CPn/PT cells (upstream of iMSNs) and kept in
them until reward is obtained (Fig. 1B, right), the activity of the
iMSNs at the timing of reward reception shows the same pattern
as the stimulus-induced response of the dMSNs (Fig. 2B). The
SNc dopamine neurons are assumed to be inhibited by the iMSNs
through the indirect pathway and the SNr, while receiving excit-
atory inputs informing the obtained reward value from the PPN.
Consequently, their response pattern (Fig. 2C) is upside-down of
the response pattern of iMSNs (Fig. 2B) shifted by the block-
dependent reward amounts.

In fact, the response pattern of the dopamine neurons (Fig.
2C) also matches the mathematical differential (in an approxi-
mate sense) of the response pattern of the MSNs (Fig. 2A,B), and,
in turn, the response pattern of MSNs matches the mathematical
integral of the dopaminergic neuronal response pattern. This is
because the phasic dopamine response is assumed to induce pro-
portional changes of the corticostriatal connection strength. The
fact that the response pattern of the dopamine neurons can be
explained by both the subtraction of the pattern of the iMSNs
from the block-dependent constant (representing the PPN in-
puts) and the differential of the pattern of the iMSNs (or dMSNs)
is indicative of the fact that the entire system can operate auton-
omously without assuming the response pattern of inputs from
unspecified upstream to the dopamine neurons. Functionally,
these relationships can be interpreted as follows: (1) the activity
of the MSNs represents predicted reward value; (2) the dopamine
neurons subtract the iMSN activity from the PPN activity repre-
senting the obtained reward value, so as to compute reward pre-
diction error; and (3) this error signal is used to update the
predicted reward value stored in the corticostriatal connections.
The trial-by-trial gradual changes in the dopaminergic neuronal
response predicted from our model (Fig. 2C) well match those
experimentally observed during a similar task (Takikawa et al.,
2004) (Fig. 2D).

In reference to empirical findings (Kawagoe et al., 2004) and
the results of the previous modeling study (Hong and Hikosaka,
2011), we assumed that the level of the stimulus-induced re-
sponse of dMSNs is quasi-inversely related to the saccadic reac-
tion time (see Materials and Methods). Such a relationship is
expected to hold, given that the dMSNs inhibit the SNr neurons
and thereby disinhibit the SC neurons to initiate a saccade (Fig.
1B, left). With this assumption, our model predicts shorter reac-
tion time in blocks with large reward than in small-reward blocks
(Fig. 2E), reproducing the experimental results (Nakamura and
Hikosaka, 2006).

Motivational effects of dopamine receptor antagonists
Having seen how the model operates under the normal condi-
tion, let us now consider the effects of dopamine receptor antag-
onists. Dopamine modulates the responsiveness of MSNs to
cortical inputs through its tonic concentration and controls plas-
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Figure 2. Activity of neurons and reaction times predicted from the model. A, Stimulus-induced response of striatal (Str) dMSNs downstream of the cortical CCS cells representing the left-target
location, aligned at the switch of blocks from left-large reward to left-small reward and from left-small to left-large. B, Response of iMSNs at the timing of reward reception. It exhibits the same
pattern as the stimulus-induced response of dMSNs because the activity of the CCS cells (upstream of the dMSNs) is presumably transmitted to the CPn/PT cells (upstream of the iMSNs) and sustained
there (Fig. 1B, right). C, Response of SNc dopamine neurons at the timing of reward reception, which is presumably determined by the excitatory inputs from the PPN neurons representing the
obtained reward value (large or small) and the net inhibitory inputs from the iMSNs (through the indirect pathway and the SNr) representing the predicted reward value; (Figure legend continues.)
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ticity induction in the corticostriatal synapses through its phasic
changes (Gerfen and Surmeier, 2011). Both of these effects can
potentially be blocked by dopamine receptor antagonists. How-
ever, here we concentrate on the blockade of the tonic dopami-
nergic modulation of the responsiveness of the MSNs, because
phasic change in dopamine is expected to have larger amplitude
than the change in the tonic level so that it could escape from the
blocking effect of antagonists at least to a certain extent. This
assumption could potentially be supported by the finding (Pen-
nartz et al., 1993) that application of certain concentrations of
dopamine receptor antagonists in the ventral striatum slices did
not significantly change the amount of LTP induced by tetanic
stimulation, which could cause phasic release of dopamine from
the dopaminergic axonal fibers. Notably, our assumption is op-
posite from that of the previous modeling study (Hong and Hiko-
saka, 2011), which did not consider the effect of antagonists on
the responsiveness of the MSNs but considered the effect on the
synaptic plasticity.

Regarding the tonic dopaminergic modulation of the respon-
siveness of the MSNs, it is known that dopamine upregulates and
downregulates the response of dMSNs and iMSNs via the activa-
tion of D1Rs and D2Rs, respectively (Gerfen and Surmeier, 2011).
More precisely, it has been suggested that D1R activation primar-
ily enhances the NMDA current (Levine et al., 1996; Flores-
Hernández et al., 2002; Moyer et al., 2007). Because the NMDA
receptors have voltage dependence (Schiller and Schiller, 2001),
the NMDA current, and its enhancement by D1R activation,
would become prominent when the dMSNs receive strong gluta-
matergic cortical (CCS) inputs. We thus assumed that the re-
sponse of dMSNs to strong inputs, which would normally be
enhanced by D1R activation, is reduced by D1 antagonist (Fig.
3A). Conversely, existing evidence suggests that the activation of
D2Rs normally suppresses the AMPA current and/or the NMDA
receptor-mediated excitation (Moyer et al., 2007; Azdad et al.,
2009; Higley and Sabatini, 2010), but the effect on the latter is
blocked when A2A adenosine receptors, which also exist in the
iMSNs, are simultaneously activated (Azdad et al., 2009; Higley
and Sabatini, 2010). Because adenosine is suggested to be synap-
tically generated from ATP released with neurotransmitter (e.g.,
glutamate) from presynaptic cortical cells (Cunha, 2001; Schiff-
mann et al., 2007), the suppressive effect of D2R activation would
be blocked by adenosine when the iMSNs receive strong cortical
(CPn/PT) inputs and there exists a high amount of adenosine.
Based on these considerations, we assumed that the response of
iMSNs to weak inputs, which would normally be suppressed by
D2R activation, is enhanced by D2 antagonist (Fig. 3B) (for de-
tails, see Materials and Methods). Figure 4 shows the effects of D1

antagonist on the neuronal activity and the saccadic reaction time
(Fig. 4A–D, black and red lines indicate the conditions without
and with D1 antagonist, respectively; these two are overlapped in
Fig. 4B,C) compared with the experimental results (Nakamura
and Hikosaka, 2006) (Fig. 4E). As shown in Figure 4A, the
stimulus-induced response of dMSNs in large-reward blocks is
reduced by D1 antagonist. This is a direct outcome of the assumed
reduction of the response of dMSNs to strong inputs (Fig. 3A). In
contrast, D1 antagonist does not affect the activity of iMSNs (Fig.
4B), which presumably do not express D1Rs (Gerfen and Sur-
meier, 2011). The activity of dopamine neurons at the timing of
reward is also not affected by D1 antagonist (Fig. 4C), because in
the model we now consider (Fig. 1B, right), it is determined solely
by the inputs from the PPN and iMSNs, both of which are pre-
sumably not affected by D1 antagonist (later we will consider
effects of possible inputs from dMSNs using an elaborated
model). Because we assumed that the reaction time is quasi-
inversely related to the stimulus-induced response of the dMSNs,
D1 antagonist slows a reaction to stimulus in large-reward blocks
(Fig. 4D), consistent with the experimental results (Nakamura
and Hikosaka, 2006) (Fig. 4E). Figure 5 shows the effects of D2

antagonist (Fig. 5A–D, black and blue lines indicate the condi-
tions without and with D2 antagonist, respectively) compared
with the experimental results (Nakamura and Hikosaka, 2006)
(Fig. 5E). This time, the stimulus-induced response of dMSNs in
small-reward blocks is decreased in the presence of D2 antagonist
(Fig. 5A). However, we assumed that D2 antagonist does not
affect the responsiveness of dMSNs, because D2R is presumably
not expressed in the dMSNs (Gerfen and Surmeier, 2011). There-
fore, such a decrease of the dMSNs response should not be a
direct effect of D2 antagonist. Conversely, D2 antagonist was as-
sumed to enhance the response of iMSNs to weak inputs (Fig.
3B), and, reflecting this, the activity of iMSNs is increased in the
presence of D2 antagonist in small-reward blocks (Fig. 5B, indi-

4

(Figure legend continued.) it thus represents reward prediction error. Notably, the pattern of
dopaminergic neuronal response also matches the mathematical differential (in an approxi-
mate sense) of the response pattern of the MSNs (A, B), or, in turn, the pattern of the MSNs
matches the mathematical integral of the dopaminergic neuronal pattern, because the cortico-
striatal (i.e., CCS– dMSN and CPn/PT–iMSN) connection strengths are assumed to be changed
in proportion to the dopaminergic neuronal response. D, Experimentally observed dopaminer-
gic neuronal response at the timing of reward (Takikawa et al., 2004) during a slightly different
task, in which one of four (rather than 2) possible target locations was associated with reward in
each block (thus, there were twice more unrewarded3 unrewarded switches than rewarded3
unrewarded switches for each location, and this possibly explains the smaller amplitude of the change
of the activity at the beginning of the unrewarded blocks than the change at the beginning of the
rewarded blocks). This panel was taken from Takikawa et al. (2004) with modification. E, Predicted
saccadic reaction time, which was assumed to be quasi-inversely related to the stimulus-induced
response of the dMSNs.

Figure 3. Presumed effects of dopamine receptor antagonists on the responsiveness of
MSNs. A, The black line represents the relationship between the strength of inputs from CCS
cells to dMSNs (horizontal axis) and the response of dMSNs (vertical axis) in the presence of tonic
dopamine. Response of dMSNs to strong cortical (CCS) inputs, which would be mediated signif-
icantly by the NMDA receptor current that is suggested to be enhanced by D1R activation, was
assumed to be attenuated by the application of D1 antagonist (arrow and gray line). B, The black
line represents the relationship between the strength of the inputs from CPn/PT cells to iMSNs
(horizontal axis) and the response of iMSNs (vertical axis) in the presence of tonic dopamine.
Response of iMSNs to weak cortical (CPn/PT) inputs, which would normally be downregulated
by D2R activation through the suppression of the AMPA and/or NMDA receptor-mediated exci-
tation, was assumed to be enhanced by the application of D2 antagonist (arrow and gray line).
Response of iMSNs to strong cortical (CPn/PT) inputs, which would normally be predominated
by NMDA components, was assumed not to be enhanced by D2 antagonist, considering that
strong cortical inputs would cause generation of a high amount of adenosine, which presum-
ably blocks the suppressive effect of D2R activation on the NMDA receptor-mediated excitation.
Notably, the actual relationship between the input strength and the output firing rate in the
case without antagonists may entail saturating nonlinearity, but we assumed the threshold–
linear function for simplicity. Str, Striatum.
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cated by blue open triangles). However, such an increase almost
disappears in the later part of the block, again indicating the
existence of some indirect effects. Because the dopaminergic neu-
ronal response at the timing of reward reception is assumed to be
a subtraction of the activity of iMSNs from the excitatory PPN
inputs, it entails the same pattern of the effect of D2 antagonist
but upside-down (Fig. 5C, blue open triangles).

As mentioned previously, we assumed that the strength of
corticostriatal connections (both CCS– dMSNs and CPn/PT–
iMSNs) is plastically changed according to phasic dopamine re-
sponse, implementing the update of reward value prediction.
Therefore, the decrease in the response of dopamine neurons in
the presence of D2 antagonist (Fig. 5C) causes a decrease in the

strength of the corticostriatal connections. Iterative operations of
this over successive trials then cause an accumulative decrease in
the strength of the synapses between the CCS cells and dMSNs
and thereby a decrease in the stimulus-induced response of
dMSNs; this is what we observed in Figure 5A (indicated by blue
filled triangles). The same accumulative decrease also occurs in
the strength of the synapses between the CPn/PT cells and iMSNs,
and it can explain why the increase in the iMSN activity seen in
the early part of small-reward blocks (Fig. 5B, blue open trian-
gles) disappears in the later part of the block. As such, the iMSNs
receive two types of effects of D2 antagonist: (1) direct facilitation,
which operates immediately; and (2) indirect effect in the
form of decrease in the input from the cortex (CPn/PT cells),

Figure 4. Predicted effects of D1 antagonist on the neuronal activity and reaction time. A–D, The black and red lines indicate the simulated neuronal response (A–C) and the saccadic reaction time
(D) in the conditions without and with D1 antagonist, respectively; these two are overlapped in B and C. Notations are the same as those in Figure 2A–C and E. The stimulus-induced response of
dMSNs in large-reward blocks is reduced by D1 antagonist (A) because of the presumed suppressive effect of D1 antagonist when dMSNs receive strong inputs (Fig. 3A), whereas the activity of iMSNs
is not affected (B) because iMSNs do not express D1Rs. The activity of dopamine neurons at the timing of reward reception is also not affected by D1 antagonist (C), because it is presumably
determined by the inputs from the iMSNs-indirect pathway and the PPN; the activity of dMSNs is assumed to already decline at this timing (Fig. 1B, right) and thus have little effect (however, other
dMSNs may have activity representing expectation of rewards in the following trials, and that possibility is examined in the elaborated model; Fig. 6). Given that the reaction time was assumed to
be quasi-inversely related to the stimulus-induced response of dMSNs, D1 antagonist slows a reaction to stimulus in large-reward blocks (D). The inset shows the average reaction times for large-
and small-reward blocks. E, Experimental results for the effect of D1 antagonist on the reaction time (Nakamura and Hikosaka, 2006). The black and red lines indicate the conditions without and with
D1 antagonist, respectively, in the same manner as in D; this panel was taken from Hong and Hikosaka (2011). Str, Striatum.
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which operates with delay. Because we assumed that the reac-
tion time is quasi-inversely related to the stimulus-induced
response of dMSNs, application of D2 antagonist manifests as
an increase in the reaction time in small-reward blocks (Fig.
5D), well explaining the experimental results (Nakamura and
Hikosaka, 2006) (Fig. 5E).

Consideration on reward expectation over multiple trials
In the saccade task (Nakamura and Hikosaka, 2006) that we
simulated, reward was given just once in each trial, after the
subject made a correct saccadic response, and no further re-
ward was given until the next trial started. With this in mind,
so far we assumed that the activity of dMSNs at the timing of

reward, which represents the predicted value of the “end-of-
trial” state in the model, was 0 as mentioned above. However,
because the next trial started only a few seconds later and it has
been shown (Enomoto et al., 2011) that the response of dopa-
mine neurons can in fact reflect expectation of multiple re-
wards, our assumption may not be very appropriate. To more
accurately simulate the real situation and examine whether
our main results can still hold, we extended our model to
incorporate reward expectation over multiple trials (Fig. 6A–
C). Specifically, we assumed that the subject experienced tran-
sitions of a sequence of states (Fig. 6A), which include both
within-trial states, at the target and reward timings, and mul-
tiple internal states corresponding to time epochs during in-

Figure 5. Predicted effects of D2 antagonist. A–D, The black and blue lines indicate the conditions without and with D2 antagonist, respectively. Although D2 antagonist does not have direct effect
on dMSNs, it causes an increase in the activity of iMSNs in small-reward blocks (B, blue open triangles) because of the presumed enhancement of their response to weak cortical inputs (Fig. 3B).
Because the dopaminergic neuronal response to reward is presumably a subtraction of the iMSN activity from the PPN inputs representing the obtained reward value, it entails the same pattern of
the effect of D2 antagonist but upside-down (C, blue open triangles). This decrease in the dopaminergic neuronal response causes a decrease in the corticostriatal (i.e., CCS– dMSN and CPn/PT–
iMSN) connection strength through the presumed plasticity mechanism, resulting in an accumulative decrease in the input to, and the activity of, the dMSNs (A, blue filled triangles). The same
accumulative decrease in the input also occurs in the iMSNs, gradually canceling out the direct facilitating effect of D2 antagonist, explaining why the increase in iMSN activity seen in the early part
of small-reward blocks (B, blue open triangles) disappears later. Because the reaction time was assumed to be quasi-inversely related to the stimulus-induced response of dMSNs, application of D2

antagonist manifests as an increase in the reaction time in small-reward blocks (D). The inset shows the average reaction times for large- and small-reward blocks. E, Experimental results for the
effect of D2 antagonist (Nakamura and Hikosaka, 2006); this panel was taken from Hong and Hikosaka (2011). Str, Striatum.
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Figure 6. Consideration on reward expectation over multiple trials. A–C, Elaborated model for the saccade task. A, Presumed state transitions. B, It is assumed that, while the subject experiences
these state transitions, at each state, a subset of CCS cells actively represents that state (current state) and a subset of CPn/PT cells actively represents the previous (Figure legend continues.)
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tertrial intervals. At each state, a subset of cortical CCS cells
and CPn/PT cells are assumed to represent that state (current
state) and the previous state, respectively (Fig. 6B), and
dMSNs or iMSNs, receiving inputs from the CCS cells and
CPn/PT cells, respectively, are assumed to represent the pre-
dicted values of those states (for details, see Materials and
Methods). The dopamine neurons are then assumed to receive
net excitatory and inhibitory effects from the dMSNs and
iMSNs, respectively, and also receive excitatory inputs from
the PPN neurons when reward is obtained (Fig. 6C) so as to
compute TD reward prediction error that is presumably used
to plastically modify the CCS– dMSN and CPn/PT–iMSN con-
nection strengths, in the same manner as we assumed in the
original simple model.

We ran simulations using this new model, varying the relative
strength/efficacy of the direct pathway over the indirect pathway.
In our model, this parameter, �, represents a degree to which
evaluation of future rewards is discounted depending on time
distance, namely, time discount factor (Fig. 6C) (Morita et al.,
2012). The black lines in Figure 6, D and E, show the activity of
MSNs during two successive trials and intertrial intervals be-
tween them in the cases with � � 0.75 and � � 0.9, respectively
(these should be regarded as the population activity; for details,
see Materials and Methods): given that � represents time dis-
count factor for a single time step (approximately a few hundred
milliseconds), these settings at 0.75 to 0.9 are overlapped with the
range of experimentally measured values of discount factor for a
longer duration for early and advanced learning stages (Enomoto
et al., 2011). As shown in the figures, dMSNs and iMSNs show
buildup activity during intertrial intervals, which presumably
represent expectation of reward in the following trial. Such
buildup activity is shaped through dopamine-dependent plastic-

ity at the beginning of the task, with the “front” of the buildup
activity shifted backward (in time) over trials and blocks (data
not shown). Notably, there is a difference depending on the pa-
rameter �. If � is moderate (� � 0.75), there appears to be no
MSN activity at the beginning of an intertrial interval (i.e., end of
a trial) (Fig. 6D, black lines). This indicates that the subject would
have no expectation of future reward at the end of a trial, or in
other words, the predicted value of the end-of-trial state is 0. In
contrast, when the relative strength/efficacy of the direct pathway
(time discount factor) was set to a higher value (� � 0.9; Fig. 6E,
black lines), the dMSNs and iMSNs come to show activity at the
end of a trial, indicating that subject now has reward expectation
beyond a single trial.

We examined the effects of dopamine receptor antagonists in
this new model. In the case with the moderate � (� � 0.75), both
D1 and D2 antagonists caused essentially the same effects as those
observed in our original model, on the neural activity as well as on
the reaction time (Fig. 6F). Looking more precisely, the sharp
change in the reaction time on a transition from small- to large-
reward blocks and the effect of D1 antagonist on it (Fig. 4E, right-
most part of the panel) are now reproduced much better (Fig. 6F,
bottom) than in the original simple model (Fig. 4D). As the pa-
rameter � increases to be 0.9, however, there emerges another
deviation from the original model (Fig. 6G). Specifically, whereas
the reward-amount specificity of the effect of D1 antagonist (i.e.,
prominent effect in large-reward trials) is essentially unchanged,
D2 antagonist comes to affect not only the neural activity and
reaction time in small-reward trials but also those in large-reward
trials, although less prominently.

The reason for this can be understood by looking at the effect
of D2 antagonist on the buildup activity of dMSNs and iMSNs
during intertrial intervals (Fig. 6E, compare the black and blue
lines). As shown in the figures, D2 antagonist significantly atten-
uates the buildup activity, whereas D1 antagonist has only a miner
effect. Application of D2 antagonist, which was done after 10
blocks have been completed without antagonists in the simula-
tions using the elaborated model [antagonist application was pre-
ceded by no-antagonist blocks also in the experiment (Nakamura
and Hikosaka, 2006)], initially enhances the buildup activity of
iMSNs (data not shown), because inputs to the iMSNs during
intertrial intervals are weak enough to be affected by D2 antago-
nist (Fig. 3B). This causes negative response of dopamine neu-
rons, resulting in a decrease of corticostriatal connection
strengths and eventually the degradation of the buildup activity
(of both dMSNs and iMSNs) that represents the expectation of
reward in the following trial. Because such over-trial reward ex-
pectation is added on the value of the state at target presentation
represented by dMSNs, which presumably determines the reac-
tion time, regardless of the amount of reward associated with the
target, its impairment by D2 antagonist affects reaction time in
both large-reward trials and small-reward trials. Despite this,
however, the effect of D2 antagonist on the reaction time is still
larger for small-reward trials than for large-reward trials (Fig. 6G,
bottom, inset), presumably because the mechanism explained
previously (Fig. 5) should also operate. This indicates that our
model with � � 0.9 could still explain the observed reward-
amount specificity of the effects of the antagonists (Nakamura
and Hikosaka, 2006) at least to a certain degree.

Reward prediction error computation in parallel with action
selection and/or execution
As we have so far shown, our circuit model can simultaneously
explain the dopaminergic control of reaction time for a reward-

4

(Figure legend continued.) state (red and white circles in the figure indicate active and inac-
tive subsets, respectively). C, Receiving inputs from the active CCS cells and CPn/PT cells, dMSNs
and iMSNs presumably represent the predicted value of the current and previous states, respec-
tively, under the condition in which the input– output functions f1 and f2 of MSNs operate in
their suprathreshold linear regimens and are not affected by dopamine receptor antagonists.
The dopamine neurons are assumed to receive net positive and negative effects from the dMSNs
and iMSNs, respectively, and also reward-representing inputs from the PPN when reward is
obtained, and thereby compute TD reward prediction error, which is then used to plastically
modify the corticostriatal (i.e., CCS– dMSNs and CPn/PT–iMSNs) connection strengths. In our
model, the relative strength/efficacy of the direct pathway over the indirect pathway (�) rep-
resents the time discount factor appeared in the definition of the TD reward prediction error in
reinforcement learning algorithms. D, E, Population activity of dMSNs and iMSNs during two
successive trials and intertrial intervals between them, for two different values of � (D, � �
0.75; E, �� 0.9). The black, red, and blue lines indicate the cases without antagonists, with D1

antagonist, and with D2 antagonist, respectively. The left and right columns show the average
for a duration after a large-reward trial (intertrial interval � next trial) and those after a
small-reward trial, respectively. The vertical solid lines (with light-yellow backgrounds) indi-
cate the timing of target presentation in the large-reward (left column) or small-reward (right
column) trials, and the vertical dashed lines (with light-yellow backgrounds) indicate target
presentation in the next trials (for which large- and small-reward trials were mixed). Light-
orange backgrounds indicate the timings for reward. The initial 10 trials in each block are not
included in the average so as to see that the situation after learning of location–reward contin-
gency essentially reaches a steady state. Both left-target and right-target trials were simulated,
and the data with the first trials (in the left of the panels) being left-target trials were shown
here. F, G, Response of dMSNs at the timing of target presentation (top row), responses of
iMSNs and the dopamine neurons at the timing of reward (middle 2 rows), and the reaction
time (bottom row) in simulations with the two different values of � (F, �� 0.75; G, �� 0.9).
The black lines indicate the cases without dopamine receptor antagonists, whereas the red and
blue lines indicate the cases with D1 and D2 antagonist, respectively. Notations are the same as
those in Figure 4 and 5. Left-target trials were shown in these panels (the model is left-right
symmetric, and “left” and “right” are just labeling).
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associated target, including the results of the pharmacological
manipulations, and the dopaminergic representation of reward
prediction error. However, because the task that we simulated
(Nakamura and Hikosaka, 2006) included forced-choice trials
only, we could not show whether our model can also operate well
in a situation in which multiple-choice options are available and
the reward prediction error signal is actively used for biasing
advantageous actions. To address this issue, we simulated a dif-
ferent task used in different studies (Roesch et al., 2007; Taka-
hashi et al., 2011) (precisely speaking, half of the task used in these
studies). This task regards rats’ movements rather than monkeys’
saccade, but both tasks share several common features: (1) there
are two action directions (left and right), which are associated
with either big or small reward, and (2) the contingency between
the action directions and the amount of reward is alternated in a
blockwise manner. However, there is an important difference:
specifically, the task used in the latter works (Roesch et al., 2007;
Takahashi et al., 2011) included free-choice trials interleaved in
forced-choice trials. By incorporating this feature, the authors
(Roesch et al., 2007) succeeded in examining the activity of do-
pamine neurons in the course of active instrumental learning and
found that the dopamine neurons appear to represent a specific
type of reward prediction error that is defined in a particular
reinforcement learning algorithm, namely, Q-learning (Watkins,
1989), rather than those defined in other algorithms, such as
SARSA (Rummery and Niranjan, 1994). Moreover, in a subse-
quent study using the same task (Takahashi et al., 2011), the
authors examined the effects of a lesion of the OFC, in combina-
tion with computational modeling and electrical stimulation,
and revealed that the OFC appears to contain information about
the model of the task structure and influence the dopamine neu-
rons so that they can compute reward prediction error according
to the model.

To simulate this new task involving action selection, we need
to extend our circuit model in three directions: (1) we need to
consider how the dopamine neurons in the VTA, instead of those
in the SNc, compute reward prediction error, because the above-
mentioned studies (Roesch et al., 2007; Takahashi et al., 2011)
mainly examined the VTA cells; (2) we should incorporate the
corticobasal ganglia–thalamocortical feedback loop instead of
the pathway to the SC to explain nose/arm/body movements
rather than eye movements; and (3) we should incorporate a
mechanism for action selection. As for the first point, here we
propose that the same corticostriatal mechanism for the compu-
tation of the TD of value predictions, which we proposed origi-
nally for the SNc dopamine neurons (Morita et al., 2012) (Fig.
7A), operates also for the VTA dopamine neurons, with different
intermediate nuclei as shown in Figure 7B. This is based on the in
vivo findings that neurons in the GPb (Hong and Hikosaka,
2008), LHb (Matsumoto and Hikosaka, 2007, 2009), and rostro-
medial tegmental nucleus (RMTg)/tail of the VTA (tVTA) (Jhou
et al., 2009b; Hong et al., 2011), as well as GABAergic neurons in
the VTA (Cohen et al., 2012), appear to represent negative reward
signal or sign-reversed reward prediction error signal, as well as
on the anatomical and/or physiological demonstrations that
there are excitatory connections from the GPb to the LHb (Hong
and Hikosaka, 2008; Shabel et al., 2012) and from the LHb to the
RMTg/tVTA (Jhou et al., 2009a; Hong et al., 2011; Lammel et al.,
2012) and inhibitory connections from the RMTg/tVTA to the
VTA/SNc dopamine neurons (Jhou et al., 2009a; Hong et al.,
2011); transient inhibitory influence of the dopamine neurons in
the SNc and the VTA on the LHb neuronal firing has also been
reported (Shen et al., 2012). Although the upstream of the GPb is

currently unknown, it is conceivable that it receives inputs from
both the direct and indirect pathways of the basal ganglia, given
that the GPb is at the borders of the internal segment of GP (GPi)
(Hong and Hikosaka, 2008), which receives inputs from both of
these pathways. Notably, in the abovementioned study (Taka-
hashi et al., 2011), stimulation of the OFC caused either excit-
atory or inhibitory effects on the firing of the VTA dopamine
neurons, with the latter more frequent, and the inhibitory effects
typically lasted for a few to several hundred milliseconds after the
offset of stimulation. These results seem to be consistent with our
model (Fig. 7B): the sustained inhibition is considered to reflect
the (indirect) influence of the CPn/PT cells, which are presum-
ably able to sustain their activity via strong recurrent excitation in
our model (Morita et al., 2012).

Next, regarding the second and the third points (corticobasal
ganglia–thalamocortical feedback loop and a mechanism for ac-
tion selection), we proposed (Morita et al., 2012) that the inputs
from this feedback loop specifically target the (apical tuft den-
drites of the) CPn/PT cells based on anatomical and morpholog-
ical findings (explained in detail by Morita et al., 2012). Given this
circuit architecture, here we propose that either of the following
mechanisms for action selection (or more precisely, action plan
selection; see below) can be implemented (Fig. 8A–D) as follows.

(1) A plan of action to be executed, A(ti), is selected outside of
the circuit that we consider, according to the predicted
values of possible action plans in a soft-max manner (Fig.
9A, right graph), and only that selected action plan is
loaded onto a subset of CCS cells (Fig. 8A). The selected
action plan A(ti) is then sent for execution through boost-
ing of the corresponding subset of CPn/PT cells by the

Figure 7. Putative pathways conveying positive and negative reward signals, with the com-
mon corticostriatal mechanism for computing the TD of reward predictions. A, Pathway that
conveys positive reward signals and computes reward prediction error in the SNc (Morita et al.,
2012), which is then transmitted to the LHb with a sign reversal. The arrows, filled squares, and
open squares indicate excitation, inhibition, and disinhibition, respectively. B, Pathway that
conveys negative reward signals, which are transmitted from the GPb to the LHb, the RMTg
(also referred to as the tVTA; Bourdy and Barrot, 2012), and then to the SNc and the VTA with a
sign reversal. The model used for the simulations in the present study does not explicitly de-
scribe structures between the striatum (Str) and the SNc/VTA (see Materials and Methods), and
it could thus simultaneously represent both of these two pathways, except for suggested mu-
tually inhibitory interactions between the SNc and the LHb.
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Figure 8. Reward prediction error computation in parallel with action selection and/or execution in the corticobasal ganglia circuit. A–D, Four different (extreme) possibilities are described. A,
An action plan selected at the outside of the circuit considered here is loaded onto a subset of CCS cells and then sent for execution through the direct pathway–thalamic loop and the CCS3 CPn/PT
connections. In the meantime, the dopamine neurons compute R(ti)��Q(A(ti))�Q(A(ti � 1)), which corresponds with reward prediction error defined in the SARSA algorithm (under the condition
in which the input– output functions f1 and f2 of MSNs operate in their suprathreshold linear regimens and are not affected by dopamine receptor antagonists; the same applied to all the cases). B,
Candidates of action plans are loaded onto different subsets of CCS cells, and an action plan is selected in the CCS– dMSNs pathway, through feedforward inhibition (and possibly also lateral and
feedback inhibition), with the probability depending on its predicted value, implementing a soft-max operation. The selected action plan is then sent for execution (Figure legend continues.)
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direct CCS3CPn/PT connections and the basal ganglia–
thalamocortical feedback, which is released from inhibi-
tion by the inputs from the CCS cells to the dMSNs/direct
pathway.

(2) Candidates of action plans are loaded onto different sub-
sets of CCS cells (Fig. 8B). Then an action plan is selected
in the CCS– dMSNs pathway, through feedforward inhi-
bition (Parthasarathy and Graybiel, 1997; Gittis et al.,
2010) (and possibly also lateral and feedback inhibition),
with the probability depending on its predicted value,
implementing a soft-max operation. The selected action
plan will eventually be sent for execution through the
basal ganglia–thalamocortical loop and the CPn/PT cells
(without perturbation at the stage of CPn/PT cells).

(3) Candidates of action plans are loaded onto different sub-
sets of CCS cells, as in case 2. However, different from case
2, the CCS– dMSNs pathway implements the (hard) max
operation rather than a soft-max operation (Fig. 8C), and
thus an action plan that currently has the maximum value
is selected at the stage of dMSNs after a brief initial tran-
sient phase. Meanwhile, receiving the initial dMSN-direct
pathway–thalamic inputs that represent predicted values
of each action plan (Fig. 8Ea), CPn/PT cells begin to com-
pete with each other, and an action plan that will eventu-
ally be sent for execution is selected in a soft-max manner;
this selected (to-be-executed) action plan is not necessar-
ily the same as the one selected by dMSNs (i.e., the one
with the maximum value), because the two selection pro-

cesses presumably proceed rather separately [i.e., if a
CPn/PT population corresponding to an action plan dif-
ferent from the one with the maximum value survives the
winner-take-all competition through recurrent attractor
dynamics (cf. Wang, 2002), the winner will not be
changed by the dMSN–trans-thalamic inputs].

(4) The CCS– dMSNs pathway does not implement any com-
putation, neither a soft-max nor the max operation (Fig.
8D). A soft-max operation is implemented through com-
petition among the CPn/PT cells.

Along with action (plan) selection, TD error for action (plan)
values (Sutton and Barto, 1998) is computed and represented in
the dopamine neurons. Importantly, different forms of reward
prediction error are computed in the different cases raised above,
and they correspond with different algorithms of reinforcement
learning. In cases 1 and 2, the computed signal is R(ti) �
�Q(A(ti)) � Q(A(ti � 1)), where R(ti) is reward obtained at time ti,
and Q(A(ti)) and Q(A(ti � 1)) are predicted values of A(ti) and
A(t

i � 1), respectively (under the condition in which the input–
output functions f1 and f2 of the MSNs operate in their suprath-
reshold linear regimens and are not affected by dopamine
receptor antagonists; the same is applied to all the cases). This
signal corresponds with the TD error for the SARSA algorithm.
In contrast, in case 3, the computed signal is R(ti) � �
max{Q(Acand(ti))} � Q(A(ti � 1)), where Acand(ti) are candidates
of action plans, and this signal corresponds with the TD error for
Q-learning [to be precise, this formula is true only for a portion of
the time step ti after the completion of the max operation (Fig.
8Eb), but in the model equations, we just assumed this formula as
a dopamine neuronal response at ti as an approximation]. In case
4, the computed signal is R(ti) � � mean{Q(Acand(ti))} � Q(A(ti �

1)), which corresponds with the TD error for the expected SARSA
learning (van Seijen et al., 2009) (or “sum” instead of “mean”; but
these two could become equivalent by changing �). Which of these
cases actually operates would depend on the fine properties of cir-
cuits and neurons, which may differ in different portions of the
corticobasal ganglia loop, and/or on the conditions of neuromodu-
lation. Also, the above four are all extreme cases, and actual opera-
tion in the brain can be somewhat between them; for example, we
assumed that there is no perturbation at the stage of the CPn/PT cells
in case 2, but in reality, there is likely to be at least some perturbation.
Notably, soft-max operation at the stage of the CPn/PT cells could be
achieved by competitive dynamics of a large number of cortical neu-
rons (cf. Wang, 2002). It could also be related to suggested variability
generation in the lateral magnocellular nucleus of the nidopallium in
songbirds (Olveczky et al., 2005), which could be homologous to the
mammalian CPn/PT cells. In any case, exploring ways of implemen-
tations of the abovementioned possibilities could be a nice theme for
biophysical modeling study in the future, but here we focus on case 3
in which the circuit implements Q-learning, which has been sug-
gested in the original study (Roesch et al., 2007) as mentioned above.

Importantly, there can be a certain time interval between ac-
tion (plan) selection (in a brain) and action execution, as repro-
duced by typically using delayed response tasks in the laboratory.
Therefore, action (plan) selection and action execution may not
always be a single inseparable process but rather constitute seri-
ally operating (in an approximate sense) processes. Specifically,
cortical neurons that represent plan (preparation) for a particular
motor action would become selectively activated first, and there-
after (after a scheduled delay if there is) those “action-plan
(action-preparation)” neurons will activate a different subpopu-
lation of cortical neurons that represent execution of that partic-

4

(Figure legend continued.) without perturbation at the stage of CPn/PT cells, while the do-
pamine neurons compute the same SARSA error signal as the case of A. C, Candidates of action
plans are loaded onto different subsets of CCS cells in the same manner as in B, but the CCS–
dMSNs pathway implements the (hard) max operation rather than a soft-max operation as-
sumed in B. Consequently, an action plan that currently has the maximum value is selected at
the stage of dMSNs after a brief initial transient phase, and thereby the dopamine neurons
compute R(ti) �� max{Q(Acand(ti))} � Q(A(ti � 1)), which corresponds with reward prediction
error defined in Q-learning. Meanwhile, receiving the initial dMSN– direct pathway–thalamic
inputs that represent predicted values of each action plan (see Ea), CPn/PT cells begin to com-
pete with each other, and a plan of the action that will eventually be executed is selected in a
soft-max manner; this selected (to-be-executed) action plan is not necessarily the same as the
one selected by dMSNs (i.e., the one with the maximum value), because the two selection
processes presumably proceed rather separately. D, Candidates of action plans are again loaded
onto different subsets of CCS cells, but the CCS– dMSN pathway implements neither a soft-max
nor the max operation. Instead, values of the action plan candidates are computed in the dMSNs
and sent to the dopamine neurons as they are. The dopamine neurons therefore compute
R(ti) � � mean{Q(Acand(ti))} � Q(A(ti � 1)), which corresponds with the TD error for the
expected SARSA learning (van Seijen et al., 2009) (or “sum” instead of “mean”; but these two
could become equivalent by changing �). Receiving the thalamic feedback inputs, the CPn/PT
cells compete to select an action plan that is to be executed, implementing a soft-max opera-
tion. E, Schematic illustration of the presumed operation of the circuit, with a consideration that
action plan selection and action execution are serially operating separable (in an approximate
sense) processes (a3 b). Among two action-plan candidates (“plan of action 1” and “plan of
action 2”), the plan of action 2 is selected through the presumed Q-learning-compatible mech-
anism, and the corresponding subset of CPn/PT cells becomes selectively activated. These acti-
vated CPn/PT cells representing the plan of action 2 then activate a subset of CCS cells that
represent execution of action 2, via presumably hard-wired intracortical (possibly inter-areal)
connections (c). Subsequently, those CCS cells activate CPn/PT cells that also represents execu-
tion of action 2, via both the direct intracortical connections and the CCS3 dMSNs3 SNr3
thalamus3 CPn/PT loop pathway, and thereby action 2 is initiated (d). Those CPn/PT cells will
keep their activity via strong recurrent excitation and send inputs to iMSNs so as to provide the
dopamine neurons with a negative-signed signal of the value of the executed action via the
indirect pathway (e). Notably, reaction time corresponds to the duration between c and d and is
thus modulated by the activity of dMSNs that receive inputs from the CCS cells representing
execution of action 2 (c). Ctx, Cortex; Str, striatum.
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Figure 9. Simulation of a task involving action selection considered by Roesch et al. (2007) and Takahashi et al. (2011): explanation of the neural and behavioral data and the predictions. A, Left,
Presumed state transitions during individual task trials (similar to the one proposed in a model developed by Takahashi et al., 2011). S1, S2, . . . represent subjects’ states (Figure legend continues.)
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ular action, i.e., “action-execution” neurons, via presumably
hard-wired intracortical (possibly inter-areal) connections (e.g.,
neurons that represent plan/preparation for moving to the left
will activate neurons that represent actual movement to the left).
Figure 8E shows how this scheme goes well with our model, in the
case of Q-learning (Fig. 8Ea,b is an extended version of Fig. 8C
with a higher temporal resolution). As shown in Figure 8E, a
subset of CPn/PT cells that represents plan/preparation for a partic-
ular motor action (“action 2”) becomes selectively activated (Fig.
8Ea 3 Eb), through the presumed mechanism for Q-learning-

compatible action (plan) selection in the corticobasal ganglia circuit
(Fig. 8C), and those CPn/PT cells then activate a subset of CCS cells
representing execution of that particular action (Fig. 8Ec), which can
be located in a different cortical region/area. Indeed, a recent study
has shown that a portion of CPn cells contribute preferentially to
intracortical connections from higher to lower motor cortical areas
(Ueta et al., 2013): we assume that such inter-areal connections drive
CCS cells in the recipient area, either directly or indirectly via upper
layer neurons. The activated CCS cells will then drive CPn/PT cells
that also represent execution of that action, via both the direct intra-
cortical connections and the CCS3dMSNs3 SNr3 thalamus3
CPn/PT loop pathway, and thereby the action is initiated (Fig. 8Ed).
Those CPn/PT cells will keep their activity via strong recurrent exci-
tation and send inputs to iMSNs so as to provide the dopamine
neurons with a negative-signed signal of the value of the executed
action via the indirect pathway (Fig. 8Ee).

Notably, our model equation describes activity of dMSNs,
iMSNs, and the dopamine neurons at discrete time points (ti, ti � 1,
and ti � 2 in Fig. 8E), but this is certainly a very rough approx-
imation, and there are many issues regarding detailed biophysi-
cal processes that need to be clarified in the future. In particular,
it is not trivial how the CPn/PT cells representing action execu-
tion initially send powerful inputs to the pyramidal tract so that
action can be initiated (Fig. 8Ed) but then subsequently keep
sending major inputs to iMSNs, but not to the pyramidal tract,
after the termination of the action (Fig. 8Ee). One possibility is
that the temporal pattern of CPn/PT spikes plays a critical role.
Specifically, at the early phase (Fig. 8Ed), the CPn/PT cells pre-
sumably receive both inputs directly from CCS cells and those via
the trans-thalamic projections, which preferentially target layer 1
(Kuramoto et al., 2009) in which distal apical dendrites of the
CPn/PT cells are located. Such convergence of basal and distal
apical inputs can cause burst firing of pyramidal cells (Larkum et
al., 1999), and burst can be efficiently transmitted down the py-
ramidal tract through corticospinal synapses given that, at those
synapses, postsynaptic response is known to be facilitated when
spikes arrive with several milliseconds intervals (Meng et al.,
2004), which are typical for intraburst spikes. In contrast, at the
later phase (Fig. 8Ee), activity of the CPn/PT cells is sustained
mainly through recurrent excitation. They would also receive
recurrent inhibitory inputs onto cell domains including distal
apical dendrites (Silberberg and Markram, 2007). Such dendritic
inhibition could be oscillatory as a population, and combined
with hyperpolarization-activated current (Ih) that is especially
rich in corticospinal (CPn/PT-type) pyramidal cells (Sheets et al.,
2011), could potentially disturb burst generation and cause oscil-
latory spiking at �15–25 Hz (beta range) and thereby drastically
change efficacies of different downstream pathways, as suggested
by a recent modeling study (Li et al., 2013). This burst/beta-
dependent switching of information flow seems to be in line with
the well-known fact that corticospinal–muscular beta rhythm is
absent at the time of movement but appears prominently after
the movement (Baker, 2007), as well as the exaggerated beta ac-
tivity in the basal ganglia in Parkinson’s disease (Brown, 2007).
Switching of information flow at the previous time point (Fig.
8Eb3 Ec) might also depends on a similar mechanism, in which
burst-dependent induction of local spikes in pyramidal dendrites
(Polsky et al., 2009) may achieve burst detection. These details are
expected to be explored in the future (see also the additional
discussion about the discrete time representation in Materials
and Methods, at the end of Elaborated model for the saccade
task).

4

(Figure legend continued.) that are defined by external events (i.e., cue onset, cue offset,
reward bolus), their own movements, or internally (i.e., internal state), and A1 , A2 , . . . repre-
sent option(s) that can be taken at each state (e.g., “plan/prepare for moving to the left,” “move
to the left,” or “keep rest”). At the beginning of a trial (at the leftmost in the diagram), the
subject is presented with one of three odor cues, two of which (cues 1 and 3) indicated that
reward will be given if the animal entered either the left-side or right-side well, respectively
(forced-choice trial), whereas the remaining cue (cue 2) indicated that the animal will be re-
warded in both of the wells (free-choice trial). In any case, the amount of reward, either small (1
bolus of sucrose solution at S8 or S9 ) or large (2 boluses, with the second bolus given successively
at S10 or S11 ), was determined according to the predetermined direction-amount contingency
that was fixed during a block (at least 60 trials in the experiments; 120 trials in our simulations)
and then reversed. Forced-choice trials and free-choice trials were pseudorandomly intermin-
gled. In our model, when the subject enters each state, subset(s) of CCS cells in the OFC are
assumed to represent combination(s) of that state and options that can be taken there [e.g., at
state S2 , a subset represents “S2 � A2” (plan/prepare for moving to the left) and another
represents “S2 � A3” (plan/prepare for moving to the right)]. Subsequently, the circuit is as-
sumed to operate as we considered in Figure 8C, and one of the options is selected (and executed
if it is a movement); if there is just a single option, it is selected (and executed). In the meantime,
the dopamine neurons compute TD reward prediction error (regardless of whether there are
multiple options or a single option), according to which the strengths of corticostriatal (i.e.,
CCS– dMSNs and CPn/PT–iMSNs) connections are plastically modified. Notably, the three time
points for S2 (cue onset), S4 /S5 (cue offset), and S6 /S7 correspond to ti, ti � 1 , and ti � 2 in Figure
8E, and thus reaction time is presumably modulated by the activity of dMSNs at cue offset. Right,
Assumed soft-max function for choice. B, Dopamine neuronal response sorted by different
experimental conditions: the top and bottom rows show the results of the experiments (Roesch
et al., 2007) and our simulations, respectively. The vertical black line indicates the timing of cue
onset. Left, Dashed and solid lines indicate the average response of dopamine neurons in the
first and last 10 forced-choice select-large (green) or select-small (orange) trials in the blocks,
respectively. Middle and Right, Green and orange lines indicate the average response of dopa-
mine neurons in forced-choice (middle) or free-choice (right) select-large and select-small
trials, respectively. To control for learning and also for the possibility that disadvantageous
choices might be more often early in the block, only trials after the ratio of selecting more
valuable option exceeds 50% were included, and each free-choice trial was paired with the
immediately preceding and following forced-choice trial of the same reward amount [as done
in the original work (Roesch et al., 2007)]. C, Population activity of dMSNs (top row) and iMSNs
(bottom row) predicted from our model, sorted by the same experimental conditions as con-
sidered in B. D, The impact of reward amount on choice behavior in free-choice trials. Line
graphs show the ratio (percentage) of choices before and after the switch from big reward to
small reward (indicated by the vertical line), and the inset bar graphs show the percentage
choice for large versus small reward across all free-choice trials. The left and right panels show
the results of the experiments (Roesch et al., 2007) and our simulations, respectively. E, Average
reaction time in the forced-choice (left column) and free-choice (right column) trials included in
the data shown in the middle and right panels of B, respectively. Top row shows the experimen-
tal results (Roesch et al., 2007), and the bottom row shows our simulation results. F, Prediction
from our model about the effects of D1 (left) or D2 (right) antagonist on the reaction time in
forced-choice trials (top) and free-choice trials (bottom). G, Prediction from our model about
the effects of optogenetic stimulation of dMSNs (left) or iMSNs (right) on choice behavior. In a
new set of simulations, in one of the two wells (left and right), virtual optogenetic stimulation
was applied to either dMSNs or iMSNs coincidently with reward (at S8 or S9), in addition to giving
an extra bolus of reward at the subsequent timing in both of the wells; the contingency between
the stimulation on/off and the location of the well was fixed for a block and alternated across
blocks. The bar graphs show the ratio (percentage) of choices for with versus without optoge-
netic stimulation across all free-choice trials, either without dopamine receptor antagonist
(light gray bars) or with both D1 and D2 antagonists (dark gray bars). The top rows in B and E and
the left panels of D were taken from Roesch et al. (2007).
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Simulation of a task involving action selection: reproductions
and predictions
In the experiments (Roesch et al., 2007; Takahashi et al., 2011), at
the beginning of each task trial, the subject should make a nose
poke to be presented with one of three odor cues, two of which
indicated that reward will be given if the animal entered either the
left or right well, respectively (forced-choice trial), whereas the
remaining cue indicated that the animal will be rewarded in both
of the directions (free-choice trial). In any case, the amount of
reward, either small (one bolus of sucrose solution) or large (two
boluses given sequentially), was determined according to the pre-
determined direction-amount contingency that was fixed during
a block (at least 60 trials in the experiments; 120 trials in our
simulations) and then reversed. Forced-choice trials and free-
choice trials were pseudorandomly intermingled. Takahashi et al.
(2011) examined the effects of a lesion of the OFC on the dopa-
mine neuronal activity and subjects’ behavior. Comparing the
results with a computational model developed within the work
and also combining electrical stimulation, they revealed that, in
the intact subjects, the OFC contains information about the
model of the task structure, i.e., a diagram for transitions between
different states, and influences the VTA dopamine neurons so
that they can compute reward prediction error according to the
model.

According to these results (Takahashi et al., 2011), we as-
sumed that a state-transition diagram as shown in Figure 9A,
which is similar to the one considered by Takahashi et al. (2011),
is represented in the OFC. In this diagram, S1, S2, . . . represent
the states of the subject that are defined by external events (i.e.,
cue onset, cue offset, reward bolus), their own movements, or
internally (i.e., internal state), and A1, A2, . . . represent option(s)
that can be taken at each state (e.g., “plan/prepare for moving to
the left,” “move to the left,” or “keep rest”). Then, according to
our proposal on the architecture of corticobasal ganglia circuits
(Morita et al., 2012) and a demonstration of the existence of CCS
cells and CPn/PT cells in the OFC (Hirai et al., 2012), we assumed
that the CCS cells and CPn/PT cells in the OFC influence the VTA
dopamine neurons through the pathways shown in Figure 7B,
and the circuit operates in the following manner. Entering each
state, subset(s) of CCS cells represents combination(s) of that
state and option(s) that can be taken there [e.g., a subset repre-
sents “S2 � A2” (plan/prepare for moving to the left) and another
represents “S2 � A3” (plan/prepare for moving to the right)].
Subsequently, according to the mechanism that we considered in
the above (Fig. 8C), one of the options is selected (and executed if
it is a movement); if there is just a single option, it is selected (and
executed). In the meantime, the dopamine neurons compute TD
reward prediction error (regardless of whether there are multiple
options or a single option), according to which the strengths of
corticostriatal (i.e., CCS– dMSNs and CPn/PT–iMSNs) connec-
tions are plastically modified.

Making some additional assumptions including time-
dependent decay of the changes in the strength of corticostriatal
connections (for details, see Materials and Methods), we found
conditions with which the model can well reproduce important
features of the dopamine neuronal activity reported in the work
that we have modeled (Roesch et al., 2007), including relative
magnitude depending on conditions (forced-choice vs free-
choice and select-big vs select-small) at the timings of cue and
reward and also more overall within-trial time course of the ac-
tivity (Fig. 9B). In particular, the model well reproduced the ex-
perimental observation indicative of Q-learning (Roesch et al.,
2007) that the dopamine neurons show differential responses to

the big- and small-reward-predicting cues in forced-choice trials,
whereas the response to the free-choice cue is similar to the re-
sponse to the big-reward-predicting forced-choice cue regardless
of the obtained reward amount. With the same parameters that
were used to reproduce these neural data, our circuit model also
successfully reproduced the observed shorter reaction time in
select-big trials than in select-small trials in both forced-choice
and free-choice trials (Fig. 9E), if we assume that reaction time is
determined by the activity of dMSNs at the timing of cue offset, in
a manner similar to our models for the saccade task described
above. Moreover, reinforcement of a choice leading to big reward
has also successfully occurred (Fig. 9D) [as shown in this figure,
the choice performance of the model is somewhat worse than the
animals’ performance in the study by Roesch et al. (2007), but it
is more similar to the performance in the study by Takahashi et al.
(2011) using the same task].

Notably, however, the success in explaining the neural and
behavioral data itself is not unique to the specific circuit architec-
ture of our model, and, in fact, it has already been done in the
model developed by Takahashi et al. (2011). Instead, what is new
to our model is that it can predict the activity of dMSNs and
iMSNs, as well as the effects of specific manipulations of either of
these cell populations. As shown in Figure 9C, it is predicted that
activation of dMSNs precedes that of iMSNs, reflecting the uni-
directional connectivity from the CCS cells to the CPn/PT cells
(Morishima and Kawaguchi, 2006) (the data shown in Fig. 9C
should be regarded as the population activity; for details, see
Materials and Methods). In free-choice trials, the activity of
dMSNs initially increases in a similar rate to the case of forced-
choice big-reward trials regardless of whether big-reward option
will be subsequently selected or not (Fig. 9C, top right, red arrow-
head). In contrast, it is not the case for the activity of iMSNs (Fig.
9C, bottom right, red arrowhead). Such a difference reflects the
assumption about how Q-learning is implemented in the corti-
cobasal ganglia circuit (Fig. 8C). Next, we examined effects of
dopamine receptor antagonists in this model. Assuming the same
effects of D1 and D2 antagonists on the responsiveness of dMSNs
and iMSNs as assumed in our models for the saccade task (Fig. 3),
simulations revealed that D1 antagonist prominently slows a
movement leading to big reward but has little effect on the one
leading to small reward (Fig. 9F, left), whereas the opposite is the
case for D2 antagonist (Fig. 9F, right) in both forced-choice trials
(Fig. 9F, top row) and free-choice trials (bottom row). It is thus
predicted that the distinct effects of dopamine receptor antago-
nists on the reaction time observed in the forced-choice saccade
task (Nakamura and Hikosaka, 2006) can also occur in the task
involving action selection and also with different effectors.

We further conducted virtual optogenetic stimulation of
dMSNs or iMSNs using the same model, trying to qualitatively
explain the results of another recent study (Kravitz et al., 2012),
which selectively stimulated either dMSNs or iMSNs when opto-
genetically tagged mice touched a trigger and found that mice
learned to seek and avoid self-stimulation of dMSNs and iMSNs,
respectively, even under the presence of D1 and D2 antagonists.
We assumed that, in one of the two wells (left or right), stimula-
tion of either dMSNs or iMSNs was applied in coincidence with a
reward bolus, in addition to a subsequent extra bolus of reward in
both of the wells [i.e., except for the MSN stimulation, both of the
wells are in the “big reward” condition in the original experi-
ments (Roesch et al., 2007; Takahashi et al., 2011)]; the contin-
gency between the location of the well and the stimulation of
MSNs was fixed during a block and alternated across blocks.
Through simulations, it was shown that a well associated with
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dMSN stimulation becomes more frequently chosen, whereas a
well associated with iMSN stimulation becomes more frequently
avoided, even under the presence of D1 and D2 antagonists (Fig.
9G), successfully explaining the essential findings of the optoge-
netic stimulation study (Kravitz et al., 2012). Notably, in our
simulations for conditions with the antagonists, if the virtual
optogenetic stimulation is applied on the “small reward” condi-
tion (i.e., when the subsequent extra bolus of reward is omitted),
dMSN stimulation still causes attraction but iMSN stimulation
fails to cause aversion (data not shown). This is presumably due
to the threshold of the dMSNs’ input-output function assumed in
the model: if the corticostriatal connections are not sufficiently
strengthened, corticostriatal inputs to dMSNs remain to be sub-
threshold and cannot cause any choice bias. This seems to be a
model-dependent phenomenon (i.e., changing the threshold
might change the results), but could still have an implication:
when subject expects little reward in the near future, s/he might
not be able to learn advantageous (i.e., not so good, but not very
bad) choice strategy well (see Potjans et al., 2011 for a discussion
on this issue in relation to the asymmetry of positive and negative
dopamine response). There can be certain mechanisms to up-
regulate the activity of dMSNs to supra-threshold level, in partic-
ular, inputs from cortical neurons showing task-related activity
and/or increase of the striatal tonic dopamine (cf. Niv et al.,
2007), so that subject can still learn advantageous choice strategy
even in such situations.

Discussion
Dopamine has been suggested to be crucially involved in the
control of motivation and reinforcement learning, but how the
activity of dopamine neurons itself is controlled has remained
elusive. We tried to resolve this issue by constructing a closed-
circuit model of the corticobasal ganglia system based on recent
findings on the intracortical and corticostriatal circuit architec-
tures. Through numerical simulations, we showed that our
model successfully reproduces the observed across- and within-
trial changes in the dopamine neuronal response that represents
reward prediction error, as well as changes in reaction time de-
pending on expected reward amount and changes in choice de-
pending on learning of reward values. Moreover, our model
could also explain the observed distinct effects of manipulations
of the direct or indirect pathway striatal neurons, on reaction
times as well as on choices. Importantly, the results of this study
challenges a current popular view on the functions of the distinct
pathways of the basal ganglia as we explain below.

Roles of the direct and indirect pathways of the basal ganglia
A current popular hypothesis regarding the function of the basal
ganglia is that the direct and indirect pathways are involved in
appetitive (“go”) and aversive (“no-go”) learning, respectively
(Frank et al., 2004; Frank, 2005). The experimental result (Krav-
itz et al., 2012) that mice learned to seek and avoid stimulation of
their own dMSNs and iMSNs, respectively, was interpreted to
support this hypothesis, given an assumption that dopamine sig-
naling was “bypassed” by the optogenetic stimulation of MSNs
(Paton and Louie, 2012). Our model provides an alternative view
(Table 1). According to our model, optogenetic stimulation
would cause significant phasic response of dopamine neurons in
specific ways: stimulating dMSNs or iMSNs is expected to cause
positive or negative phasic response of dopamine neurons, re-
spectively, as if the touch that the animal has just made has led to
positive or negative reward prediction error. This could explain
the observed seeking and avoidance of dMSN and iMSN self-

stimulation, respectively (Kravitz et al., 2012), as we qualitatively
showed in the above (Fig. 9G). Our hypothesis potentially could
also explain several other recent empirical findings that have so
far been explained by the direct-go/indirect-no-go hypothesis.

A key feature that distinguishes our hypothesis from the go/
no-go explanation is the functional role of the indirect pathway:
in our view, the indirect pathway should represent the predicted
value of the state/action at a previous time point. This time delay
comes from the presumed sustained firing of the upstream
CPn/PT cells (Morita et al., 2012), and it is expected to manifest
as delayed firing of iMSNs compared with dMSNs (Fig. 9C), al-
though at a coarser timescale, dMSNs and iMSNs will presum-
ably show phasic activation at rather similar timings (around
target/cue presentation; Fig. 6D,E). Notably, our view is broadly
consistent with previous suggestions that the CPn/PT3 indirect
pathway may receive an efference copy signal and might serve
action termination (Lei et al., 2004; Graybiel, 2005; Reiner et al.,
2010).

Another (although closely related) important difference be-
tween the two hypotheses is the way of dopamine dependence of
corticostriatal synaptic plasticity. Whereas the go/no-go hypoth-
esis assumes that phasic dopamine response induces plasticity of
the opposite directions for dMSNs and iMSNs (i.e., increase of
dopamine strengthens and weakens the synapses on dMSNs and
iMSNs, respectively), we assume that the induced plasticity
should be the same direction (increase of dopamine strengthens
both dMSN and iMSN synapses; for the potential validity of this
assumption, see Materials and Methods). Notably, our hypothe-
sis incorporates the difference in the cortical input sources be-
tween dMSNs and iMSNs, namely, inputs coming preferentially
from CCS cells and from CPn/PT cells, respectively (Lei et al.,
2004; Reiner et al., 2010). The go/no-go hypothesis does not take
this into account. It is true that a lot of differences between the
plasticity on dMSNs and iMSNs have been demonstrated (Gerfen
and Surmeier, 2011), and to be fair, plasticity induction in these
two cell types appears to be toward the opposite directions, in line
with the go/no-go hypothesis, at least under certain experimental
conditions (Shen et al., 2008). However, here we propose that
these differences are to implement the same direction of
dopamine-dependent plasticity for the synapses receiving differ-
ent temporal patterns of cortical inputs (CCS– dMSN: early/tran-
sient; CPn/PT–iMSNs: late/sustained) rather than to implement
the opposite directions of dopamine dependence. Future exper-
iments are expected to test these alternative hypotheses.

Roles of dopamine in motivational control
Regarding the dual role of dopamine in motivational control and
reinforcement learning, an intriguing idea has been proposed

Table 1. Functions of the direct and indirect pathways of the basal ganglia: a
popular view versus a new view suggested from our model

Direct pathway Indirect pathway

Popular view
Operate for Upcoming action Upcoming action
How to operate Execute (“go”) Inhibit (“no go”)
If stimulated Action execution/facilitation Action inhibition

Our model
Operate for Upcoming action Ongoing/executed action
How to operate Execute (“go”) Terminate
If stimulated Action execution/facilitation and

positive reward prediction
error

Action termination and negative
reward prediction error
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(Niv et al., 2007) that the tonic level of dopamine represents
response vigor, a manifestation of motivation, whereas its phasic
release represents reward prediction error. In our model, reaction
time is assumed to be quasi-inversely related to the stimulus-
induced response of dMSNs in the presence of tonic dopamine,
and D1 antagonist induces an increase of reaction time in large-
reward blocks (Fig. 4D) directly through its effect on the input–
output function of dMSNs under tonic dopamine, in line with
the idea proposed by Niv et al. (2007). Conversely, the effect of D2

antagonist appears indirectly, through the change in the activity
of iMSNs and their downstream dopamine neurons as explained
previously. Notably, such distinct ways of operation of D1 and D2

antagonists in the model lead to earlier manifestation of the effect
of D1 antagonist than that of D2 antagonist (approximately three
trials after block switch in Fig. 4D; approximately five trials in Fig.
5D), which appears to be consistent with the experimental obser-
vations (Figs. 4E, 5E).

Motivation is a complex entity, and there should be many
aspects that cannot be captured by reaction time or response
vigor. As mentioned previously, according to our model, the de-
gree of reward time discount is determined by the balance be-
tween the direct and indirect pathways of the basal ganglia (Fig.
6C), which can be regulated by striatal tonic dopamine (Albin et
al., 1989; DeLong, 1990). Increase in the dopamine level would
lead to a milder discount of future rewards, which could be sub-
jectively felt as an enhancement of motivation. This is just an
example, and, in fact, how dopamine is involved in a multitude of
motivational processes is a challenging future issue. Given the
closed-circuit architecture, our model can hopefully serve as an
useful test bed in exploring physiological mechanisms of not only
extrinsically induced motivation but also how motivation is in-
trinsically generated and how it interacts with extrinsic motiva-
tion (Murayama et al., 2010).

Roles of dopamine in reinforcement learning and
decision making
Phasic dopamine response appears to represent reward predic-
tion error and is thought to play crucial roles in reinforcement
learning and value-based decision making (Glimcher, 2011). In
the meantime, several areas in the frontal cortex, including the
OFC, have been suggested to be crucially involved in reward-
guided learning and decision making (Rushworth et al., 2011). A
recent study (Takahashi et al., 2011) has elucidated an exact rela-
tionship between the dopamine neurons and the OFC. Specifi-
cally, it has been suggested (Takahashi et al., 2011) that
information about task structure, i.e., the model of state transi-
tions, is represented in the OFC, and it influences the VTA dopa-
mine neurons so that they can compute reward prediction error
according to the model, presumably via intermediate structures
such as the ventral striatum in which the value of the states would
be computed. Following this suggestion, we proposed a specific
circuit mechanism at the resolution of intermingled neural sub-
populations within each structure, providing rich predictions
that are expected to be tested in future experiments. How the
model of state transitions itself is acquired is currently unknown
and is also expected to be explored in the future.

Our present model consists of only a single corticobasal gan-
glia–midbrain loop circuit. However, in reality, different parts of
the loop have been suggested to be functionally specialized. In-
deed, it has been suggested previously (Roesch et al., 2007) that,
although the dopamine neurons in the VTA appear to encode TD
error for Q-learning (Roesch et al., 2007), those in the SNc were
shown to represent the error signal for SARSA (Morris et al.,

2006). Moreover, some populations of dopamine neurons may
not represent reward prediction error (Bromberg-Martin et al.,
2010). Likewise, different parts of the striatum may be specialized
for state versus action learning (O’Doherty et al., 2004) and/or for
different timescales (Tanaka et al., 2004), and an even further
functional specialization would exist in the cortex (Rushworth et
al., 2011). With regard to the tasks that we modeled, in addition
to the model of the presumed state transitions, knowledge that if
one action/location is associated with small reward, the other
should lead to large reward (and vice versa) may also be acquired
and represented in certain cortical places (Hong and Hikosaka,
2011) so that a subject can change behavior by experiencing only
a single trial after a reversal of the location–reward contingency,
as observed in experiments after extensive training (Watanabe
and Hikosaka, 2005). How it is implemented and how it interacts
with the mechanisms that we proposed remain as important
future issues.
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