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Systems/Circuits

Two-Photon Imaging of Nonlinear Glutamate Release
Dynamics at Bipolar Cell Synapses in the Mouse Retina

Bart G. Borghuis,' Jonathan S. Marvin,’ Loren L. Looger,’ and Jonathan B. Demb'>
Department of Ophthalmology & Visual Science and 2Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven,
Connecticut 06511, and *Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147

Alpha/Y-type retinal ganglion cells encode visual information with a receptive field composed of nonlinear subunits. This nonlinear
subunit structure enhances sensitivity to patterns composed of high spatial frequencies. The Y-cell’s subunits are the presynaptic bipolar
cells, but the mechanism for the nonlinearity remains incompletely understood. We investigated the synaptic basis of the subunit
nonlinearity by combining whole-cell recording of mouse Y-type ganglion cells with two-photon fluorescence imaging of a glutamate
sensor (iGluSnFR) expressed on their dendrites and throughout the inner plexiform layer. A control experiment designed to assess
iGluSnFR’s dynamic range showed that fluorescence responses from Y-cell dendrites increased proportionally with simultaneously
recorded excitatory current. Spatial resolution was sufficient to readily resolve independent release at intermingled ON and OFF bipolar
terminals. iGluSnFR responses at Y-cell dendrites showed strong surround inhibition, reflecting receptive field properties of presynaptic
release sites. Responses to spatial patterns located the origin of the Y-cell nonlinearity to the bipolar cell output, after the stage of spatial
integration. The underlying mechanism differed between OFF and ON pathways: OFF synapses showed transient release and strong
rectification, whereas ON synapses showed relatively sustained release and weak rectification. At ON synapses, the combination of fast
release onset with slower release offset explained the nonlinear response of the postsynaptic ganglion cell. Imaging throughout the inner
plexiform layer, we found transient, rectified release at the central-most levels, with increasingly sustained release near the borders. By
visualizing glutamate release in real time, iGluSnFR provides a powerful tool for characterizing glutamate synapses in intact neural

circuits.

Introduction

Retinal ganglion cells divide into 20 types based on a combination
of functional and morphological criteria (Field and Chichilnisky,
2007; Masland, 2012). In many types, the receptive field com-
prises a nonlinear subunit structure (Enroth-Cugell and Robson,
1966; Hochstein and Shapley, 1976; Caldwell and Daw, 1978;
Troy et al., 1989; Stone and Pinto, 1993; Troy et al., 1995; Demb
etal., 2001b; Crook et al., 2008; Estevez et al., 2012). Each subunit
encodes local contrast, and the output is transformed nonlinearly
before integration of multiple subunits by the ganglion cell
(Brown and Masland, 2001; Schwartz and Rieke, 2011; Garvert
and Gollisch, 2013). The nonlinear transformation allows indi-
vidual subunits to encode their preferred contrast polarity (light
increment or decrement) without being canceled by neighboring
subunits stimulated with the opposite polarity.
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A characteristic property of a nonlinear subunit receptive
field, exemplified by a/Y-type ganglion cells (Y-cells), is the
frequency-doubled response to a contrast-reversing grating
(Hochstein and Shapley, 1976; Demb et al., 1999) (Fig. 1). Non-
linear subunits explain the ganglion cell response to specific
visual features, including high spatial frequency textures, dif-
ferential motion, second-order motion, and motion onset (Vic-
tor and Shapley, 1979; Demb et al., 2001a; Olveczky et al., 2003,
2007; Baccus et al., 2008; Schwartz et al., 2012; Chen et al., 2013).
However, the exact nature of the nonlinearity remains unknown,
and direct measurements of nonlinear subunits converging on a
ganglion cell have been lacking.

The cellular basis for the nonlinear subunits appears to be the
bipolar cells: the nonlinear response depends on glutamate recep-
tors but not acetylcholine or inhibitory receptors (Demb et al.,
2001b), and the subunits are narrow, matching the bipolar cell
receptive field (Berntson and Taylor, 2000; Dacey et al., 20005
Schwartz et al., 2012). The principal nonlinearity in the bipolar
cell output could originate at the level of presynaptic cone pho-
toreceptors (Gaudiano, 1992; Schneeweis and Schnapf, 1999;
Hennig et al., 2002; Jackman et al., 2009) or, more likely, at the
level of the bipolar axon terminal (Olveczky et al., 2007; Baccus et
al., 2008; Schwartz et al., 2012). Nonlinearity at the axon terminal
supposedly follows from transient glutamate release combined
with a low basal rate, which causes rectification (Roska and Wer-
blin, 2001; Jarsky et al., 2011; Baden et al., 2013). However, tonic
excitatory currents measured in ON Y-cells suggest that presyn-
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Figure 1. Nonlinear release from bipolar cells explains frequency-doubled responses. 4,
Model for the Y-cell nonlinearity in ganglion cells. The subunits (OFF bipolar cells A-D) view a
contrast-reversing grating (alternating between frames 1and 2) and respond to the preferred
contrast. If the nonlinear transformation occurred after linear integration of contrast, the bipo-
lar cell response would be canceled when equal amounts of dark and light cover the receptive
field (null phase, solid line, subunits B and D). If, instead, the nonlinearity occurred before
contrast integration, the bipolar cell response would be frequency-doubled at the null phase
(dashed line). In both cases, the postsynaptic ganglion cell sums the subunits and generates a
frequency-doubled response. B, For a given subunit, the nonlinear response shown in A changes
depending on the spatial phase of the grating.

aptic ON bipolar cells have a relatively high level of basal gluta-
mate release and minimal rectification (Zaghloul et al., 2003;
Manookin et al., 2008; Trong and Rieke, 2008), challenging the
aforementioned model for the Y-cell nonlinearity.

To resolve the synaptic basis of the nonlinear subunits, we
would ideally directly measure glutamate release from bipolar
cells at multiple spatial locations on a fast time scale. Here, we
used two-photon imaging of a genetically encoded glutamate
sensor with fast temporal kinetics and high signal-to-noise ratio
(Marvin et al., 2013). Direct measurements of glutamate release
dynamics explain nonlinear Y-cell receptive fields, including
cases where release is neither transient nor strongly rectified.

Materials and Methods

Retinal preparation. Retinas were prepared using the methods of Bor-
ghuis et al. (2011). All procedures were conducted in accordance with
National Institutes of Health guidelines under protocols approved by the
Yale University Animal Care and Use Committee. A 0.8 1.0 ul volume of
AAV2/1.hSynapsiniGluSnFR in H,O (0.8-3.0 X 10'? TU/ul) was in-
jected into the vitreous humor of adult mouse eyes (C57/B6 J; 2—6
months old; both sexes) using a custom-designed syringe (Borghuis In-
struments). This construct broadly targeted iGluSnFR to ganglion cells
and amacrine cells. One experiment used AAV2/1.GFAP.iGluSnFR to
selectively target Miiller glia (see Fig. 2H ). Between 14 and 21 d after
injection, animals were killed and the eyes dissected in oxygenated Ames
medium (95% O,-5% CO,; Sigma-Aldrich). The retina was removed
from the sclera under a dissection microscope equipped with infrared
viewers (OWL Night Vision Scopes, third generation; B. E. Meyers). The
retina was then mounted on perforated filter paper (1.0-mm-diameter
holes) and placed under a tissue harp in a perfusion chamber on a
custom-built two-photon fluorescence microscope (Olympus BX-51;
Olympus). Retinas were continuously perfused with oxygenated Ames
medium at physiological temperature (~6 ml/min; 34-36°C).
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Fluorescence imaging and visual stimulation. Two-photon fluores-
cence measurements were made using an Olympus 60X, 0.9 NA,
LUMPlanFl/IR objective (Olympus) and an ultrafast pulsed laser (Cha-
meleon Ultra IT; Coherent) tuned to 910 nm. The microscope system was
controlled by ScanImage software version 3.7 (www.scanimage.org). Im-
ages (512 X 128 pixels) were acquired at 16 frames per second; line scans
were obtained at 2 kHz and down-sampled to 500 Hz for presentation in
Figure 7 (box-car average).

Visual stimuli were generated using custom-written software (Stim-
Demo, C language) and presented with a video projector (M109s DLP;
Dell, or identical HP Notebook Companion; HP), modified to project
UV light (single LED NC4U134A, peak wavelength 385 nm; Nichia).
Filtering by the projector’s optics shifted the peak wavelength of stimu-
lation to 395 nm. This wavelength is approximately equally efficient at
stimulating the M and S photopigments (~20% of peak absorption for
both), which are coexpressed in most cones throughout the retina with a
dorsal-ventral gradient: M expression is highest in dorsal retina and S
expression is highest in ventral retina (Szel et al., 1992; Nikonov et al.,
2006; Breuninger etal., 2011; Wang et al., 2011; Chang et al., 2013). Thus,
the 395 wavelength drives the coexpressing cones approximately equally,
regardless of spatial position on the retina. Most experiments were per-
formed in the ventral retina, and recordings in a given region were per-
formed for up to 1 h without obvious decrement in light sensitivity.

Mean luminance at the retina (5.8 X 10* photons/um?/s) evoked
~10* photoisomerizations (R*) per second in rods, coexpressing cones
and pure S cones (Haverkamp etal., 2005). These estimates assume a 0.85
wm? collecting area for rods and 1 um? collecting area for cones (Wang
et al., 2011). Neutral density filters (Kodak Wratten 2.0 ND; Edmund
Optics) and a 440 nm short-pass dichroic filter (Semrock) rendered re-
sidual stimulus light entering the photon multiplier tubes undetectable
against the baseline fluorescence of iGluSnFR-labeled processes. Size of
the projected image on the retina was 2.1 X 2.8 mm. Stimuli were
contrast-reversing spots and square-wave gratings. Data were analyzed
with custom algorithms in MATLAB (The MathWorks).

To determine rod contributions to the responses in the presence of the
scanning laser, we performed whole-cell recordings in retinas lacking
functional cones (Gnat2 ?™ mouse, 10 months old; Chang et al., 2006).
Three Y-cells (2 ON, 1 OFF-type; see definition below) showed similar
results; an example cell is shown in Figure 2F. In response to a spot
stimulus (1 Hz modulation; 400 wm diameter; 100% contrast) at a dim
mean luminance (10* R*/rod/s), the excitatory current of an ON Y-cell
was initially large (peak-to-trough response ~1 nA or greater; “pre”
recording). When the laser turned on, the cell responded with an inward
current, and there was no additional response to spot modulation (i.e.,
the laser saturated the response at this mean level). At the brighter level
used for our primary experiments (10* R*/rod/s), responses with and
without the laser were both weak, and the response to laser onset was
absent. Subsequently, a response to the original light stimulus returned,
indicating that laser stimulation did not bleach the rods (“post” re-
cording; Fig. 2F). Thus, in the experiments described below, at the
mean luminance of ~10* R*/photoreceptor/s, the response to laser
onset and the light stimulus were almost exclusively mediated by
cones (Naarendorp et al., 2010).

Visual stimuli were projected onto the retina through the microscope’s
condenser. Because the retina was mounted photoreceptor side down,
stimulus light entered the photoreceptors in the opposite direction com-
pared with the direction in vivo. To determine whether the direction of
photon entry into the photoreceptors affected the light response, we
positioned identical LEDs symmetrically above and below the retina and
compared responses to flashes delivered from the ganglion cell versus the
photoreceptor side. Loose-patch spike recordings of ganglion cell re-
sponses to brief flashes of increasing intensity (100 ms duration; 150 ms
response window) showed that the average response to stimulation from
above (ganglion cell side) and below the retina (photoreceptor side) was
the same (mean difference 0.2 * 3.8%, mean * SD; n = 11 cells).

Whole-cell recordings and definition of cell type. Borosilicate glass patch
electrodes (5-8 M()) were filled with the following intracellular solution
(in mMm): 120 Cs-methanesulfonate, 5 TEA-CI, 10 HEPES, 10 BAPTA, 3
NaCl, 2 QX-314-Cl, 4 ATP-Mg, 0.4 GTP-Na,, and 10 phosphocreatine-
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Tris, (pH 7.3, 280 mOsm). Excitatory currents were recorded with a
holding potential near E, (—67 mV) after correcting for the liquid junc-
tion potential (—9 mV). We targeted Y/a-type ganglion cells by record-
ing from large somas (20—25 wm diameter) in the ganglion cell layer,
using infrared wide-field imaging. Recorded cells were confirmed as Y/a-
type based on the following criteria. First, each cell had a relatively wide
dendritic tree (300—400 wm diameter). Second, each cell stratified on the
vitreal side of the nearby ON or OFF cholinergic (starburst) amacrine cell
processes, similar to the stratification of ON and OFF Y/a-type cells in
guinea pig and rabbit (Zhang et al., 2005; Margolis and Detwiler, 2007;
Manookin et al., 2008; van Wyk et al., 2009; Estevez et al., 2012). Specif-
ically, measured with two-photon imaging in vitro, the ON and OFF «
cell dendritic trees stratified at ~15 and ~27 wm distal to the ganglion
cell layer, respectively; whereas we have localized the ON and OFF star-
burst processes to ~18 and ~30 wm distal to the ganglion cell layer,
respectively (Beier etal., 2013). Each recorded cell was confirmed to have
the characteristic Y-type physiological property: a frequency-doubled
response to a contrast-reversing grating composed of high spatial fre-
quencies (Hochstein and Shapley, 1976; Demb et al., 1999) (see Figs. 5
and 7). Like Y/a-type cells in rabbit, cat, and primate, Y/a-type cells in
mouse project to the lateral geniculate nucleus of the thalamus (Estevez
et al., 2012; Beier et al., 2013). Below, we refer to these cells as Y-cells.

ROI selection and data analysis. ROIs used in the analysis of fluores-
cence data were defined as follows. For simultaneous fluorescence and
current recordings, dye-filled arbors of the recorded cell were located in
the IPL, and ROIs outlining the visible arbor in the imaged area were
traced by hand using custom algorithms in MATLAB (The MathWorks).
For recordings of fluorescence responses to vertical contrast-reversing
gratings, the imaged area was divided along the horizontal axis into four
nonoverlapping ROIs (Fig. 5B). For receptive field size measurements
(Fig. 4 B, C), we used high zoom and either divided the imaged area (25 X
25 um) into nine subregions (each 8.3 X 8.3 um) or averaged across the
entire area. Responses in Figure 4, B and C, were calculated as the peak-
to-trough amplitude during the ON and OFF stimulus phases. Specifi-
cally, we averaged three points near the peak of the response and
subtracted three points near the trough of the response; for each imaged
area, this response was further averaged across three periods per trial and
across three trials. For the data presented in Figure 8A (IPL stacks), we
also used high zoom but divided the imaged area into 64 X 64 subre-
gions. We then used Fourier analysis to calculate the modulation ampli-
tude and phase of each subregion, set a threshold modulation amplitude
(£0.05 AF/F) and used the relative phase of all above-threshold re-
sponses to average all ON-responding subregions into a single ON ROI
and all OFF-responding subregions into a single OFF ROI (Fig. 84, left
and middle columns, respectively).

Spatial resolution of the two-photon imaging system. To estimate the
spatial resolution of our imaging system, we recorded z-stacks of fluores-
cent beads (0.5 wm diameter). The measured fluorescence profile could
be fit by convolving the actual profile of the bead with a Gaussian point
spread function (PSF; Fig. 2G). We fit one PSF in the radial plane, by
analyzing the fluorescence change across the x-axis, at the z-level where
the bead was best focused. We fit a second PSF in the axial plane by
analyzing the fluorescence change through the center of the bead (0.25 X
0.25 wm area in x-y) at subsequent z-positions. We describe the PSFs as
the full-width-at-half-maximum of the fitted Gaussians (i.e., 2.35 X o of
the fitted Gaussian): 0.48 = 0.02 wm in the radial plane and 2.45 * 0.18
wm in the axial plane (mean = SD; n = 6 beads; Fig. 2G). These values are
slightly larger than those measured previously (Dong et al., 2003), which
can be explained primarily by the lower NA of our objective lens. The PSF
in the axial plane suggests that 2 um spacing is reasonable for capturing
stacks of fluorescence images, as in Figure 8.

Scan durations and photoreceptor activation by the scan laser. The laser
scanned for 5-8 s to record the stimulus-evoked fluorescence response
and then was switched off for 4—5 s between stimuli, to minimize bleach-
ing. The scan laser apparently adds effective photoreceptor stimulation at
a level that approximates the steady (always on) background illumina-
tion of ~10* R*/cone/s, similar to previously reported values (~1-2.4 X
10*R*/cone/s) (Euler et al., 2009; Baden et al., 2013). Thus, laser onset at
the start of each trial evoked a light response from ON bipolar cells (e.g.,
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Figs. 4A and 7D). Because OFF bipolar cells are largely rectified at ~10*
R*/ cone/s, onset of the scan laser did not always cause a detectable
decrease in glutamate release. To ensure stable light responses from ON
and OFF cells, in most measurements stimulus onset was delayed by 1.5 s
with respect to scan onset and the first 1.5 s was excluded from analysis.

Model fitting. We used a difference-of-Gaussians, center-surround
model to fit the iGluSnFR responses to spots of increasing size (Fig. 4B) as
follows:

R(r) = kC:’.‘Yltt‘T (1 - exp [_ rZ/(za-cenrerz)]

- ksurruund (1 - exp [7r2/(2(rsurround2)])>

where R is the fluorescence response (peak-to-trough amplitude), k...,
and k,,,,,,.nq are the peak amplitudes of the center and surround; o,,,,.,
and 0.,,,,0.na ar€ the SDs of the center and surround; and r is spot radius
(Rodieck, 1965). For this experiment, we divided the imaged 25 X 25 um
area into nine 8.3 X 8.3 wm subregions. We chose the subregion with the
largest response, assuming this was best aligned to the stimulus center.
Close alignment between the stimulus and the imaged region is further
demonstrated by experiments where small spots were positioned at mul-
tiple offsets; the optimal response was at the expected position, centered
on the imaged area (Fig. 4D). Model fitting was performed as described
previously (Demb et al., 2001b). Fitting of the OFF responses in Figure 4B
was well constrained, whereas fitting of the ON responses was not well
constrained. In particular, for ON responses the peak amplitudes of the
fitted center and surround amplitudes were more than an order of mag-
nitude larger than the maximum measured response. We therefore ap-
plied a constraint where the maximum fitted center response could be no
larger than twice the maximum recorded response (~0.4 AF/F). This
seemed reasonable, given that responses rarely exceeded 1.0 AF/F, and
given that when using this constraint the fitted curves for both ON and
OFF responses changed negligibly by eye.

Statistical methods. We report mean = SEM throughout, unless noted
otherwise. When a single recording generated data for multiple ROIs
(e.g., for the data presented in Fig. 6), we used the number of recordings
and not the (larger) number of ROIs as  for calculating the SE and the
degrees of freedom (n — 1) for corresponding statistical tests. Signifi-
cance tests comparing differences between ON and OFF synapses (e.g.,
offset/amplitude comparison of Fig. 6; rectification and transience com-
parison of Fig. 7) were calculated with a Wilcoxon rank sum test (rank-
sum function in MATLAB, (The MathWorks).

Results

Imaging glutamate release in the intact retina

Our study used a recently developed sensor for synaptically re-
leased glutamate: intensity-based glutamate sensing fluorescent
reporter (iGluSnFR) (Marvin et al., 2013). iGluSnFR comprises a
circularly permuted GFP linked to a bacterial periplasmic
glutamate/aspartate-binding protein (Escherichia coli GltI). Con-
trol experiments have demonstrated iGluSnFR’s specificity for
detecting glutamate in neural tissues, including the retina (Mar-
vin et al., 2013). Here, we expressed iGluSnFR in the adult mouse
retina through in vivo intraocular injection with adeno-
associated virus under control of the human synapsin-1 promoter
(AAV2/1-hSynapsin-iGluSnFR). Two weeks after transduction,
a dense population of ganglion and amacrine cells expressed
iGluSnFR in their membranes (Fig. 2A). iGluSnFR outlined so-
mas in both ganglion cell and inner nuclear layers (INL) and
dendrites throughout the inner plexiform layer (IPL). We pro-
jected light patterns onto the photoreceptors of the retina in vitro
and recorded fluorescence responses in the IPL using a two-
photon microscope (Fig. 2B). Visual stimuli were generated with
a customized video projector that delivered UV light (395 nm
peak wavelength) at an intensity that evokes ~10* R*/s in both
rods and cones (see Materials and Methods). Whole-cell record-
ings from a retina with functioning rods but not cones
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Figure 2. Imaging light-evoked glutamate release in the whole-mount retina. 4, Two-photon fluorescence images of whole-mount mouse retina, in vitro. Transduction of adult retinas with
AAV2/1-hSynapsin-iGluSnFR caused iGluSnFR expression in ganglion and amacrine cell membranes.z = 0 um was the image plane that hemisected the ganglion cell somas; zincreases toward the
INL (z = 40 m). B, Retinas were recorded on an upright microscope. Patterned light stimuli (peak wavelength 395 nm, 10* R*/s for both rods and cones) were projected onto the photoreceptors
(c) through the condenser lens. Stimulus-evoked release of glutamate from bipolar cells (b) was measured with two-photon fluorescence imaging of iGluSnFR-expressing amacrine cell (a) and
ganglion cell (g; ON-type shown here) dendrites in the IPL. Red dashed line indicates the focal plane shown in D. , Our conceptual model assumes diffuse expression of iGluSnFR throughout the cell
membrane. iGluSnFR s expressed sufficiently near to synapses to report glutamate release. D, Two-photon fluorescence image of iGluSnFR-expressing dendrites of ganglion cells and amacrine cells
inthe IPL, 21d afterinjection (whole-mount retina). E, A patterned light stimulus (1 Hz contrast-reversing “Y”) evoked a matching fluorescence response (bottom: heat map, average of 12 reversals,
same area as shown in D). F, ON c cell excitatory current (V, ., = E¢,) measured in a retina lacking cone function (Gnat2 ™). The cell responded strongly to a 1 Hz contrast-reversing spot (100%
contrast; 400 m diameter, solid line attop) atadim (~ 10 2R*/rod/s) mean level (“pre” recording). The cell responded to the scan laser (dashed line at top) but was saturated during the subsequent
spot modulation. At a brighter mean (10* R*/rod/s), the response to the scan laser was absent and the stimulus-evoked response modulation was minimal. Upon return to the dim mean,
the response could again be measured (“post” recording), demonstrating that the laser did not irreversibly bleach the rods. G, PSF measurements of the microscope. A bead (0.5 um
diameter) embedded in 1% agarose was imaged in the radial (x-y) and axial (z) planes. The bead profile (blue line) was convolved with a Gaussian (red line) to fit (Figure legend continues.)
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(Gnat2*™) showed only minimal responses at this light level and
in the presence of the scan laser (see Materials and Methods; Fig.
2F). Thus, the responses described below from wild-type retina
were mediated primarily by cones.

In the absence of ultrastructural data, our working model as-
sumes that iGluSnFR is expressed throughout the cell membrane,
including extrasynaptic locations on the dendrites (Fig. 24, C).
Such uniform labeling is consistent with the molecular structure
of iGluSnFR, which displays the glutamate sensor extracellularly
on a generic transmembrane helical domain (Marvin etal., 2013).
For our purposes, the dendritic membranes in the IPL provided a
scaffold on which iGluSnFR reported local glutamate release by
the presynaptic bipolar cells, which were not labeled. To demon-
strate the paradigm, we imaged the ON layer of the IPL (Fig. 2D)
while projecting a contrast-reversing “Y” shape (Fig. 2E) onto the
photoreceptors. Reversing luminance contrast of the “Y” evoked
increases and decreases in iGluSnFR fluorescence relative to base-
line (AF/F; Fig. 2E). The qualitative match between the visual
stimulus and the spatial pattern of fluorescence changes shows
that iGluSnFR readily resolves light-evoked glutamate release
onto patches of dendrites at the scale of the bipolar cell axon
terminals (~20 wm width) (Wissle et al., 2009).

We performed additional experiments to gauge the spatial
resolution of the iGluSnFR signal. First, we measured the spatial
resolution of our microscope (see Materials and Methods; Fig.
2G). The point-spread function in the axial (x-y) and radial (z)
dimensions could be described as Gaussians with widths of ~0.5
and 2.5 pum, respectively (full width at half-maximum). Second,
we tested empirically our ability to measure distinct light re-
sponses at nearby release sites. Earlier experiments in acute hip-
pocampal slices showed that iGluSnFR does not detect glutamate
atregions >1 pwm from the site of glutamate uncaging (Marvin et
al., 2013). Here, we measured physiological release of glutamate
atlight ON and atlight OFF near the middle of the IPL, where ON
and OFF bipolar terminals intermingle. If synaptically released
glutamate remained local (<1 um from the release site), then
iGluSnFR would show distinct and spatially separated ON and
OFF responses, whereas if glutamate spilled over a distance of
several microns, then iGluSnFR would combine release from
nearby ON and OFF terminals, resulting in ON/OFF responses at
dendritic locations near the ON/OFF border. We found that
iGluSnFR responses on ganglion and amacrine cell dendrites
were either ON- or OFF-type, confined to distinct regions that
intermingled with little overlap (Fig. 2H). The same result was
obtained with iGluSnFR expressed on Miiller glial cells, where
iGluSnFR reported glutamate spillover from the synaptic cleft
onto glial membranes. Collectively, the above measurements
demonstrate that iGluSnFR is sensitive enough to detect gluta-
mate spillover. They also show that the extracellular spread of
glutamate is sufficiently limited such that synaptic release events
from distinct terminals can be resolved spatially and our optical
system can accurately distinguish these adjacent, distinct signals.

<«

(Figure legend continued.) ~ (green line) the measured responses (black points). For the axial
dimension (bottom plot), the green and red lines overlap. H, Two-photon fluorescence images
(left) and color-coded fluorescence responses (right) obtained at the ON-OFF border in the
central IPL. Color of each pixel represents the sum of the response amplitude to light ON (blue)
and the response to light OFF (magenta) relative to baseline. Separation of pixels into intermin-
gled blue and magenta regions (arrowhead) demonstrates that local responses were predom-
inantly ON- or OFF-type; dendritic regions with substantial ON-OFF release (purple) were
lacking. iGluSnFR expressed in ganglion cells and amacrine cells (top; hSynapsin promoter), and
iGluSnFR expressed in Miiller glia (bottom; GFAP promoter) gave similar results.
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iGluSnFR fluorescence is proportional to synaptic release in
the physiological range

To compare quantitative fluorescence measurements with estab-
lished measurements of excitatory synaptic transmission, we si-
multaneously recorded iGluSnFR responses and excitatory
currents in a Y-cell using whole-cell patch-clamp. We focused on
the recorded cell’s dendrites, visualized with a red fluorescent dye
delivered through the patch pipette (Alexa-568; Fig. 3A), and
recorded iGluSnFR fluorescence during stimulation with a small
spot (150 wm diameter) centered on the imaged area. Contrast-
reversal of the spot (dark < light) evoked iGluSnFR fluores-
cence responses with a time course similar to the EPSCs and
negligible delay (Fig. 3 B,C), consistent with the sensor’s rapid
response kinetics. Here and below, we report the nominal con-
trast of the stimulus. However, the scan laser added a constant
luminance background, reducing the effective contrast of the
stimulus. Despite this laser stimulation, we measured detectable
fluorescence and current responses to contrasts as low as 10%
(Fig. 3C). Response amplitudes increased with increasing con-
trast (Fig. 3B-D) and the relationship between the two measures
was approximately linear (Fig. 3E; n = 4 cells). Thus, iGluSnFR
adequately captured the physiological range of glutamate release
evoked by light stimulation. We conclude that iGluSnFR permits
direct, real-time measurement of synaptically released glutamate
in the IPL of the intact, whole-mount retina.

Characterizing bipolar cell spatial receptive fields at the level
of glutamate release sites
A characteristic property of the nonlinear subunits is that they
can resolve high spatial frequencies (Hochstein and Shapley,
1976; Demb et al., 1999). Therefore, to form the Y-cell’s nonlin-
ear subunits, the receptive fields of bipolar cells must be narrow.
Cone bipolar cell receptive fields in mammalian retina have been
measured in only a few cases, including light-adapted recordings
in primate (Dacey et al., 2000) and dark-adapted recordings in
mouse retinal slice (Berntson and Taylor, 2000), or a whole-
mount preparation at a 10-fold lower light level (Schwartz et al.,
2012). Here, we measured the receptive fields of bipolar cells in
small patches of amacrine or ganglion cell dendrites (8.3 X 8.3
um subregion of a 25 X 25 yum area; see Materials and Methods),
which reflect signaling through one or a small number of axon
terminals. By imaging iGluSnFR responses, we recently made the
first measurements of bipolar receptive fields at the level of syn-
aptic release in whole-mount tissue using drifting gratings (Mar-
vin et al., 2013) presented with visible light (i.e., not UV) and
recorded at an arbitrary level of the IPL. Here, we measured
iGluSnFR responses to spot stimuli using UV light for im-
proved S-opsin stimulation (see Materials and Methods), and
focused specifically at the levels where ON and OFF Y-cells
stratify (Fig. 4).

iGluSnFR responses in both ON- and OFF layers of the IPL
showed a center-surround receptive field organization (Fig. 4A).
The response amplitude increased for spot diameters up to ~150
wm and decreased sharply for diameters >200 um (Fig. 4B). The
largest spots typically evoked surround-mediated ON responses
in the OFF layer (Fig. 4 A, B). The responses to different spot sizes
were fit with a difference-of-Gaussians center-surround recep-
tive field model (see Materials and Methods). The center width
(20 cenrer Of fitted Gaussian) was 81 um for ON responses and 66
um for OFF responses (Fig. 4B). These values are larger than
previous recordings of mouse bipolar cells (44 wm) (Schwartz et
al., 2012) but similar to measurements from primate diffuse bi-
polar cells (65 wm for 20 width; Dacey et al., 2000). The strong
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whole-cell recording. The cell was filled with a red fluorescent dye (Alexa-568) through the patch pipette. iGluSnFR fluorescence intensity was averaged across the ROl indicated by the dashed outline. B,
Simultaneously recorded excitatory currents (top) and fluorescence responses (bottom) evoked with contrast stimulation (150-.m-diameter spot) at two contrast levels (same cell as shown in 4). The
fluorescence response is reported as fractional change in fluorescence intensity compared with the baseline intensity (AF/F). Solid line and shaded region represent mean == SEM of four repeats at each contrast
level. €, Average excitatory current (left, shown inverted for comparison) and fluorescence response (right) to spots at five contrasts from 10% to 100%. Each curve shows the average response during the dark
phase of the stimulus (mean of 12 periods). D, Contrast response functions based on the excitatory current (black) and fluorescence response (red) integrated over the duration of the response (C, pink area). Error
bars indicate SEM across trials. E, Scatter plot of excitatory current and fluorescence response amplitude from 10% to 100% contrast (n = 4 cells, indicated by different colors). Responses were normalized by
fitting a line to the data for each cell and scaling currents and fluorescence responses to the current amplitude of the fit at 100% contrast. Error bars indicate SEM across trials.

surround responses are also consistent with the primate record-
ings. Simultaneous fluorescence and ganglion cell current re-
cordings showed that the optimal spot size for a bipolar cell is
approximately twofold smaller than the optimal spot size for a
Y-cell (Fig. 4C).

The strong surround suppression measured in the bipolar cell
release implies that a spot that is optimal for the ganglion cell (400
um diameter) evokes weak responses from bipolar cells near the
spot’s center and stronger responses from bipolar cells near the
spot’s edge. Fluorescence measurements confirmed this (Fig. 4D):
the response amplitude of OFF bipolar cells under the center of a
400-pum-diameter spot was ~85% reduced compared with the re-
sponse of bipolar cells near the edge (0.04 = 0.06 vs 0.30 = 0.08
AF/F, p < 0.002; Fig. 4D—F); the reduction for ON bipolar cells was
~50% (0.21 = 0.08 vs 0.42 = 0.14 AF/F, p < 0.035; Fig. 4F).

The spatial subunit nonlinearity occurs after contrast
integration by the bipolar cell

We next tested whether the subunit nonlinearity occurs before or
after spatial integration by the bipolar cell. Recordings in salamander
retina suggested that bipolar cells integrate linearly (Baccus et al.,
2008) but did not explicitly test for response nulling (Fig. 1). Fur-
thermore, nonlinearities presynaptic to cone bipolar cells have been
demonstrated in the mammalian retina, which might contribute to
nonlinear release at the bipolar terminal (Gaudiano, 1992; Schnee-
weis and Schnapf, 1999; Hennig et al., 2002; Jackman et al., 2009).
We made whole-cell recordings from either ON or OFF Y- cells
while simultaneously recording iGluSnFR fluorescence in small
(65 X 65 wm) regions that included the recorded ganglion cell’s
dendrites (Fig. 5). The retina was stimulated with a contrast-
reversing grating within a 650-um-diameter patch centered on the
recorded cell. The grating was presented at several spatial phases

within the patch. If the nonlinear computation occurs after the point
of spatial integration by the bipolar cell, then glutamate release
should modulate maximally at the stimulus frequency (F1 response)
at one position (preferred phase) but be silenced at the null position,
90 degrees from preferred (Fig. 1B). Alternatively, if the nonlinear
computation occurs before the point of spatial integration by the
bipolar cell (i.e., at the level of the cones” synaptic output), then
glutamate release would show a frequency-doubled response at the
null phase (Hochstein and Shapley, 1976).

In response to a 2 Hz contrast-reversing grating, EPSCs in an
ON-type Y-cell showed 4 Hz (frequency-doubled) modulation at
all spatial phases (Fig. 5A). Phase independence of the frequency
doubled response is a hallmark of the nonlinear subunits (Hoch-
stein and Shapley, 1976). Simultaneously recorded iGluSnFR flu-
orescence responses averaged over small ROIs (10 wm wide; Fig.
5B) showed 2 Hz modulations at most spatial phases as well as a
clear null phase with no modulation (Fig. 5C). The spatial phase
that evoked the null response (Fig. 5C, arrows) differed system-
atically for neighboring ROIs, shifting in accordance with ROI
position (Fig. 5D). The same pattern was observed for all re-
corded cells and ROIs (n = 5 ON cells, 28 ROIs; 4 OFF cells, 24
ROIs). These results suggest that nonlinearities occur at the bi-
polar cell output, after the point of spatial integration.

Release from ON synapses is suppressed by a
TPMPA-sensitive inhibitory surround

There was a distinct difference between null-phase responses
recorded at ON Y-cell dendrites (ON synapses) compared
with the same responses recorded at OFF Y-cell dendrites
(OFF synapses). For OFF synapses, a null-phase grating
evoked no detectable change in fluorescence, but for ON syn-
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Figure4. Retinal bipolar cells under light-adapted conditions have strong inhibitory surrounds. 4, Fluorescence responses to contrast-reversing spots of increasing diameter (top). Responses were recorded
fromiGluSnFR-expressing dendritesin the OFF and ON layers of the IPL (30 and 16 1.m, respectively, distal to the ganglion cell layer). Traces represent the average fluorescence changeina25 um X 25 um area
under the center of the spot. Responses in the OFF layer often changed from OFF to ON responses for the largest spot size (response timing indicated with vertical dashed lines). Gray trace represents fluorescence
signal during blank trials, when no spot was presented. B, Average size tuning functions for ON and OFF bipolar cells (ON: 2 = 16 um, n = 14; 0FF:z = 30 um, n = 13). Data pointsindicate fluorescence change
in the maximally responding 8.3 X 8.3 wum subregion in each of the imaged areas, including those shown in 4; error bars represent SEM across subregions. Curves represent peak-to-trough modulation
amplitude of the recorded response (see Materials and Methods). A negative amplitude in response to large spots (OFF layer) indicates a fluorescence increase during the light phase of the stimulus (ON response;
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of bipolar cells (red) and a postsynaptic ganglion cell (black). Bipolar cell tuning function reflects size tuning at the level of glutamate release; ganglion cell function shows tuning at the level of postsynaptic
excitatory current. Curves represent peak-to-trough modulation amplitude of the response. Error bars indicate SEM across repeated trials. Inset, Two-photon fluorescence image of iGluSnFR expressing dendrites
(green) and the dendrite of the recorded ganglion cell (red). D, Responses of ON (top) and OFF (bottom) bipolar cells to a small and a large spot stimulus presented at different distances from the bipolar cells’
receptivefield center. The ON bipolar cell response was more transient for a centered large spot compared with a centered small spot (solid and open arrowheads, respectively). Stimulus time course shown below
centered stimulus traces. E, Response amplitudes of the OFF layer data shownin D. F, Quantification of the response to centered and peripheral, small and large spots (ON n = 4; OFF n = 5):a, response amplitude
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indicate SEM across ROIs (25 pem X 25 m area).
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(both stimuli p > 0.5; Fig. 6E). These mea-
surements show that a TPMPA-sensitive in-
hibitory surround controls basal synaptic
release from bipolar cells in the stratification
layer of ON-type Y-cells.

The nature of the nonlinearity of ON

and OFF bipolar cell synapses differs

To understand how glutamate release at
ON and OFF synapses generates a
frequency-doubled response, we made
high-resolution measurements of the
time course of light-evoked glutamate re-
lease with 2 kHz line scans across
iGluSnFR-expressing  dendrites  (Fig.
7A,B). As before, a 2 Hz contrast-
reversing grating evoked a frequency-
doubled response in Y-cell EPSCs,
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Figure 5.  Bipolar cell glutamate release in response to contrast-reversing gratings demonstrates linear integration by bipolar

cells. A, Excitatory currents recorded in whole-cell patch-clamp from an iGluSnFR-expressing neuron. Responses show a transient
inward current at each contrast reversal (blue lines; F2 response). The response is independent of spatial phase (spatial frequency,
10 cycles/mm). Shaded region represents SEM across trials. B, Two-photon fluorescence image of iGluSnFR-expressing dendrites
(green) and an ON-type Y-cell filled with a red dye (Alexa-568; same cell as A). Dashed lines indicate ROIs used in the analysis. C,
Fluorescence responses recorded simultaneously with the current recording shown in A (ROls indicated in B). Each local region
responds at the stimulus frequency (F1 response). Each region shows a null phase (arrowhead), as predicted by the model with
linearintegration by the bipolar cells before the stage of glutamate release (Fig. 1). D, Normalized response amplitude for the data
shownin B,C. Response sign was either positive for initially rising responses or negative for nitially falling responses. Each response

is plotted twice (e.g., the response at 180 degrees is the inverse of the response at 0 degrees).

apses, the null-phase grating reduced fluorescence (0.12 =
0.03 AF/F; mean = SEM, n = 4 recordings, 16 ROIs). This
reduction (“offset”) suggests active suppression of ongoing
glutamate release from ON bipolar terminals (Fig. 6 A, B).

To test whether ON synapses were actively suppressed
through lateral inhibition, we compared responses to a contrast-
reversing, high spatial frequency grating presented in either a
small or large aperture (150 and 1000 wm diameter; Fig. 6C). The
large stimulus lowered the response offset from 0.01 = 0.01 to
—0.05 = 0.01 AF/F (p < 0.001) and the response amplitude from
0.13 +0.02t0 0.10 £ 0.01 AF/F (n = 22 areas, 89 ROlIs, p < 0.005;
Fig. 6D). Response offset was reduced both at the preferred and
null phases, indicating that suppression was independent of
strong response modulation. The fact that this inhibition could
be activated with a high spatial frequency stimulus further impli-
cated an amacrine cell mechanism and not a horizontal cell
mechanism because, through electrical coupling, horizontal cells
cannot resolve high spatial frequencies (Shelley et al., 2006;
Zaghloul et al., 2007; Baccus et al., 2008). The inhibitory mecha-
nism acted over hundreds of microns, suggesting it was mediated
by wide-field amacrine cells.

Most wide-field amacrine cells are GABAergic (Pourcho and
Goebel, 1983; Vaney, 1990; Flores-Herr et al., 2001). We tested
whether the surround inhibition acted through GABA_ receptors,
which are expressed on the axon terminals of ON bipolar cells
(Euler and Wiissle, 1998; Shields et al., 2000; Eggers et al., 2007).
The GABA antagonist TPMPA (50 um) blocked the suppression
evoked by the large stimulus, evidenced by an increase in re-
sponse offset of 0.04 == 0.01 AF/F (n = 7 areas, 29 ROIs, p < 0.01;
Fig. 6C,E). TPMPA did not affect the response offset for the small
stimulus (p > 0.5). TPMPA had variable effects on the response
amplitude of individual ROIs, with no significant effect on average

whereas local fluorescence responses
modulated at the reversal frequency (Fig.
7C,D). OFF synapses showed negligible
ongoing release, with only increases above
baseline, and responses were relatively
transient (Fig. 7C). ON synapses showed
substantial ongoing release, with modula-
tions above and below baseline, and re-
sponses were relatively sustained (Fig.
7D).

We quantified the degree of rectifica-
tion (i.e., the extent of response decre-
ment below baseline) and the transience
(Fig. 7 E, F). Rectification was measured by calculating how much
the nonpreferred stimulus phase suppressed release relative to
the baseline measured before and after contrast-modulation (Fig.
7E; rectification = —d/(a — d)). For ON synapses, 74 * 6% (n =
27 areas, 108 ROIs) of the response modulation occurred below
the baseline, compared with 8 * 3% (n = 14 areas, 54 ROIs) for
OFF synapses. Thus, ON synapses were significantly less posi-
tively rectified than OFF synapses (p < 0.001; Fig. 7G). Next, we
measured response transience, defined as the decrease in fluores-
cence during the preferred stimulus phase as a percentage of the
total response modulation amplitude (transience = (a — b)/(a —
d) in Figure 7E). The decrease in fluorescence was 16 * 4% for
ON synapses compared with 69 * 3% for OFF synapses. Thus,
ON synapses were also significantly less transient than OFF syn-
apses (p < 0.001; Fig. 7G).

Our data show that synaptic release from the bipolar cells that
stratify at the level of the ON-type Y-cell dendrites is relatively
linear (i.e., unrectified and sustained). How then can their com-
bination generate a nonlinear response in the postsynaptic Y-cell?
To answer this, we summed the recorded responses of two sets of
bipolar cell synapses, each with receptive fields under the center
of the bars so that they responded maximally to the contrast-
reversing stimulus, but in opposite temporal phase. Bipolar cells
at intermediate spatial phases would have smaller response am-
plitudes that all fall into one of the two temporal phase groups
already represented in the calculation (Fig. 7H ); these responses
were omitted for simplicity. We used high-resolution iGluSnFR
recordings from two OFF ROIs (Fig. 7C; one phase shifted to
generate opposite-phase responses) to represent responses in the
OFF layer and two ON ROIs that responded in opposite phase
(Fig. 7D) to represent responses in the ON layer. We normalized
the responses from the two populations to have equal modula-
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Figure 6.

ATPMPA-sensitive surround suppresses ON synapses during stimulation with high spatial frequencies. A, Fluorescence response during the null phase for glutamate release onto an ON

Y-cell (red) and an OFF Y-cell (black); SEM shown in pink and gray, respectively. The contrast-reversing grating suppressed glutamate release in the ON layer, but not the OFF layer. B, Quantification
of the suppression of glutamate release in the ON- and OFF layer during the null phase (ON, n = 16; OFF, n = 12). Each point represents one ROI. Points indicate the average fluorescence change
during contrast stimulation relative to baseline (A, gray and blue regions, respectively). Summary points and error bars represent mean == SEM. €, Fluorescence recordings from bipolar cell synapses
inthe ON Y-cell layer stimulated with contrast-reversing gratings in a small (150 pum; black) and large (1000 um; red) aperture (top). The large stimulus caused TPMPA-sensitive suppression of
release, both in the preferred and null phase. The null phase was approximate; there was a small residual response in some traces. D, The response offset and modulation amplitude were computed
with a sinusoidal fit (green line) to the data. Response offset and modulation amplitude for all recorded responses to small (black) and large (red) stimuli in control conditions (n = 89 ROIs from 22
measurements). Data points next to each population indicate the mean difference = SEM for each condition; asterisks indicate significant changes. E, Response offset (left) and modulation
amplitude (right) for all recorded responses to small (black) and large (red) stimuliin control (solid) compared with TPMPA conditions (open symbols; n = 29 ROIs from 7 measurements). Summary

points and error bars represent mean = SEM. Asterisks indicate significant changes.

tion amplitude and summed them to approximate integration by
a postsynaptic OFF or ON Y-cell, respectively (Fig. 7C,D).
Summed OFF responses generated a frequency-doubled signal,
as expected from rectified, transient release. Importantly,
summed ON responses also generated a frequency-doubled sig-
nal that was very similar to that of the OFF responses, despite the
relatively less rectified and more sustained nature of release (Fig.
7E-G). The main insight from this analysis is that relatively sus-
tained glutamate release from bipolar cells can drive a nonlinear
response in the postsynaptic ganglion cell. The explanation is that
the relatively rapid onset of glutamate release combined with a
relatively slower offset back to the baseline level generates a tran-
sient, frequency-doubled response (Fig. 7H).

Nonlinear synaptic release is ubiquitous across the inner
plexiform layer

We asked whether the nonlinear properties of bipolar cell syn-
apses are specific to those layers where Y-cells stratify their
dendrites. We measured fluorescence responses to contrast
modulation of small spots (150 wm diameter) while systemat-
ically imaging the IPL at 2 wm increments from the ganglion

cell layer to the INL (>20 levels; Fig. 8A, left and center col-
umns; n = 14 z-stacks, see Materials and Methods for defini-
tion of ROIs). The response at each level (AF/F) was quantified
with measures of transience, and increase and decrease of re-
lease with respect to baseline (Fig. 8B). We also measured
responses at the contrast modulation frequency (F1 response)
and simulated the population response to a contrast-reversing
grating, by combining the original spot responses with those
shifted by a stimulus half-cycle (F2 response; Fig. 8A, right
column).

These measurements showed several systematic differences
between layers of the IPL. We readily resolved the expected divi-
sion between ON- and OFF-type bipolar cell synapses (Fig.
8A,C). At the ON/OFF boundary, we consistently observed a
layer that contained both ON and OFF responses. Here, ON and
OFF bipolar cells released glutamate onto intermingled, but non-
overlapping, ON- and OFF-regions, as described above (Fig.
2H). Release in ON layers was generally less rectified than release
in OFF layers (Fig. 8 B, C). Synaptic release (both ON and OFF) in
layers near the center of the IPL was more transient than release in
those layers closest to the IPL’s borders (Fig. 8A). The relative
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Figure 7.  Glutamate release in the ON Y-cell layer is less rectified and more sustained compared with the OFF Y-cell layer. A, Two-photon fluorescence image of the scan location (left) and
light-evoked responses at this location recorded with line scans (2 kHz sampling; right). The line scan (dashed red line) intersects two dendrites of the simultaneously recorded OFF Y-cell (magenta).
B, Same as A, foran ON Y-cell. C, Top row, Excitatory currents recorded from the OFF Y-cell shown in A during stimulation with contrast-reversing gratings (10 cycles/mm, 2 Hz). The difference in the
response amplitude in alternate contrast-reversals suggests a slight imbalance in the number of bars stimulating the receptive field during alternate reversals. Middle rows, Fluorescence changes
at two locations (1, 2 shown in 4) on the dendrites recorded simultaneously with the currents. Here and in subsequent panels, SEM of fluorescence measurements is shown in pink. Bottom row
(black), Sum of the normalized responses of two bipolar cell populations with opposite phase (red, blue = ROIs 1and 2 shown above). D, Same as €, foran ON Y-cell. E, Average fluorescence response
recorded with line scans across the dendrites of ON Y-cells after alight increment (left; n = 108) and OFF Y-cells after a light decrement (right; n = 54). Stimulus time course shown below each trace.
Response waveforms were quantified by averaging the fluorescence signalin each colored region. F, Distribution and average == SEM of the four measurements shown in E. G, Fluorescence change
from the response just after stimulus onset (a, t,..,,) to the response just before stimulus offset (b, t,.,, -+ 160 ms) shows that responses in the synaptic layers where ON Y-cells stratify are relatively
sustained. The difference between a and b is shown to the right of b. Error bars indicate SEM across ROIs. H, Simulation demonstrates how alternating sustained responses with a non-zero decay
time-constant in combination generate transient responses at twice the frequency of the underlying responses.

strength of the predicted F2 response was strongest near the cen-
ter of the IPL (Fig. 8 A, D). Thus, there was some degree of non-
linearity at all levels of the IPL, but the nonlinearity was strongest
in the central-most layers. OFE-type Y-cells stratify in the OFF
layer with the strongest F2 response, but somewhat surprisingly,
ON-type Y-cells do not stratify in the ON layer with the strongest
F2 response (Fig. 8D).

Discussion

We investigated the synaptic mechanism underlying the nonlinear
subunits of retinal ganglion cell receptive fields. Nonlinear subunits
are a fundamental receptive field property of Y-type ganglion cells,
first described at the functional level in cat (Enroth-Cugell and Rob-
son, 1966; Hochstein and Shapley, 1976). Here, we examined non-
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at twice the stimulus frequency (F2, 2 Hz; solid line, data shown in 4, right), and their ratio (F2: F1).

linear subunits at the synaptic level by a combination of whole-cell
recording from mouse Y-type cells and two-photon fluorescence
imaging of a glutamate sensor (iGluSnFR) expressed on their den-
drites and throughout the IPL (Fig. 2). Our findings support a model
whereby individual bipolar cells integrate contrast linearly over their
receptive field centers (~66—81 wm width; Fig. 4). At the bipolar cell
synaptic terminal, glutamate release undergoes a nonlinear transfor-
mation (Figs. 5 and 7).

The dominant mechanism at OFF bipolar synapses is tran-
sience and rectification. At ON synapses, the dominant mecha-
nism is an asymmetry in the onset and offset of glutamate release.
This asymmetry, which was present also at OFF synapses, may be
explained by properties of the bipolar cell’s glutamate receptors
and, in the case of ON cells, related G-protein signaling pathways
(DeVries et al., 2006; Xu et al., 2008; Cao et al., 2012). For both
ON and OFF bipolar cells, release from the terminal is intrinsi-
cally nonlinear (Singer and Diamond, 2003; Jarsky et al., 2011).
This nonlinearity could be augmented by amacrine cell feedback
at the terminal (Freed et al., 2003; Vigh and von Gersdorft, 2005),
as well as nonlinearities resulting from voltage-gated channels
(e.g., Na and Ca spikes) (Protti et al., 2000; Cui and Pan, 2008;
Baden et al., 2011; Saszik and DeVries, 2012). It is unclear on the
basis of our measurements whether the transient nature of release
observed in certain layers is the result of Ca spikes as reported in
fish bipolar cells (Baden et al., 2011; Dreosti et al., 2011).

Thus, despite the difference in their degree of rectification and
temporal kinetics, both ON and OFF bipolar synapses generate

the characteristic nonlinear response measured in Y-cells (Fig. 7).
A ganglion cell’s postsynaptic glutamate receptors (Chen and
Diamond, 2002; Sagdullaev et al., 2006; Manookin et al., 2010)
and electrical synapses may further enhance nonlinear properties
of their receptive fields (Hu and Bloomfield, 2003; Murphy and
Rieke, 2011). However, our results show that the glutamate re-
lease at bipolar cell synapses alone suffices for generating the
Y-cell nonlinearity (Enroth-Cugell and Freeman, 1987).

Nonlinear glutamate release was found in the specific layers
where ON and OFF Y-cells stratify their dendrites, but some
degree of nonlinearity was found throughout the IPL (Fig. 8A).
Interestingly, a layer in the ON region (40-50% depth; Fig.
8A,D) distal to the ON Y-cell stratification level (25-30% depth)
showed simulated F2 responses that were larger than those found
at the level where the ON Y-cell stratifies. This predicts that wide-
field ON-type ganglion cells that stratify distal to the ON Y-cells
have strong nonlinear responses.

Receptive field size measurements of bipolar cells

The relatively large bipolar cell center, compared with its den-
dritic tree (~15-20 wm width), may be partly explained by elec-
trical coupling at the level of cones and bipolar cells (Kolb, 1979;
Tsukamoto et al., 2001; DeVries et al., 2002; Hilgen et al., 2011)
and lateral glutamate diffusion in the outer retina (Szmajda and
DeVries, 2011). Our estimate of center size may also include an
effect of glutamate spillover in the inner retina. However, the
spillover detected by iGluSnFR is apparently minimal (Fig. 2H ).
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Our estimates of bipolar cell center width are wider than one
estimate from mouse bipolar recordings (44 wm) (Schwartz et al.,
2012) but similar to an estimate from primate diffuse bipolar
recordings (65 wm) (Dacey et al., 2000).

Generating linear receptive fields

Our results illustrate how ganglion cells can build nonlinear re-
ceptive fields. However, for certain visual tasks (e.g., localizing
the position of small stimuli), it is advantageous to have arrays of
ganglion cells with linear receptive fields, such as B/X-type gan-
glion cells in the cat retina and the midget/parvocellular ganglion
cells in monkey retina. Both of these types show essentially linear
spatial integration: in response to a contrast-reversing grating,
each of these cell types shows a clear null phase and lacks an F2
response (Enroth-Cugell and Robson, 1966; Hochstein and
Shapley, 1976; Kaplan and Shapley, 1982; Derrington and Lennie,
1984; Petrusca et al., 2007). How would a ganglion cell build a
linear receptive field?

Our data show the largest nonlinearities in release near the
center of the IPL (Fig. 8), consistent with previous measurements
of excitatory current in ganglion cells (Roska and Werblin, 2001)
and Ca imaging of bipolar terminals (Baden et al., 2013). Thus,
ganglion cells with relatively linear receptive fields might collect
synapses near the IPL borders. Indeed, midget ganglion cells
stratify near the edges of the IPL (Watanabe and Rodieck, 1989)
where, in mouse, we found release to be most linear (Fig. 8A, D).
The OFF 6 cell in mouse also stratifies near the INL border, which
might explain its relatively linear response (van Wyk et al., 2009;
Zhang et al., 2012). Furthermore, synaptic inhibition might can-
cel some of the nonlinearity that is present at the level of gluta-
mate release, making the combined input more linear (Cohen,
1998; Manookin et al., 2008; Molnar et al., 2009; Munch et al.,
2009).

Another possibility is that linear ganglion cells collect inputs
over a spatial region that is sufficiently narrow to contain only
bipolar cells whose receptive fields overlap. As such, these bipolar
cells would appear to the postsynaptic ganglion cell as a single
functional subunit, with a null phase. Indeed, linear ganglion
cells tend to have small receptive fields (but see Zhang et al.,
2012). An extreme example is the central midget ganglion cell,
which collects input from a single bipolar cell (Polyak, 1941; Kolb
and Dekorver, 1991; Calkins et al., 1994). Central B cells in cat
collect synapses from a greater number of bipolar cells, 10-20
(Cohen and Sterling, 1992; Kolb and Nelson, 1993); however, the
majority of synapses are made with the central-most bipolar cells
(Kier et al., 1995), and each bipolar cell’s receptive field diameter
(~40-80 wm) (Schwartz et al., 2012; Dacey et al., 2000; present
study) is likely wider than the 3 cell’s dendritic tree (30—60 wm)
(McGuire et al., 1986; Kolb and Nelson, 1993). For ganglion cells
that are relatively small, then, linearity may be a natural conse-
quence of primarily integrating presynaptic bipolar cells with
overlapping receptive fields.

Advantages and limitations of measuring synaptic release
with iGluSnFR

We used the recently developed protein sensor iGluSnFR to char-
acterize nonlinear properties of glutamatergic synapses in the
inner retina. Several findings validate iGluSnFR’s use in charac-
terizing synaptic function within intact circuits. iGluSnFR fluo-
rescence increased linearly with simultaneously recorded EPSCs
(Fig. 3E). The temporal response of the sensor showed a negligi-
ble delay relative to the EPSCs (Figs. 3, 7), consistent with an
earlier study (Marvin et al., 2013). Our measurements resolved
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the spatial pattern of grating-evoked glutamate release into ~20-
pm-wide regions of fluorescence increase and decrease, sepa-
rated by a silent null-region (Fig. 5). This demonstrates sufficient
sampling resolution at the spatial scale of bipolar axon terminals
(Wissle et al., 2009). Furthermore, light-evoked responses re-
corded from intermingled processes at the ON/OFF boundary of
the IPL divided into spatially separated ON- or OFF-responses
(Fig. 2H), reiterating subcellular sampling of glutamate release
with minor diffusion of glutamate between nearby synaptic loca-
tions (Hartveit and Veruki, 2006; Ichinose and Lukasiewicz,
2012). The spatial resolution of iGluSnFR signals in the intact
retina was similar to estimates based on experiments in hip-
pocampal slices (from glutamate uncaging experiments) and
spiny dendrites from mouse motor cortex, in vivo (Marvin et al.,
2013).

iGluSnFR complements existing methods for characterizing
retinal synapses. For example, whole-cell recordings of EPSCs in
ganglion cells conflate presynaptic release with influences of
postsynaptic glutamate receptors (e.g., AMPA vs NMDA) (Chen
and Diamond, 2002; Manookin et al., 2010) and electrical syn-
apses (Hu et al., 2010; Murphy and Rieke, 2011). Whole-cell
recordings also provide no information about the spatiotemporal
pattern of bipolar cell inputs to a ganglion cell’s dendritic arbor
because currents reflect the total input after integration at the
soma. In the presynaptic bipolar cell terminal, evoked responses
can be recorded with optical imaging, for example, with a genet-
ically encoded calcium indicator (Borghuis et al., 2011; Dreosti et
al., 2011; Odermatt et al., 2012). However, presynaptic calcium
may not reflect synaptic release in the presence of vesicle deple-
tion (Singer and Diamond, 2003; Jarsky et al., 2011). Hence, two-
photon imaging of iGluSnFR complements the other techniques
because it measures synaptic release directly and locally, and dif-
ferentiates contributions of release from postsynaptic receptors.
A potential drawback of iGluSnFR is that, despite a high spatial
resolution, the fluorescence response reflects both synaptic and
extrasynaptic release (Fig. 2H ); future versions of the sensor pro-
tein or genetic targeting method may address this.
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