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A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of
supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of
severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite
limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the
regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination
treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and
is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a
potential regenerative treatment after severe spinal cord injury.

Introduction
Classic studies have repeatedly demonstrated (Ramon y Cajal,
1928; Aguayo et al., 1981) that a favorable environment for
CNS axon regrowth can be created by engraftment of a seg-
ment of peripheral nerve, which can be further augmented via
the addition of growth factors (Cheng et al., 1996; Lee et al.,
2002b; Tsai et al., 2005). However, the lack of significant exo-
dus of axons from the graft had derailed the use of the periph-
eral nerve bridging strategy since it was first implemented by
Tello in Ramon y Cajal’s laboratory nearly a century ago (Ra-
mon y Cajal, 1928). Importantly, recent papers have shown
that a buildup of inhibitory reactive glial-derived chondroitin
sulfate proteoglycans (CSPGs) at the peripheral nervous sys-
tem (PNS)/CNS interfaces is a major impediment that curtails
regenerating axons from entering but especially exiting the
bridge (Houle et al., 2006; Yang et al., 2006; Busch and Silver,
2007; Alilain et al., 2011). In high cervical hemisection models
of spinal cord injury (SCI), treatment at the doorways of the
graft with chondroitinase ABC (ChABC), which cleaves the
inhibition mediating sugar chains of CSPGs (Shen et al.,
2009), can lead to regeneration of a portion of the descending

innervation to the cervical cord, lying just beyond the lesion,
followed by restoration of a good measure of forepaw mobility
(Houle et al., 2006) or diaphragm function (Alilain et al.,
2011). Having bypassed the lesion, but being directed into
gray matter, regenerating axons tended to remain within their
segment of exit from the graft, so it was unknown whether
critical functions associated with the far caudal spinal cord,
such as bladder control, could also be impacted by this approach.
Also, it was unknown whether a similar strategy could be used in a
more clinically challenging complete transection injury.

Proper urine storage and micturition in normal animals and
humans is complex, requiring the spinal cord to integrate infor-
mation arising from the brain, bladder, and urethra (de Groat et
al., 1998; Fowler et al., 2008; Cruz and Cruz, 2011). SCI results in
the loss of supraspinal control of the lower urinary tract and an
inability to coordinate activity between urinary bladder smooth
muscle and external urethral sphincter (EUS) striated muscle,
resulting in a severe condition known as detrusor-sphincter dys-
synergia (DSD) (Kruse et al., 1993; Fraser, 2011). Although much
work in bladder recovery after SCI has focused on pharmacolog-
ical intervention and/or functional electrical stimulation of the
bladder or peripheral nerves (Kontani and Hayashi, 1997; Cam-
eron, 2010), relatively few studies have focused on central neuro-
nal regeneration for the recovery of efficient micturition (Cruz
and Cruz, 2011). Here we used adult rats with complete thoracic
cord transections that have been bridged by a combination of
multiple peripheral nerve autografts (PNGs) covered by an acidic
fibroblast growth factor (aFGF)-laden fibrin matrix plus ChABC
delivered to the graft and at the graft/host interfaces. We provide
physiological, anatomical, and pharmacological evidence of a
surprising degree of regeneration from particular brainstem cen-
ters past the distal graft/cord interface, with some axons reaching
all the way to lumbo-sacral levels and with return of bladder
control.
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Materials and Methods
Animal groups. One hundred twelve adult fe-
male Sprague Dawley rats (225–250 g; Harlan)
were assigned randomly and equally into seven
groups (16 rats per group): (1) sham group
(laminectomy only); (2) Tx-only group (T8
spinal cord transection only); (3) PNG group
(T8 transection with PNG treatment); (4) aFGF �
ChABC group (T8 transection with aFGF �
ChABC treatment); (5) PNG � ChABC group
(T8 transection with PNG � ChABC treatment);
(6) PNG � aFGF group (T8 transection with
PNG � aFGF treatment); and (7) PNG � aFGF �
ChABC group (T8 transection with PNG �
aFGF � ChABC treatment). One rat in each of
the sham, aFGF � ChABC, PNG � ChABC, and
PNG � aFGF � ChABC groups died prema-
turely. Two rats from each of the Tx-only, PNG,
and PNG � aFGF groups also died prematurely.
Therefore, a total of 102 rats completed the entire
sequence of tests. All animal procedures followed
National Institutes of Health guidelines and were
approved by the Institutional Animal Care and
Use Committee of the Cleveland Clinic. Animals
were housed in ventilated, humidity-controlled
(50%), and temperature-controlled (23–25°C)
rooms on a 12 h light/dark cycle.

Spinal cord surgery, multiple peripheral nerve
segment transplantation, and ChABC injection.
All surgical procedures were conducted under
aseptic conditions. Before surgery, all animals
were anesthetized by 2% isoflurane mixed with
oxygen. The animals were maintained on a
heating pad, and the rectal temperature was
monitored and maintained within �1.5°C of
normal temperature during surgery. Bipolar
electrocauterization was used to minimize
bleeding. Rats in the sham group underwent a
partial laminectomy only at the T8 level. Rats
in the Tx-only group underwent a similar par-
tial laminectomy, followed by two complete
transverse cuts of the spinal cord at the T8 level,
creating a gap of �5 mm. A surgical micro-
scope was used to ensure the complete removal
of neural tissue from the 5 mm gap (nothing
was inserted in this gap). Rats in the PNG
group underwent a spinal cord transection as
described above, and then the 5 mm gap was
bridged using PNG auto-transplantation (�18
intercostal nerve segments) as described previ-
ously (Lee et al., 2002b). The nerve segments
were slightly inserted into both rostral and cau-
dal stumps (up to 0.5 mm) to bridge the gap. A
critical next step in this procedure is the fixa-
tion of the vertebral column in a dorsiflexed
position using a compressive S-shaped mono-
filament surgical steel wire (B&S 20 gauge, DS-
20; Ethicon) loop. The loop is composed of two
hooks and a central handle for twisting. After hooking at the bases of the
T7 and T10 spinal processes, the loop is secured to the vertebral column
with two sets of non-absorbable threads (Cheng and Olson, 1995). The
thread is passed underneath the rib and then tightened with the loop. The
central handle is twisted to provide stabilization. The continuing pres-
ence of the monofilament was confirmed by postmortem analysis. Rats in
the ChABC � aFGF group also underwent T8 spinal cord transection,
but then 3 �l (1.5 �l at each cord stump adjacent to the lesion) of ChABC
(1 U/ml; Seikagaku America) was injected into the spinal cord through
glass pipettes via a Hamilton syringe. After the injections, a mixture of

aFGF (1 �g; R&D Systems) and fibrin glue was applied to fill the 5 mm
gap. Rats in the PNG � ChABC group received spinal cord transections,
which were followed by PNG auto-transplantation with 3 �l (1.5 �l at
each cord stump adjacent to the lesion) of ChABC injected into the spinal
cord. Rats in the PNG � aFGF group received spinal cord transections,
which were followed by PNG auto-transplantation with only the aFGF/
fibrin mixture application on top of the grafts and fixation of the verte-
bral column that was described above. Rats in the PNG � aFGF �
ChABC group received spinal cord transection and all the treatments in
full combination as described above (for a schematic diagram of this
entire intervention, see Fig. 1). In all experiments in which ChABC was

Figure 1. A schematic diagram illustrates the placement of the PNG (collected from intercostal nerves and soaked in ChABC before the
transplantation), aFGF in fibrin glue, microinjection of ChABC into the spinal cord, and spinal column stabilization in PNG � aFGF �
ChABC-treated animals. Vertebrae T8 and T9 have been juxtaposed to save space.

Figure 2. PNG � aFGF � ChABC improves micturition patterns after complete SCI. Representative metabolic cage voiding
patterns were from select groups (A) and quantification of the results (B, C) from each group at 3 and 6 months after SCI. In each
step-like curve of the graph, the horizontal line represents individual micturition events, and the vertical lines are the volume of
urine expelled (change from baseline). PNG � aFGF � ChABC animals showed higher frequencies and lower volumes per mictu-
rition than the other SCI groups. There results were significant when compared with all SCI groups (*p � 0.05), when compared
with Tx-only, PNG, and aFGF�ChABC groups ( †p �0.05), when compared with the Tx-only, PNG, aFGF�ChABC, PNG�ChABC,
and PNG � aFGF group ( §p � 0.05), and when compared with 3 months with its own group ( �p � 0.05).

10592 • J. Neurosci., June 26, 2013 • 33(26):10591–10606 Lee et al. • Bladder Recovery after Spinal Cord Injury



Figure 3. PNG � aFGF � ChABC improves urodynamics and bladder/EUS coordination after complete SCI. A, Representative voiding and bladder pressure recordings (top 2 panels; * indicates
micturition point) and EUS EMG activity (bottom 2 panels) were recorded for each group at 6 months after SCI. The two middle panels show magnified portions at the (Figure legend continues.)
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used, the nerve segments were collected and
soaked in ChABC solution (10 �l of ChABC in
1 ml of saline) for �1 h before implantation
(Neubauer et al., 2007). The bladders of all
spinal-cord-transected rats were expressed
manually at least twice per day throughout the
experimental period.

The measurement of micturition patterns us-
ing metabolic cages. At 3 and 6 months after
spinal cord surgery, animals were placed in a
metabolic cage (Braintree Scientific) for the
measurement of voiding patterns. The voided
urine was collected by a computerized system
to record micturition volume and frequency.
Animals were kept in this cage for 16 h with
ample water and food during the period of
urine collection and measurement. Each ani-
mal was recorded at least three times (with 3 d
separating each recording session), and then
this data were averaged to represent the volun-
tary micturition pattern of an individual ani-
mal. The criteria for the micturition pattern
analysis included the frequency of voiding per
16 h and the volume per voids. The total vol-
ume of expelled urine was not included be-
cause of variation of water intake between the
individual animals.

Urodynamics/cystometrogram and electro-
myography recordings. After the metabolic cage
studies, rats at 6 months after surgery were anes-
thetized with 2% isoflurane, and a catheter was
inserted through the urethra into the bladder for
the subsequent delivery of saline. Fine-wire elec-
trodes also were inserted percutaneously on both
sides of urethra for subsequent measurements of
EUS electromyography (EMG) activity. We used
50-�m-diameter Teflon-insulated platinum wire
(2 mm exposed tip; A-M Systems) that was in-
serted into the urethra via the vagina bilaterally
along the mid-urethra using a 30 gauge needle.
The urethra can be easily identified where it
bulges in the anterior vaginal wall. Next, the rats
were placed in a restraining apparatus and al-
lowed to recover from isoflurane anesthesia for 1 h before the following
evaluations were performed. Continuous cystometrograms (CMGs) were
collected using constant infusion (0.08 ml/min) of saline (SP 100i single-
syringe infusion pump; World Precision Instruments) through the catheter
into the bladder to elicit repetitive voids, which allowed collection of data for
a large number of voiding cycles. The electrodes were connected to an alter-
nating current amplifier (model P511; Astro-Med) with high- and low-pass
frequency filters at 10 Hz and 1 kHz and a recording system (Dash 8X;
Astro-Med) at a sample frequency of 10 kHz.

Spinal cord re-transection and pharmacological studies. At 6 months
after spinal cord surgery and/or treatment, the T5 level of the spinal cord

was exposed and then completely transected by two cuts. A pledget of
Gelfoam soaked with 4 �l of 10% fluorescent conjugated biotinylated
dextran amine (BDA) (Sigma) also was placed in the T5 spinal cord
lesion site for the anterograde tracing study (see below). At 2 weeks after
spinal cord re-transection, the animals were used to retest bladder func-
tion again using metabolic cages as well as analyses of urodynamics and
EUS EMG recordings. In addition, animals in each SCI group were given
either a serotonin (5-HT) receptor antagonist (5 mg/kg methysergide,
i.p., once per day for 3 d) or �-methyl-DL-tyrosine [which depletes ty-
rosine hydroxylase (TH) at nerve terminals; 250 mg/kg, i.p., once per day
for 3 d], and then bladder function was tested again at the end of the third
day of drug treatment.

Bladder morphology studies. Animals were perfused transcardially with
4% neutral paraformaldehyde (PFA) in 0.01 M PBS, pH 7.4. The bladders
of all animals were collected, and weight wet was recorded. The bladders
were further fixed with 4% PFA for 1 d. The bladders were then trans-
ferred to 30% sucrose, cryostat sectioned transversely (8 �m) at the level
of mid-bladder, and stained with Masson’s trichrome for additional
morphological analysis under the light microscope.

Immunostaining of nerve fibers in the spinal cord. After transcardial
perfusion with 4% PFA in 0.01 M PBS, the spinal cords were subsequently
postfixed in the perfusing solution at 4°C. Then the tissues were cryopro-
tected in 30% sucrose in PBS for 24 – 48 h at 4°C. Forty micrometer
sagittal cryostat sections, including the graft and spinal cord rostrally and
caudally, were examined immunohistologically for the distribution of
5-HT or TH fibers at the interfaces of the PNG and beyond into the distal

4

(Figure legend continued.) point at which micturition occurred. Animals that received PNG�
aFGF � ChABC treatment had much reduced amplitudes and frequencies of non-voiding blad-
der contractions and much better coordination between EUS EMG bursting activity and bladder
contractions during the micturition point. Quantification of the CMG results (B) and EUS EMG
bursting patterns (C) during voiding shows that the triple-combination animals had the longest
durations of EUS EMG bursting activity, better coordination between bladder contractions and
EUS bursting activity during voiding, and the lowest firing rates of bursting when compared
with animals that received alternative treatments. There results were significant when com-
pared with all SCI groups ( †p � 0.05), when compared with Tx-only, PNG, and aFGF � ChABC
groups ( �p � 0.05), when compared with Tx-only, PNG, aFGF � ChABC, and PNG � ChABC
groups ( §p � 0.05), and when compared with the Tx-only, PNG, aFGF � ChABC, PNG �
ChABC, and PNG � aFGF group ( Øp � 0.05).

Figure 4. PNG � aFGF � ChABC treatment improves bladder morphology. A–N, The Tx-only, PNG, aFGF � ChABC, and PNG �
ChABC groups show edematous connective tissue and the proliferation of urothelial layers. Both the PNG � aFGF and PNG �
aFGF � ChABC groups show less tissue edema and less proliferation of the urothelial layers (arrow). Scale bars: A, C, E, G, I, K, M,
500 �m; B, D, F, H, J, L, N, 250 �m. O, PNG � aFGF � ChABC animals had the most significantly reduced bladder weight among
all the SCI groups. The red color indicates muscle fibers, and the blue color indicates collagen. There results were significant when
compared with all SCI groups ( †p � 0.05), when compared with Tx-only, PNG, aFGF � ChABC, and PNG � ChABC groups ( §p �
0.05), and when compared with the Tx-only, PNG, aFGF � ChABC, PNG � ChABC, and PNG � aFGF group ( Øp � 0.05).
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end of the spinal cord tissue. Sections were blocked in 3% normal horse
serum with 0.25% Triton X-100 in PBS for 1 h. After blocking, sections
were exposed to an anti-5-HT polyclonal antibody (1:1500 dilution; Dia-
Sorin) with anti-glial fibrillary acidic protein (GFAP) for astrocytes (1:
500; Dako) or anti-TH polyclonal antibody (1:1000 dilution; Protos
Biotechnology) with anti-GFAP antibody or anti-TH antibody with
anti-synaptophysin antibody (1:200 dilution; Sigma) and then incu-
bated overnight at 4°C. Sections were washed, incubated with either
fluorescein-conjugated or rhodamine-conjugated secondary antibody
for 90 min, washed, and coverslipped with Vectashield (Vector Labora-
tories). The images were collected using a Carl Zeiss LSM 510META
confocal microscope.

To process cord tissue for 5-HT or TH immunohistochemistry in the
lumbar area, transverse sections were blocked in 3% normal horse serum
with 0.25% Triton X-100 in PBS for 1 h. After blocking, the sections were
exposed to an anti-5-HT polyclonal antibody (1:1500 dilution; DiaSorin)
or an anti-TH polyclonal antibody (1:1000 dilution; Protos Biotechnol-

ogy) and incubated overnight at 4°C. After
three rinses in PBS, the sections were exposed
to a biotinylated secondary antibody (1:200;
Vector Laboratories), followed by the ABC
Elite kit (Vector Laboratories) for 1 h each. The
reaction was visualized by treatment with
0.02% 3,3�-diaminobenzidine with 0.001%
H2O2 in Tris–saline for 2– 6 min, and the
sections then were examined using a light
microscope.

Anatomical tracing procedures. For antero-
grade tracing, 2 weeks after BDA placement at
the T5 level, animals were perfused with 4%
PFA in PBS, and the spinal cords were collected
to perform cryosectioning at 40 �m. Immuno-
staining with an anti-GFAP antibody was
added to the tracer-labeled sections for double-
labeling purposes. Z-stack images were col-
lected and compiled using a Carl Zeiss LSM
510META confocal microscope and software
with a 25� objective and excitation wave-
lengths of 594 and 488 nm. For retrograde trac-
ing, a solution of tracer in normal saline [4%
Fluoro-Gold (FG), 2 � 2 �l] was injected care-
fully into both sides of the L4 spinal cord. Two
weeks later, the rats were perfused, and then
the brains and spinal cords were removed and
sliced in the transverse plane at 40 �m thick-
ness. The slices were examined using a fluores-
cence microscope with ultraviolet filter.

CMG and EUS EMG data analyses. The anal-
yses of CMG pressure parameters derived from
five consecutive voiding cycles collected for
each animal included the time to first voiding,
maximal voiding pressure, voiding interval,
voiding duration, residual volume, and void-
ing efficiency. After the last voiding cycle and
after stopping the pump infusion, the remain-
ing saline in the bladder was collected and mea-
sured to determine the residual volume. The
total volume of the bladder was measured as
the bladder capacity between the beginning of
saline infusion and the first leaking/micturi-
tion point, and then this value was multiplied
by the saline infusion rate of 0.08 ml/min.
Thus, the voiding efficiency was determined as
the percentage of [(total volume � residual
volume)/total volume � 100]. The EUS EMG
activity during the middle phase of bladder
storage, which was considered baseline activity,
and bladder micturition represented by burst-
ing activity were identified and archived in 2 s
samples (AstroVIEW X; Astro-Med). The 2 s

samples were filtered and smoothed as described previously with modi-
fication (Jiang et al., 2009). Briefly, the signals were rectified, and mean
amplitude and firing rates were calculated after the above correction
(MyosoticSignaPoint; Myosotic). In addition, the total times of EUS
EMG bursting activity were measured during the voiding period. We also
determined the level (by percentage) of coordination between bladder
contractions and EUS bursting activity during voiding periods for the 2 s
samples. Such coordination was defined by the alignment of the bottom
part of the intraluminal pressure trace and the period of high-frequency
oscillation (IPHFO) of the EUS bursting signal. Thus, the coordination
level was determined as the percentage of [(coordinated number of EUS
EMG signal/total number of bottom IPHFO) � 100].

Quantitative assessment of regenerating 5-HT, TH, and anterogradely
labeled nerve fibers. The numbers of 5-HT- and TH-positive fibers in
various regions below the lesion/PNG (i.e., at the graft/host interface and
at 250 �m, 1 mm, 2 mm, 5 mm, 8 mm, and 12 mm) were counted under

Figure 5. Axonal regeneration by PNG � aFGF treatment. A, Representative confocal images of 5-HT immunostaining in the
PNG � aFGF group showing several regenerated 5-HT fibers (red) growing into the caudal end of the spinal cord. The caudal spinal
cord interface is demarcated by a white line. Scale bar, 200 �m. B, C, Higher-magnification images from A show identified 5-HT
fibers (red, arrow) at different locations within the caudal end of the spinal cord. Scale bar, 40 �m. D, In the Tx-only group, 5-HT
fibers (red) can be identified in the rostral cord (identified by GFAP, green) but not entering the lesion cavity. The rostral spinal cord
interface is demarcated by a white line. Scale bar, 500 �m. * indicates the cavity formation in the rostral cord. E, Higher-
magnification images from D show identified 5-HT fibers (red, arrow) at different locations within the rostral end of the spinal cord.
Scale bar, 200 �m. F, Representative confocal images of TH immunostaining in the PNG � aFGF group showing several regener-
ated TH fibers (red) growing into the caudal end of the spinal cord. The caudal spinal cord interface is demarcated by a white line.
Scale bar, 200 �m. G, H, Higher-magnification images from F show identified TH fibers (red, arrow) at different locations within
the caudal end of the spinal cord. Scale bar, 40 �m. I, In the Tx-only group, TH fibers (red) can be identified at the rostral cord
(identified by GFAP, green) but not entering the lesion cavity. The rostral spinal cord interface is demarcated by a white line. Scale
bar, 500 �m. * indicates cavity formation in the rostral cord. J, Higher-magnification images from I show identified TH fibers (red,
arrow) at different locations within the rostral end of the spinal cord. Scale bar, 200 �m.
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the microscope from all spinal-cord-injured
animals. Two observers blinded to all treat-
ment groups counted the fibers. Every 1-in-6
sections from each animal were used to count
nerve fiber segments and then multiplied by 6
to represent a quantitative estimate of total
numbers of fiber segments beyond the lesion
per animal. The numbers of BDA-positive fi-
bers in our anterograde tracing study were
counted in several areas, including 1 mm ros-
tral to the lesion/PNG, within the middle of the
lesion/PNG, and at different sites caudal to the
lesion/PNG (i.e., at the graft/host interface and
at 250 �m, 1 mm, 2 mm, 5 mm, and 8 mm).
The section selection and the blinded method
of counting fibers were the same as described
above.

Statistical analyses. All data are reported as
mean � SEM. A two-way (group � time)
ANOVA followed by Tukey’s post hoc ANOVA
test were used to determine significant differ-
ences between groups. Linear regressions were
performed using SigmaStat statistical software.
Significant differences were determined at p �
0.05. All behavioral tests and data analyses were
done in a blinded manner during this entire
study.

Results
Multiple PNGs with aFGF/fibrin and
ChABC lead to markedly improved
micturition patterns in rats that had
sustained complete T8 spinal cord
transection
Voiding patterns were recorded with the
use of metabolic cages at 3 and 6 months
after spinal cord surgery. All the animals
in each group were used in this study. Two
main criteria, including the total number
of voids over a set time and the volume per
micturition, were used to make compari-
sons between the groups. Representative
micturition patterns of sham, Tx-only,
and PNG � aFGF � ChABC groups are
shown in Figure 2A. In each “step-like”
segment of the graph, the horizontal line
represents the time period between indi-
vidual micturition events, and the vertical
lines depict the volume of urine expelled
(change from baseline). At 3 months, the
sham group (29 voids/16 h) showed sig-
nificantly higher total numbers of voids
than the spinal-cord-injured as well as the
injury � treatment groups (Fig. 2B; p �
0.05). However, a comparison of the six
SCI groups revealed that the frequency of
micturition in the PNG � aFGF �
ChABC group (13 voids/16 h) was signif-
icantly higher than the Tx-only (6
voids/16 h), PNG (7 voids/16 h), aFGF �
ChABC (6 voids/16 h), PNG � ChABC (8
voids/16 h), and PNG � aFGF (8.5
voids/16 h) groups (Fig. 2B; p � 0.05).
The sham group (0.3 ml/void) also dem-
onstrated a significantly lower volume per

Figure 6. Significant axonal regeneration with PNG�aFGF�ChABC treatment. The triple combination of ChABC with PNG and aFGF
promotes regeneration of both 5-HT and TH fibers beyond the PNG/caudal spinal cord interface. A, Confocal images of a sagittal section of
the spinal cord showing that regenerated 5-HT fibers (red, white arrow head) have grown beyond the PNG (GFAP-negative area) and
penetrated deep into the CNS (identified by GFAP, green). The caudal spinal cord interface is demarcated by a white line. Scale bar, 300�m.
B–D, Higher-magnification images from A show identified 5-HT fibers (white arrows) at different locations within the caudal end of the
spinal cord. Scale bar, 40 �m. Note in A the alignment of the astrocytes at a point at which axons reenter the cord. E, Confocal photomi-
crographs of a sagittal section of the spinal cord showing that TH fibers (red, white arrow head) have regenerated beyond the graft (GFAP
negative area) and well into the CNS (identified by GFAP, green). The arrowheads indicate TH fibers crossing the PNG/caudal spinal cord
interface (demarcated by a white line). Scale bar, 300 �m. F–H, Higher-magnification images from E show identified TH fibers (white
arrows) at different distances beyond the PNG/caudal spinal cord interface. Scale bar, 40 �m. I, Confocal images from immunostaining
reveal a close proximity between the regenerated fibers and synapsin (SYN) puncta in PNG � aFGF � ChABC-treated animals. Double-
staining image indicates the colocalization of TH fibers and SYN (arrow). Scale bar, 70 mm. J, Regenerated 5-HT fibers with expansive
terminal arborizations were identified within the lumbar cord as depicted in this representative transverse section. Scale bar, 200�m. K, L,
Higher-magnification images from J. Note the bouton structures on 5-HT fibers (white arrow). The interface between gray matter and
white matter is demarcated by a white dashed line. GM, Gray matter; WM, white matter. Scale bar, 50 �m. M, N, TH fibers were also
identified well into the lumbar cord as shown in this representative transverse section. Note the bouton structures on TH fibers (white
arrow). The interface between gray matter and white matter is demarcated by a white dashed line. GM, Gray matter; WM, white matter.
Scale bars: M, 200 �m; N, 50 �m. O, Quantitative analysis showed greater numbers and longer-distance regeneration of 5-HT fibers
beyond the lesion in the PNG � aFGF � ChABC treatment group compared with the other SCI groups. P, Quantitative analysis showed
more and longer-distance regeneration of TH fibers beyond the lesion in the PNG� aFGF � ChABC treatment group versus the other SCI
groups. †p�0.05whencomparedwithTx-only,PNG,andaFGF�ChABCgroups,*p�0.05whencomparedwithTx-only,PNG,aFGF�ChABC,
andPNG�ChABCgroups,and**p�0.05whencomparedwithTx-only,PNG,aFGF�ChABC,PNG�ChABC,andPNG�aFGFgroups.
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micturition than all the other groups (Fig. 2C; p � 0.05). Again, a
comparison of the six SCI groups showed that the volume per
micturition in the PNG � aFGF � ChABC group (1.3 ml/void)
was significantly lower than the Tx-only (2.6 ml/void), PNG (2.4
ml/void), aFGF � ChABC (2.5 ml/void), PNG � ChABC (2.2
ml/void), and the PNG � aFGF (2.1 ml/void) groups (Fig. 2C;
p � 0.05). In addition, the PNG � ChABC and PNG � aFGF
groups also showed significantly lower volumes per micturition
when compared with the Tx-only, PNG, and aFGF � ChABC
groups (Fig. 2B,C; p � 0.05).

At 6 months, the sham group still had the highest frequency
(28 voids/16 h) and lower volume per micturition (0.25 ml) than
all six SCI groups (Fig. 2B; p � 0.05). Similar to but now much
more obvious than the patterns at 3 months, the PNG � aFGF �
ChABC group demonstrated a much higher frequency (18
voids/16 h) than the Tx-only (5 voids/16 h), PNG (6 voids/16 h),
aFGF � ChABC (7 voids/16 h), PNG � ChABC (10 voids/16 h),
and PNG � aFGF (11 voids/16 h) groups (Fig. 2B; p � 0.05). The
complete combination group also had markedly lower volumes
per micturition (1.2 ml) than the Tx-only (3.2 ml), PNG (2.9 ml),
aFGF � ChABC (2.7 ml), PNG � ChABC (1.9 ml), and PNG �
aFGF (1.8 ml) groups (Fig. 2C; p � 0.05). In addition, the PNG �
ChABC and PNG � aFGF groups also showed significantly
higher frequency and lower volume per micturition when com-
pared with the Tx-only, PNG, and aFGF � ChABC groups (Fig.
2B,C; p � 0.05). When one compares the 6 month versus 3
month data within groups, the Tx-only, PNG, and aFGF �
ChABC animals showed significantly increasing volumes per
micturition over time, which is indicative of ongoing pathology
within the bladder. In contrast, the PNG � aFGF � ChABC
group especially, rather than declining, showed improvements in
bladder function at 6 months, with more voids and lower vol-
umes per micturition than at the 3 month time period (Fig. 2B,C;
p � 0.05). In general, the metabolic cage study demonstrated that
the PNG � aFGF � ChABC group had developed a more normal
micturition pattern with higher-frequency micturition episodes
and less voiding volume per micturition than the other five SCI
groups. This indicates that the PNG � aFGF � ChABC animals
did not need to store excessively large volumes of urine in the

bladder to void, which is moving further
toward a normal pattern.

PNG with aFGF/fibrin and ChABC
markedly improves CMG and EUS
EMG activity in previously spinal-cord-
transected rats
Measurements of bladder contractions
and EUS activity were used to further in-
vestigate the quality of bladder function at
6 months after SCI. Six animals in the
sham control group, eight animals in the
Tx-only group, and eight animals in each
of the repaired groups were used in
this investigation. During continuous-
infusion CMG in sham control rats before
the onset of voiding (a period when the
bladder is not expelling urine), the EUS
displayed low-amplitude tonic activity.
There are no overt bladder contractions
before the voiding event (see a typical
bladder pressure trace of sham animals in
Fig. 3A). The tonic EUS activity increases
in amplitude at the onset of micturition

and then (peculiar to rats) rises precipitously to a large-amplitude
bursting pattern during the voiding period (see a typical EUS
EMG trace of sham animals in Fig. 3A). The “ramp-like” pairs of
dashed lines on both bladder pressure and EUS EMG recordings
indicate the point during the voiding event from which a greatly
expanded portion of the trace is depicted. At the micturition
point, the sham group demonstrates the coordination that nor-
mally occurs during the micturition cycle between bladder con-
tractions and EUS EMG bursting patterns (Fig. 3A). At 6 months
after T8 spinal cord complete transection, there was significant
DSD that was displayed as large-amplitude non-voiding contrac-
tions and atypical EUS EMG bursting activity during the voiding
attempt (both bladder pressure trace and EUS EMG trace of Tx-
only in Fig. 3A). The PNG, aFGF � ChABC, and PNG � ChABC
groups (Fig. 3A) had similar maladaptive patterns of bladder
pressure and EUS EMG activity. Although the PNG � aFGF
group (Fig. 3A) showed somewhat diminished amplitudes of
non-voiding bladder contractions, with partial EUS EMG burst-
ing activity during voiding, there was no coordination between
the EUS and bladder contractions during micturition. In contrast
to all the other treated SCI groups, the PNG � aFGF � ChABC
group (Fig. 3A) showed the greatest reduction in frequency of
DSD as well as much reduced amplitudes of non-voiding bladder
contractions. In addition, and rather remarkably, the PNG �
aFGF � ChABC group also demonstrated the characteristic pha-
sic EUS EMG bursting activity that was well coordinated with
bladder contractions during voiding.

The CMG analyses also showed that the PNG � aFGF �
ChABC group (at 39.8 min) had the shortest time to the first void
(p � 0.05; Fig. 3B) among all the SCI groups (the others were
54.6 –75.4 min). The sham group waited 9.4 min to first void. The
residual volume (Fig. 3B) in the PNG � aFGF � ChABC group
(1.5 ml) was the lowest amount (p � 0.05; Fig. 3B) compared
with other SCI groups (the others were 2.7– 4.1 ml), whereas the
sham group was 0.03 ml. The maximal voiding pressure (Fig. 3B)
in the PNG � aFGF � ChABC group (43.2 cm H2O) was signif-
icantly lowest (p � 0.05) among all SCI groups (the others were
52.5–54.3 cm H2O), whereas the sham group was 41.2 cm H2O.
The voiding efficiency (Fig. 3B) in the PNG � aFGF � ChABC

Figure 7. A few BDA-positive fibers grow beyond the graft in the PNG � aFGF animals. A, A low-magnification sagittal section
shows, with the combination of BDA labeling (red) and GFAP staining (green), the overall anatomy of the PNG and spinal cord (left
side is rostral and right side is caudal). Scale bar, 500 �m. B, High-magnification image shows a few BDA-labeled fibers (red)
entering the caudal end of the spinal cord (GFAP-positive area) from PNG (GFAP-negative area). The interface of the PNG and spinal
cord is demarcated by a white line. Scale bar, 100 �m.

Lee et al. • Bladder Recovery after Spinal Cord Injury J. Neurosci., June 26, 2013 • 33(26):10591–10606 • 10597



group (82%) was the highest amount (p � 0.05) compared with
the other SCI groups (48 – 67%), whereas the sham group was
98.2%. The voiding duration (Fig. 3B) in the PNG � aFGF �
ChABC group (43.9 s) was clearly the longest (p � 0.05) com-
pared with other SCI groups (which were 27.5–33.6 s), whereas
the sham group was 42.1 s. The voiding interval (Fig. 3B) in the
PNG � ChABC, PNG � aFGF, and PNG � aFGF � ChABC

groups (8.8 –10.1 min) was again the longer (p � 0.05) compared
with the Tx-only, PNG, and aFGF � ChABC groups (1.9 –2.3
min), whereas the sham group was 8.9 min. Together, the CMG
data indicate that the cord-injured animals treated with a combi-
nation of PNG � aFGF � ChABC demonstrated far less bladder
incontinence and distension as well as fewer non-voiding bladder
contractions, indicating a reduction of bladder hyperreflexia.

Figure 8. Anterograde tracing to label regenerating axons in the PNG � aFGF � ChABC treatment group. A, These three low-magnification sagittal sections of confocal images show with BDA
labeling (red) and GFAP staining (green) and the two combined, the overall anatomy of the PNG and spinal cord (left side is rostral and right side is caudal). Scale bar, 1000 �m. B, High-magnification
confocal image shows the large number of BDA-labeled fibers (red) entering the PNG (GFAP negative area) from the rostral end of the spinal cord (GFAP-positive area). The interface of the PNG and
spinal cord is demarcated by a white line. Scale bar, 100 �m. Significant numbers of BDA-labeled fibers were identified within the PNG (C) and penetrating deeply into the interface of the PNG with
the caudal end of the spinal cord (D) (demarcated by a white line). Note the alignment of the GFAP-positive astrocyte processes. D�, An adjacent section to D showing more evidence of the
BDA-labeled fibers (red and arrowheads) crossing the PNG/caudal spinal cord interface. E–G, The BDA-labeled fibers (red, white arrows) were identified at various locations continuing far caudally
into the spinal cord. Scale bar, 50 �m. H, Quantitative analysis showed greater numbers and longer-distance penetration of BDA-labeled fibers beyond the lesion in the PNG � aFGF � ChABC
treatment group than the other SCI groups. �p � 0.05 when compared with Tx-only and aFGF � ChABC groups, �p � 0.05 when compared with Tx-only group, †p � 0.05 when compared with
Tx-only, PNG, and aFGF � ChABC groups, *p � 0.05 when compared with Tx-only, PNG, aFGF � ChABC, and PNG � ChABC groups, and **p � 0.05 when compared with Tx-only, PNG, aFGF �
ChABC, PNG � ChABC, and PNG � aFGF groups.
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The EUS EMG analyses revealed that 100% of the animals in
the sham group showed the presence of EUS EMG bursting ac-
tivity during voiding. Seventy percent of the animals among all
the SCI groups had some sort of EUS EMG activity as well. How-
ever, the duration of EUS EMG bursting in the PNG � aFGF �
ChABC group (3.8 s) was significantly longer (p � 0.05) than the
other SCI groups (which were 0.8 –2.2 s), whereas the sham
group was 5.6 s (Fig. 3C). In addition, overall coordination be-
tween bladder contractions and EUS bursting during voiding in
the PNG � aFGF � ChABC group (85%) was significantly higher
than the other SCI groups (which were 55–70%). There were no
significant differences in the EUS EMG bursting amplitudes

among the groups (Fig. 3C). The firing rate
of EMG bursting in the PNG � aFGF �
ChABC group (297 Hz) was significantly
lower (p � 0.05) than the other SCI groups
(380–596 Hz), whereas the sham was 177
Hz (Fig. 3C). In general, the PNG�aFGF�
ChABC treatment provides significant re-
covery of EUS EMG activity, allowing for
better coordination with bladder contrac-
tions. All the aforementioned measure-
ments are indicative of a reduction of DSD
and higher efficiency of micturition control
in the full-combination treatment animals,
with some indicators achieving normal or
near-normal levels. Additional improve-
ments in urinary function beyond that at 6
months were not seen in three animals at 9
months after lesion and treatment with the
full-combination therapy.

PNG � aFGF � ChABC treatment
improves bladder morphology
Because of the need to store abnormally
large amounts of urine, SCI animals dis-
play considerably increased bladder sizes
and weights than in sham animals at 6
months after complete spinal cord tran-
section. The bladder wall of the Tx-only,
PNG, and aFGF � ChABC groups had de-
veloped edematous connective tissue with
extensive proliferation of the urothelial
layers facing the lumen (Fig. 4A–N). The
PNG � aFGF and the PNG � ChABC
groups, but especially the PNG � aFGF �
ChABC group, showed much less tissue
edema and less proliferation of the
urothelial layers, resulting in significantly
less total bladder weight (Fig. 4O).

Evidence of regeneration and synapse
formation by 5-HT and TH fibers
crossing the PNG/caudal spinal cord
interface
Given the improvements in voiding
behavior in rats that received the ChABC �
PNG � aFGF treatment, we next exam-
ined whether axonal regrowth could
extend beyond the caudal interface be-
tween the PNG and spinal cord. Immuno-
staining demonstrated in PNG � aFGF
(Fig. 5A–C,F–H), PNG � ChABC (data

not shown), and especially PNG � aFGF � ChABC (Fig. 6A–J)
groups that both TH- and 5-HT-positive fibers (these systems are
important in controlling micturition) had extended into the
bridge, across the caudal PNG/spinal cord interface and well into
the caudal cord (the CNS compartment was demarcated by the
presence of GFAP). 5-HT- and TH-positive fibers were identified
only in the rostral penumbra of the lesion in the Tx-only group
(Fig. 5D,E, I, J). There was absolutely no evidence that TH or
5-HT fibers had crossed into the caudal cord beyond the lesion in
the PNG and aFGF � ChABC groups. Interestingly, precisely at
the interface between the PNG and CNS tissue (especially in the
additionally aFGF- or ChABC-treated or both treated animals),

Figure 9. Retrograde anatomical tracing indicated the neuronal populations that have regenerated axons below the lesion site
in the PNG � aFGF � ChABC treatment group. A, FG-labeled cells were identified in the pontine micturition center, including
Barrington’s nucleus (arrow) and D region (arrowhead). Scale bar, 800 �m. B, FG-labeled cells were identified in both raphe nuclei
(arrow) and the reticular formation (arrowhead). Scale bar, 400 �m. C, The retrogradely FG-labeled neurons (arrow) could be
identified in locus ceruleus. Scale bar, 250 �m. D, Quantification of the FG-labeled cells in the retrograde tracing study. Me,
Mesencephalic nucleus of trigeminal nerve; DTN, dorsal tegmental nucleus; 4V, fourth ventricle; VCA, ventral cochlear nucleus,
anterior; Py and PT, pyramidal tract. *p � 0.05 when compared with Tx-only, PNG, and aFGF � ChABC groups, and **p � 0.05
when compared with Tx-only, PNG, aFGF � ChABC, PNG � ChABC, and PNG � aFGF groups.
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there often occurred a rectilinear align-
ment of the astrocytes and at these points
axons appear to have gained access to the
distal cord. For example, in Figure 5A, ax-
ons reenter the cord at a dorsal location
through a zone of aligned astrocytes in-
stead of more ventrally in which there was
a more “wall-like” arrangement (Fig. 6A).
Importantly, there were far greater num-
bers of regenerated 5-HT or TH axons and
regenerated axons that traveled longer
distances beyond the graft site to lumbar
levels in the PNG � aFGF � ChABC
group (Fig. 6J–N) than in the PNG �
ChABC and PNG � aFGF groups.

With the use of double labeling, it was
apparent that regenerated fibers that en-
tered the distal end of the spinal cord
could express synapse-associated pro-
teins, suggesting the possibility of func-
tional reconnection (Fig. 6I). Overall,
detection of considerable numbers of
5-HT and TH fibers growing far beyond
the interface of the PNG/caudal spinal
cord in the PNG � aFGF � ChABC group
(for a quantitative analysis, see Fig. 6O,P)
is consistent with their possible involve-
ment in the improvement of bladder
function.

Anterograde and retrograde labeling of
regenerating neurons
BDA for anterograde tracing was placed at
a fresh transection site at T5, which was
above the original transection site (T8).
No BDA-labeled fibers were found beyond the caudal end of the
bridge in any of the Tx-only, PNG, and aFGF � ChABC animals.
The PNG animals showed BDA-labeled fibers growing into but
not exiting the graft (data not shown). There were scattered fibers
just beyond the graft in the PNG � aFGF group (Fig. 7), as well as
the PNG � ChABC group (data not shown). Remarkably, the
PNG � aFGF � ChABC animals (Fig. 8A–G) had substantial
regeneration into and beyond the graft. Confocal reconstructions
and quantitative analysis (Fig. 8H) confirmed that regenerated
fibers had penetrated deeply into the gray matter near the PNG/
caudal spinal interface, and many were identified in the white
matter traveling several millimeters farther down the cord, with a
few making it to the very end of our sections.

Retrograde tracing by injecting FG into the spinal cord (at
approximately L4; nearly 2 cm below the rostral graft site) was
used to further determine the neural populations that may con-
tribute to nerve regeneration well beyond the bridge/cord inter-
face. In the Tx-only, PNG, and aFGF � ChABC groups, there
were no FG-labeled neurons anywhere in the rostral cord or
brain. In contrast, FG-labeled neurons could be clearly identified
within different regions and in several nuclei in the PNG �
ChABC, PNG � aFGF, and PNG � aFGF � ChABC groups, with
far more in the triple-combination animals. The PNG � aFGF �
ChABC group showed FG-labeled cells in the all important pon-
tine micturition center (Barrington’s nuclei and the D-region), as
well as the locus ceruleus, nuclei raphe magnus, and the reticular
formation (gigantocellular reticular nuclei) (Fig. 9A–C). Besides
FG-labeled cells in the brain, the cervical and thoracic spinal cord

also contained labeled cells likely to be part of the propriospinal
system. The PNG � aFGF and PNG � ChABC groups also
showed a few labeled cells in the D-region, raphe magnus nuclei,
reticular formation, and the cervical spinal cord. Importantly, the
PNG � aFGF � ChABC group contained far more FG-labeled
cells and in more neural populations than did the PNG � ChABC
or PNG � aFGF groups (Fig. 9D).

Effects of re-transecting the cord in animals with and without
repair bridges
Animals in all SCI groups (five animals in each group) were used
to perform spinal cord re-transection at the T5 level. They were
reevaluated for bladder function 2 weeks later. In the Tx-only,
PNG, aFGF � ChABC, and PNG � ChABC groups, there were
no or only minor differences in their already abnormal overnight
micturition patterns after spinal cord re-transection (Fig. 10A).
There also were no significant differences in both CMG/EUS
EMG parameters after spinal cord re-transection, including EUS
bursting activity during voiding in the non-regenerating groups,
but there were some changes in the relatively poorly regenerating
groups (Fig. 11A,B). CMG analysis in the PNG � ChABC group
did show significant increases in the time to first void and de-
creases in voiding intervals (p � 0.05), but there was no differ-
ence in EUS EMG analysis after spinal cord re-transection.
Metabolic cage analyses of the PNG � aFGF group showed sig-
nificant differences (p � 0.05) in increased volume per micturi-
tion but not in voiding frequency after spinal cord re-transection
(Fig. 10A). CMG and EUS EMG analysis showed continuing in-

Figure 10. Spinal cord re-transection eliminates or reduces the improvements in bladder function after regeneration. A, Raw
data analysis of a representative PNG � aFGF � ChABC-treated animal at 2 weeks after T5 spinal cord re-transection. The
micturition patterns revert to lower frequencies of voiding and higher volumes per micturition. The PNG � aFGF group also
increased volume per micturition after re-transection. Tx-only, PNG, and aFGF � ChABC animals did not change. †p � 0.05 when
compared with the before treatment. B, After re-transection, the PNG � aFGF � ChABC group developed increased amplitudes
and frequencies of non-voiding bladder contractions. Coordination between bladder contractions and EUS EMG bursting activity
during voiding period was eliminated (* indicates micturition point).
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creases in residual volume, decreases in voiding intervals, and, as
before, no EUS bursting activity after spinal cord re-transection
(Fig. 11A,B; p � 0.05). The PNG � aFGF � ChABC group
displayed the most significant declinations in regained urinary
function after re-transection, with markedly decreased voiding
frequency as well as increased volume per micturition (Fig. 10A).
CMG and EUS EMG analyses showed greatly increased times to
first void, increased maximal voiding pressures, increased resid-
ual volumes, decreased voiding efficiency, decreased voiding in-
tervals, complete elimination of the reacquired, patterned EUS
bursting activity, decreased EUS bursting lengths, and no coor-
dination between bladder contractions and EUS bursting (Figs.
10B, 11A,B; p � 0.05).

Effects of pharmacological blockade on bladder recovery
Because there was abundant 5-HT and TH regeneration in the
full-combination animals, we used pharmacological blockade to
investigate the contribution of the 5-HT and TH systems in the
recovery of bladder function. During 5-HT receptor blockade,
the PNG � aFGF � ChABC group displayed the most significant

differences after perturbing 5-HT func-
tion with decreased voiding frequency
but, interestingly, without changes in the
volume per micturition (Fig. 12A). There
were increases in the time to first void,
decreased voiding intervals, and decreases
in the coordination between bladder and
sphincter attributable to reduction of EUS
bursting activity (Figs. 12B, 13A,B; p �
0.05). After �-methyl-DL-tyrosine applica-
tion (TH depletion), the PNG � aFGF �
ChABC group reverted back significantly
(but importantly not completely) to the
transection state with decreased voiding fre-
quency as well as increased volume per mic-
turition (Fig. 12C). CMG and EUS EMG
analyses showed significantly increased time
to first void, increased maximal voiding
pressure, increased residual volume, de-
creased voiding intervals, elimination of
EUS bursting activity, decreased EUS burst-
ing length, and decreased coordination be-
tween bladder contractions and EUS
bursting (Figs. 12D, 14A,B; p � 0.05). In
general, the aforementioned perturbations
provide evidence that regained control of
micturition is, indeed, brought about via re-
generation of certain critical supraspinal in-
puts to the caudal cord.

Discussion
The results of this investigation have dem-
onstrated the feasibility of reestablishing
functional connections via regeneration,
after T8 complete transection in adult
rats, between various brainstem nuclei,
including the pontine micturition center
and the circuitry within the lumbo-sacral
cord that controls proper behavior of the
lower urinary tract. The combination of
PNG � aFGF � ChABC treatments lead
to a markedly improved quality of daily
voiding patterns, diminished DSD, en-
hanced voiding efficiency, as well as im-

proved bladder morphology. We also demonstrate for the first
time that some injured axons emanating from certain popula-
tions of neurons in the brainstem as well as the propriospinal
system can slowly regrow for remarkably long distances (�2 cm)
once they are guided in this manner past the inhibitory environ-
ment of the glial scar. Re-transection of the cord abolished re-
stored function, strongly suggesting that regeneration was critical
to the improvements in micturition.

In the current study, all non-regenerating groups of animals dis-
played significant detrusor hyperreflexia at 6 months after complete
SCI. In the triple-combination animals especially, the marked reduc-
tion in both frequency and amplitude of non-voiding contractions
as well as the production of far lower maximal voiding pressures
were likely attributable to regeneration of specific brainstem fiber
pathways. An understanding of which particular centers were re-
sponsible for the various aspects of improved bladder function is
important because we need to target them as we move forward with
improved regeneration strategies in the future. Several studies indi-
cate that �3-adrenergic receptor agonists can relax detrusor smooth

Figure 11. CMG and EUS EMG analysis after spinal cord re-transection. A, There was no significant difference in CMG parameters
after spinal cord re-transection in the Tx-only, PNG, and aFGF � ChABC groups. The PNG � ChABC group showed increased times
to first void and decreased voiding intervals after re-transection. The PNG � aFGF group showed significant increases in residual
volume and decreases in voiding intervals after re-transection. The PNG � aFGF � ChABC group showed greatly increased times
to first void, increased maximal voiding pressures, increased residual volumes, decreased voiding efficiency, and decreased voiding
intervals after re-transection. B, Spinal cord re-transection does not alter EUS EMG parameters in Tx-only, PNG, aFGF � ChABC,
PNG � ChABC, and PNG � aFGF groups. The PNG � aFGF � ChABC group showed elimination of the reacquired, patterned EUS
bursting activity, decreased EUS bursting lengths, and no coordination between bladder contractions with EUS bursting after spinal
cord re-transection. *p � 0.05 when compared with the before treatment.
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muscle in rats (Woods et al., 2001; Frazier et
al., 2006). Because pharmacological block-
ade of TH synthesis mostly eliminated the
improvements in detrusor hyperreflexia,
this points to the important contribution of
regenerated TH fibers (some of which were
likely adrenergic) in the reduction of abnor-
mal bladder wall activity.

Poor-quality EUS bursting activity,
which can lead to some ability to urinate,
albeit abnormally, can slowly return in
rats after mid-thoracic complete spinal
cord transection as was demonstrated
with the present data and which confirms
other studies (Cheng and de Groat, 2004;
Leung et al., 2007). This is likely attribut-
able to synaptic plasticity in the vicinity of
the central pattern generator for reflex
EUS bursting activity that has been dis-
covered near the L4 level (Chang et al.,
2007). Indeed, in the present study, spinal
cord re-transection at 6 months did not
affect the irregular patterns of EUS burst-
ing that had developed in the Tx-only,
PNG, and aFGF � ChABC groups, with
no evidence of nerve regeneration
through the lesion site. The application of
5-HT1A receptor agonists as well as �2/3-
adrenoceptor agonists has been shown to
improve EUS activity and voiding effi-
ciency (Morita et al., 2000; Dolber et al.,
2007), and, indeed, the quality of the re-
turned, more regularly patterned EUS
bursting particularly in the PNG � aFGF �
ChABC group was degraded but, impor-
tantly, not completely eliminated via phar-
macological applications that block both
5-HT and TH. This indicates that these par-
ticular reformed supraspinal inputs, but
also other regenerating pathways likely from
the pontine micturition center or reticular
formation, may directly foster recovery or
indirectly help regulate neuroplasticity and
allow the animal to regain control of this
critical sphincter.

Why did this particular combination
therapy allow for such robust axonal re-
generation well beyond that of our previ-
ous studies (Houle et al., 2006; Alilain et
al., 2011) in which we used ChABC and
single, longer bypass PNS bridges that
were directed just above ventral horn gray
matter? We suggest that maximizing surface area with the use of
multiple grafts coupled with the enzyme effectively increases ac-
cess to the distal white matter, which, in turn, can permit long-
distance regeneration (Davies et al., 1997, 1999; Silver and Miller,
2004; Gensel et al., 2009; Lu et al., 2012b). In addition, the use of
FGF may have a variety of beneficial synergistic effects. The FGF
family members have multiple functions, including their capacity
to modulate cell proliferation, migration, differentiation, and
survival (Teng et al., 1998; Rabchevsky et al., 2000; Lee et al.,
2006). Previous work using organotypic slice cultures (Lee et al.,
2002a) and an in vivo SCI model combining aFGF with a PNG

(Cheng et al., 1996; Lee et al., 2002b; Tsai et al., 2005) has shown
the important role of aFGF in enhancing axonal regeneration. In
other studies, aFGF was demonstrated to promote axonal regen-
eration and reduce death of neurons after SCI or brain ischemia
(Russell et al., 2006). In addition, FGF has been shown to be a
supportive molecular enhancer of long-distance, unbranched
axon regrowth from adult DRG transplants across the corpus
callosum (Jin et al., 2008; Ziemba et al., 2008). Therefore, the
application of aFGF in our repair strategy is important not only to
facilitate axonal growth in general but also to help allow axons to
grow straight, especially at the entrances and exits of the PNG.

Figure 12. Pharmacological manipulations eliminate or reduce the improvements in bladder function after regeneration. A,
Raw data of a representative PNG� aFGF� ChABC-treated animal at 3 d after methysergide application. The micturition patterns
returned to lower frequencies of voiding, but there was no difference in volume per micturition. B, Coordination between bladder
contractions and EUS EMG bursting activity during voiding was diminished, but no significant differences occurred in the ampli-
tudes of non-voiding contractions. C, Raw data of a representative PNG � aFGF � ChABC-treated animal at 3 d after �-methyl-
DL-tyrosine application, the micturition patterns returned to lower frequencies of voiding and higher volumes per micturition. D,
Amplitudes of non-voiding bladder contractions increased, and coordination between bladder contractions and EUS EMG bursting
activity during the voiding period was eliminated. †p � 0.05 when compared with the before treatment.
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FGF as a trophic factor is unusual in this respect because other
neurotrophins, such as NGF, BDNF, or neurotrophin-3, pro-
mote a more branched pattern of axonal growth that tends to be
constraining to elongation (Lu and Tuszynski, 2008; Lu et al.,
2012a). Thus, FGF seems to allow axons to grow more readily
through the territory in which it is expressed. FGF may also alter
the maturation state (Höke and Silver, 1996; Fawcett and Asher,
1999) or change the morphology of astrocytes at the graft/cord
interface into a more primitive bipolar shape (Imura et al., 2006;
Goldshmit et al., 2012) that improves the ability of axons to pass
through. ChABC may also aid in aligning astrocytes because the
enzyme has been shown to enhance integration of Schwann cells
and astrocytes by altering the production of inhibitory matrices
that form between them when they are compelled to interact with
one another after transplantation (Grimpe et al., 2005).

It is now well established that the application of ChABC alone
or in combination with other interventions, including PNGs or
cellular transplantation, can promote sprouting as well as nerve
regeneration and functional recovery after SCI (Bradbury et al.,
2002; Caggiano et al., 2005; Fouad et al., 2005; Houle et al., 2006;
Massey et al., 2006; Karimi-Abdolrezaee et al., 2010; Alilain et al.,
2011; Bukhari et al., 2011; Imagama et al., 2011; Jefferson et al.,

2011; Wang et al., 2011). Typically, how-
ever, the extent of axonal regrowth/
sprouting within the CNS compartment is
fairly restricted to the region of CSPG deg-
radation (Barritt et al., 2006; Starkey et al.,
2012). We have identified a subset of neu-
rons situated primarily within the brains-
tem and reticular formation (and which are
known to play important roles in bladder
function) (McMahon and Spillane, 1982) as
well as the propriospinal system that can re-
grow lengthy axons once a permissive envi-
ronment that allows them past the glial scar
is provided. We saw no evidence of regener-
ation by cortico-spinal or rubro-spinal ax-
ons (unlike the results by Cheng et al., 1996),
which is one possible reason for the limited
recovery of locomotor function (Basso–
Beattie–Bresnahan score improved from 2
to �7 in the triple-combination animals;
data not shown). Although propriospinal
(Bareyre et al., 2004; Fenrich and Rose,
2011; van den Brand et al., 2012), 5-HT
(Azmitia et al., 1978; Molliver et al., 1990;
Hawthorne et al., 2011), and certain other
brainstem neurons (Hill et al., 2001) are well
known to possess an enhanced capacity to
regenerate or sprout axons relatively short
distances after injury, the lengthy regenera-
tion of these as well as those from several
other nuclei so far down the cord was quite
surprising. Propriospinal neurons have the
capacity to regenerate an axon right though
very small, carefully crafted lesions in the
ventral white commissure (Fenrich and
Rose, 2011). Serotonergic neurons express
higher levels of GAP-43 and �1 integrins
than do cortical neurons, which helps them
maintain an active growth cone and sprout
robustly rather than becoming dystrophic
and dying back within the lesion environ-

ment (Hawthorne et al., 2011). Indeed, these neuronal popula-
tions appear to behave as if they were intrinsically conditioned
(Ertürk et al., 2012). Recently, an exciting series of papers has
revealed that robust axonal regeneration can be elicited via
manipulation of the mTOR/PTEN and SOCS3/STAT3 path-
ways (Park et al., 2010; Sun et al., 2011; de Lima et al., 2012). It
still needs to be determined whether the long-distance regen-
erating neurons intrinsically modulate these growth regula-
tory genes. An understanding of the special strengths of these
neurons may aid in devising strategies to instill their unique
navigational attributes into other types of neurons that fare
less well after injury or when they are presented with a
regeneration-promoting environment.

The current study provides an experimental framework for
stimulating functional regeneration after acute severe SCI. Mic-
turition control is complex and recovery takes a long time, but,
rather remarkably, it would appear that certain primitive
brainstem-mediated functions lost to SCI such as respiration
(Alilain et al., 2011) and urination do possess the capacity to
rewire themselves even when a relatively small number of axons
can be induced to regenerate beyond the glial scar. However, and
importantly, we do not yet know precisely how many and where

Figure 13. CMG and EUS EMG analysis after methysergide application. A, There is no significant difference in CMG parameters
after methysergide application in the Tx-only, PNG, and aFGF � ChABC groups. The PNG � ChABC and PNG � aFGF groups
showed significantly decreased voiding intervals after methysergide application. The PNG � aFGF � ChABC group showed
significantly increased time to first void and decreased voiding intervals. B, Methysergide application did not alter EUS EMG
parameters in Tx-only, PNG, aFGF � ChABC, and PNG � ChABC groups. EUS bursting length was reduced in PNG � aFGF group
after methysergide application. The PNG � aFGF � ChABC group showed elimination of EUS bursting activity and no coordination
between bladder contractions with EUS bursting after methysergide application. *p � 0.05 when compared with the before
treatment.
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beyond the lesion the functionally rele-
vant synapses need to be re-formed. The
critical synapses may occur within the in-
terneuronal pool just beyond the graft in
which most fibers end. The future chal-
lenge will be to provide even more favor-
able environments (Deng et al., 2011,
2013) and increase the intrinsic growth
potential of these particular supraspinal
neurons to facilitate more substantial and
rapid axonal regeneration to further en-
hance recovery of these but also other sys-
tems not only after acute but also after
chronic SCI.

Notes
Supplemental material for this article is available at
http://filer.case.edu/jxs10/Regeneration_Movies/.
Movie 1, Limited axon regeneration in a PNG
only animal. A movie made from confocal recon-
structions showing that the BDA-labeled fibers
grew into the PNG but did not exit. Movie 2,
Long-distance axon regeneration in a triple-
combination animal. A movie made from confo-
cal reconstructions clearly showing nerve
regeneration (BDA-labeled fibers) beyond the
PNG/caudal cord interface in a PNG � aFGF �
ChABC animal. This material has not been peer
reviewed.
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