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Axonal Localization of Neuritin/CPG15 mRNA in Neuronal
Populations through Distinct 5" and 3" UTR Elements
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Many neuronal mRNAs are actively transported into distal axons. The 3’ untranslated regions (UTRs) of axonal mRNAs often contain
cues for their localization. The 3’ UTR of neuritin mRNA was shown to be sufficient for localization into axons of hippocampal neurons.
Here, we show that neuritin mRNA localizes into axons of rat sensory neurons, but this is predominantly driven by the 5" rather than 3’
UTR. Neuritin mRNA shifts from cell body to axon predominantly after nerve crush injury, suggesting that it encodes a growth-associated
protein. Consistent with this, overexpression of neuritin increases axon growth but only when its mRNA localizes into the axons.

Introduction

Neurons target mRNAs for transport into axons and dendrites as
a means to spatially and temporally regulate protein levels (Jung
et al., 2012). Most studies have indicated that neurons use ele-
ments in 3’ untranslated regions (UTRs) for localizing mRNAs.
For example, alternate 3" UTRs in BDNF and Importin 81 gen-
erate mRNAs that are cell body restricted or localized to pro-
cesses, and knock-out of the localizing 3" UTR sequences causes
functional changes in mice (An et al., 2008; Perry et al., 2012).
B-Actin mRNA is targeted to neuronal processes through its 3’
UTR (Zhang et al., 2001; Tiruchinapalli et al., 2003); this occurs
in vivo, is regulated by extracellular stimuli, and requires binding
by zip code binding protein 1 (ZBP1; Willis et al., 2007, 2011;
Donnelly et al,, 2011). ZBP1 binding also restricts how much
B-actin mRNA localizes into sensory axons, because ZBP1 is ex-
pressed at low levels in these neurons (Donnelly et al., 2011).
These and other studies point to the importance of 3" UTR ele-
ments for post-transcriptional regulation.

We recently reported that neural membrane protein 35
(NMP35) mRNA is transported into axons through its 3" UTR
(Merianda et al., 2013), but its transport is not limited like was
seen for B-actin (Donnelly et al., 2011). Here, we show that neu-
ritin mRNA shifts it localization after nerve injury similar to
NMP35. However, neuritin mRNA shows different localization
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elements for CNS versus PNS axons; its 3" UTR drives localiza-
tion in hippocampal neurons and 5" UTR drives localization in
sensory axons. Moreover, growth-promoting activity of neuritin
protein in dorsal root ganglia (DRG) neurons requires axonal
targeting through the mRNA’s 5" UTR.

Materials and Methods

Animal procedures and neuronal cultures. Animal procedures were ap-
proved by institutional Animal Care and Use Committees. For injury, the
sciatic nerve of 150-225 g male Sprague Dawley rats was crushed at
mid-thigh level. Dissociated cultures were prepared from L4—6 DRG as
described previously (Twiss et al., 2000). DRGs were plated on coverslips
for imaging and on porous membranes (BD Falcon) for isolation of
axons (Zheng et al., 2001). RNA stability was tested in severed axons
treated with 20 um cyclosporin A (CsA; Merianda et al., 2013). Hip-
pocampal cultures were prepared from postnatal (P) day 0 rat pups
(Gomes et al., 2011).

DRGs were transfected with Rat Neuron Nucleofector kit (Lonza)
(Vuppalanchietal., 2010). Transfected DRGs were analyzed at 3 d in vitro
(DIV). Hippocampal neurons were transfected using Basic Neuron SCN
Nucleofector kit (Lonza) and analyzed at 7-8 DIV.

A pool of synthetic siRNAs targeting rat neuritin (Nrn1; L-098939-01-
0020) was designed using Dharmacon siDesign Center. DRGs were
transfected 1 d after plating with 200 nm siRNA or nontargeting siControl
(siCon) using DharmaFECT3 (Dharmacon; Merianda et al., 2013). RT-
PCR was used to test for efficiency of depletion at 4 DIV (see below).

DNA constructs. Diffusion-limited GFP (GFP ™) was used to test ac-
tivity of rat Nrnl (GenBank NM_053346) 5" and 3’ UTRs. y-actin (Gen-
Bank NM_001127449) 3’ UTR was used as control. cDNAs were cloned
into GFP ™" plasmid replacing 3" and 5" UTRs of calmodulin kinase ITee
(CaMKllIq; Aakalu et al., 2001). For protein expression, nucleotides (nt)
1-527 of rat Nrn1 were cloned into pAcGFP1-N3 (Clontech). Nrn1 GPI
sequence (nt 528—617) was inserted at the C terminus of AcGFP (herein,
referred to as “GFP”); 3" UTR of Nrn1 was inserted immediately down-
stream. pAcGFP1-N3 UTRs were used as control. All cloned cDNAs were
generated by RT-PCR as below and sequence validated.

RNA extraction and PCR. DRGs were cultured for 16 h and RNA was
isolated using RNAqueous or RNAqueous ™™ (Ambion). Axon RNA
was normalized for protein content by NanoOrange (Invitrogen). Other
preparations were normalized for RNA content by RiboGreen (Invitro-
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Neuritin mRNA and protein are enriched in axons after injury. A, RT-PCR of cell bodies and axons from naive versus 7 d injury conditioned DRG cultures shows purity of axonal

preparations, with y-actin and microtubule-associated protein 2mRNAs restricted to the cell body. B, C, Shiftin NrnT mRNA predominance from cell body to axons in injury (Figure legend continues.)
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gen). Reverse transcriptase (RT)-coupled PCR (RT-PCR) and quantita-
tive PCR (RTqPCR) were performed as described previously (Merianda
etal., 2013). 12S RNA was used for AC, calculations (Willis et al., 2007).
Primer sequences are available upon request.

Fluorescence in situ hybridization and immunofluorescence. Fluores-
cence in situ hybridization and immunofluorescence (FISH/IF) was per-
formed as described previously (Merianda et al., 2013) with minor
modifications. Cultures were fixed 20 min in 4% paraformaldehyde
(PFA); tissues were fixed 2 h in 2% PFA and processed for cryosectioning.
Digoxigenin (Dig)-labeled oligonucleotides were used to detect Nrnl
and cRNA probes were used to detect GFP mRNAs. Probes for Nrn1 have
been published (Donnelly etal.,2011). GFP cRNA probes were generated
asdescribed previously (Merianda etal., 2013). Scramble oligonucleotide
or sense cCRNA were used for control.

Primary antibodies were as follows: chick anti-neurofilament (NF)
H (1:500; Millipore) and -NFM (1:500; Aves), and anti-MAP2 (1:
4000; Abcam); mouse anti-Tau (1:1000; Millipore), anti-Dig (for
DRGs - 1:200; Jackson ImmunoResearch), and Cy3-anti-Dig (for
tissues- 1:200; Jackson ImmunoResearch); rabbit anti-GFP (1:200;
Abcam); and sheep anti-Dig (for hippocampi- 1:100; Roche). Second-
ary antibodies were as follows: Cy5-rabbit anti-chick, Cy3-donkey
anti-mouse, FITC-donkey anti-rabbit, and Cy5-donkey anti-sheep
(1:200; Jackson ImmunoResearch).

IF was performed as described previously (Merianda et al., 2013), with
exception that 4% PFA fixation was used for tissues and methanol fixa-
tion was used for cultures. Goat anti-neuritin (1:200; Neuromics) and
chick anti-NFH (1:1000) were used for primary antibodies. Secondary
antibodies were as follows: donkey Texas red anti-goat or -mouse (1:300;
Jackson ImmunoResearch); and, goat Cy3 anti-mouse and aminometh-
ylcoumarin acetate (AMCA) anti-chick (1:200; Jackson ImmunoRe-
search). All samples were mounted in Prolong Gold (Invitrogen) and
analyzed by epifluorescent or confocal microscopy. Signals were quanti-
tated from exposure-matched images using ImageJ. Image pairs were
matched for exposure, gain/offset, and post-processing. For confocal
imaging, laser power and photomultiplier tube energy were matched.

Fluorescence recovery after photobleaching. Transfected DRG cultures
were used for fluorescence recovery after photobleaching (FRAP; Meri-
anda et al., 2013). Signal intensity normalized to prebleach signals was
calculated using Image].

Axon growth analyses. Axon length was analyzed with Image] taking
the length of axon extending furthest from the cell body (Merianda et al.,
2013).

Statistics. Repeated-measures ANOVA with Bonferroni post hoc mul-
tiple comparisons was used for FRAP. Student’s t test was used to for
axon growth, RTqPCR, and image signal intensities.

Results

Neuritin mRNA is enriched in injured axons

Nrnl (also called candidate plasticity gene 15’ [CPG15]) encodes
a glycophosphatidylinositol (GPI)-anchored protein that con-
tributes to synapse formation and maintenance (Nedivi et al.,
1996; Naeve et al., 1997; Fujino et al., 2011). Nrn1 mRNA local-
izes to axons in DRG and hippocampal neurons (Willis et al.,
2007; Taylor et al., 2009). Though Nrn1 is not a target for ZBP1,
the increased axon growth seen with ZBP1 overexpression in-

<«

(Figure legend continued.)  conditioned DRGs is seen both by RT-PCR (B) and RTqPCR (C).
Axons of injury conditioned DRGs show 2.75 = 0.15-fold more axonal Nrn1 mRNA than naive.
D, E, There was no significant difference in overall Nm1 mRNA (D) or stability of axonal Nrn1
mRNA (E) comparing naive and injury conditioned cultures by RTqPCR. RNA stability was tested
in axons treated with CsA to delay Wallerian degeneration. F, FISH signals for Nrn1 mRNA are
higher in the axons (arrows) of injury-conditioned compared with naive DRGs that show more
Nrn1mRNA in cell bodies. G, Neuritin protein is increased in the axons (arrows) and decreased in
the cell bodies of the injury conditioned compared with naive DRGs. H, I, Quantification of mRNA
(H) and protein (/) signals for cell body and axons are shown (**p = 0.01, ****p < 0.001, and
NS = notsignificant, as indicated). Scale bars: cell body, 25 rum; axon, 10 m.
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creased axonal Nrnl mRNA (Donnelly et al., 2011). Thus, we
asked whether Nrnl localization might be altered by the in-
creased growth seen in injury conditioned DRG cultures (Smith
and Skene, 1997). Nrnl showed increased axonal and decreased
cell body levels in cultures of 7 d injury conditioned compared
with naive DRGs (Fig. 1A—C). There was no difference in overall
Nrnl mRNA levels or survival of axonal Nrnl mRNA comparing
naive and injury conditioned cultures (Fig. 1 D, E). Shift in Nrnl
mRNA from predominantly cell body to predominantly axonal
was also seen in the naive versus injury conditioned DRGs by
FISH (Fig. 1F,H). Neuritin protein was similarly increased in
axons and decreased in cell bodies of injury conditioned DRGs
(Fig. 1G,I).

Looking in vivo, Nrnl mRNA was increased in sciatic nerve
and decreased in L4-5 DRGs 7 d after injury, both by RT-PCR
and FISH (Fig. 2A-C). Neuritin protein showed a similar
trend, with increase in the sciatic nerve and decrease in the
L4-5 DRGs after nerve injury (Fig. 2D). Quantification of
confocal images confirmed that L4-5 DRGs had significantly
more neuritin mRNA and protein in the naive state, and sci-
atic nerve axons had significantly more neuritin mRNA and
protein after axotomy (Fig. 2E,F). These data indicate that
axotomy triggers a redistribution of neuritin mRNA and pro-
tein, from cell body predominant to axon predominant.

Neuritin’s 5" UTR drives axonal mRNA localization in

DRG neurons

The 3" UTR of Nrnl (3'Nrnl) supports localization of GFP mRNA
in CNS neurons (Akten et al., 2011). Thus, we used FRAP to ask
whether 3'Nrnl might support translation of GFP in DRG axons.
DRG neurons expressing GFP™" with 5" UTR of CaMKIl«
(5'CaMKIIa) and 3'Nrnl (GFP ™5’ CaMKII«/3'Nrnl) showed
protein synthesis-dependent recovery after photobleaching, but
significant recovery was not reached until 30 min postbleach in
the absence of cycloheximide (Fig. 3A).

mRNA sequences other than 3" UTRs have been shown to
contribute to post-transcriptional regulation, including a role in
translational efficiency (Bi et al., 2006; Vuppalanchi et al., 2012).
To determine whether 5'CaMKII« alters translation efficiency in
DRG axons, we replaced it with the Nrnl 5" UTR (GFP™"5’/
3’Nrnl). Significant recovery was observed by 25 min in neurons
expressing GFP™"5'/3'Nrn1, and this was blocked by cyclohex-
imide (Fig. 3B). We next tested whether Nrn1 5" UTR might have
localizing activity using a reporter with the nonlocalizing y-actin
3" UTR (GFP™"5'Nrn1/3'y-actin; Donnelly et al., 2011). Signif-
icant recovery from photobleaching was observed in axons by
20 min with GFP™7"5'Nrn1/3’y-actin, and this was similarly
blocked by cycloheximide (Fig. 3C). In contrast to the recovery
seen with the 3'Nrnl-containing mRNAs, GFP™"5'Nrn1/3"y-
actin expressing neurons showed a steady increase in axonal sig-
nals over time, with overall higher recovery.

Though fluorescence recovery for each of the Nrn1 UTR report-
ers required translation, this was delayed compared with other ax-
onal reporter mRNAs (Merianda et al., 2013, and references within).
We used FISH to more directly test for axonal GFP mRNA. Axonal
mRNA was detected for both GFP™"'5'CaMKIle/3'Nrnl and
GFP™7"5'Nrn1/3’y-actin transfected DRGs (Fig. 3D). However, ax-
onal GFP™7'5'Nrn1/3’y-actin mRNA levels were higher than ax-
onal GFP™"5'CaMKIla/3’'Nrnl mRNA levels (Fig. 3F). This
indicates that differences in overall expression or RNA survival likely
account for the higher axonal GFP mRNA in GFP™"5'Nrn1/3’y-
actin expressing DRGs.
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Nerve injury increases axonal neuritin mRNA and protein in vivo. Naive versus 7 d injured sciatic nerve and L4 —5 DRGs were used to assess in vivo levels of neuritin mRNA and protein. 4, B, Nrn1

mRNA predominance shifts upon injury, with increased levels in nerve and decreased levels in DRG compared with uninjured rats by RT-PCR. GAPDH shows equal loading and MAP2 is not detected in the nerve
consistent with axonal nature of PNS nerve processes. By RTqPCR, injured nerve shows 2.30 == 0.02-fold more NrnT mRNA than naive nerve. €, Confocal images of FISH/IF show increased Nm1 mRNA in injured
nerve axons (arrows) and a decreased Nrn1 mRNA in injured DRG. D, Confocal IF images show increased neuritin protein in nerve axons (arrows) and decreased neuritin protein in L4—5 DRGs after injury. E, F,
Quantification of neuritin mRNA (E) and protein (F) signals in the DRG versus nerves are shown as indicated (****p = 0.001). Scale bars: DRG, 50 um; nerve, 10 um.

Neuritin 5" UTR is not sufficient for axonal mRNA localization in
hippocampal neurons

Considering that the 5'Nrn1 drives localization into DRG axons, we
asked whether it has any localizing activity in CNS neurons.
Hippocampal neurons expressing GFP™7"5'Nrn1/3"y-actin
or GFP™"5'CaMKIla/3'Nrnl showed axonal GFP mRNA signals
(Fig. 3E). However, GFP ™75’ CaMKIla/3'Nrn1 expressing neurons
showed higher axonal GFP mRNA levels than neurons expressing

GFP™"5'Nrn1/3’y-actin (Fig. 3G). Dendritic FISH signals showed
no significant differences (Fig. 3G), suggesting that differences in
polarity between the hippocampal and DRG neurons do not ac-
count for the different UTR localizing activities.

Axonally localized neuritin mRNA increases axonal growth
Because axonal levels of Nrn1l mRNA increased after injury,
we asked whether neuritin protein might contribute to neurite
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ROIs are indicated (boxes). Fluorescence intensity relative to prebleach for ROIs is shown as average = SEM (N = 6 over at least 3 separate cultures; *p = 0.05, **p < 0.01, ****p <
0.001 for indicated value vs t = 0 min). D, FISH/IF images for axon shaft of DRG neurons transfected with the indicated constructs are shown. Hybridization with sense GFP probe shows
specificity. E, FISH/IF images for hippocampal neurons expressing indicated constructs are shown. Soma and dendrites (top row) were detected by MAP2 IF; axons were detected by Tau
IF (middle and bottom row). GFP mRNA signals are shown as indicated spectrum; insets show RNA for cell bodies. Outline of Tau signal is provided on the RNA panel to highlight
boundaries of the axon. F, G, Quantifications of GFP mRNA in DRG axons (F) and hippocampal axons and dendrites (G) are shown as average = SEM relative to cell body GFP mRNA (N =
30 processes in three experiments; *p =< 0.05, ***p =< 0.005, NS = not significant). Scale bars: A-C, 25 wm; D, 10 wm; E, top row, 20 wm; E, bottom row, 10 m.

growth. Depletion of Nrnl mRNA from DRG neurons re-
duced axon length by >80% (Fig. 4A,B). To determine
whether axonally targeted Nrnl might alter axon growth,
we generated neuritin-GFP fusion constructs with different
UTR combinations. DRGs transfected with neuritin-GFP-5'/
3'GFP, neuritin-GFP-5'/3'Nrnl, neuritin-GFP-5'GFP/3'Nrnl,
and neuritin-GFP-5'Nrn1/3'GFP showed approximately
equal levels of GFP mRNA (Fig. 4C). These transfected DRGs
also showed the predicted molecular weight for the Neuritin-
GFP protein by immunoblotting (data not shown). By FISH
analyses, neuritin-GFP-5/3'Nrnl and -5'Nrn1/3'GFP showed ro-
bust axonal GFP mRNA signals, neuritin-GFP-5"GFP/3'Nrnl
showed low axonal GFP mRNA signals, and neuritin-GFP-5'/
3'GFP showed no axonal GFP mRNA signals (Fig. 4D). Axon
growth from these transfected DRGs paralleled the localizing
activities of 5'Nrnl and 3’'Nrnl. DRGs expressing neuritin-
GFP-5'/3'Nrn1 or neuritin-GFP-5'Nrn1/3’'GFP showed longer ax-
ons than those transfected with GFP or neuritin-GFP-5'/
3'GFP (Fig. 4E,F). Neurons expressing neuritin-GFP-5'GFP/
3'Nrnl showed a small increase in axon length compared with
GFP or neuritin-GFP-5'/3"GFP.

Discussion

The work here shows the first example for different UTR ele-
ments driving localization of a single mRNA in different neuro-
nal types. We previously reported that calreticulin’s 3" UTR has
two distinct localization elements, but these showed no specific-
ity between PNS and CNS neurons (Vuppalanchi et al., 2010).
Calreticulin’s 5" UTR has regulatory activity, but it is used for
translational control rather than localization (Vuppalanchi et al.,
2012). Both 5" and 3" UTRs of the k-opioid receptor (kOR)
mRNA have axonal localizing activity (Bi et al., 2006). Similar to
Nrnl, there was higher axonal reporter mRNA translation with
KOR 5" UTR compared with kOR 3’ UTR; however, kOR 3 UTR
had equivalent mRNA localizing capability, suggesting that the
kOR 5" UTR also provides more efficient translation (Bi et al.,
2006). In contrast, Nrn1’s 5" and 3" UTRs have differential activ-
ity in DRG versus hippocampal axons. Though we cannot
completely exclude that survival differences for localized
GFP™7"5'Nrn1/3'GFP and GFP™"5'CaMKIIa/3'Nrnl mRNAs
contribute to the differences in the DRGs versus hippocampal
axons, our data show clearly distinct use of these UTRs by PNS
and CNS neurons.
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Different RNA binding proteins recognizing the 5'Nrnl
versus 3'Nrnl could explain these distinct activities. Survival
of motor neuron (SMN) has been shown to colocalize with
Nrnl mRNA in hippocampal axons, and SMN and HuD im-
munoprecipitates from brain contain Nrnl mRNA (Akten et
al., 2011). HuD is well established as an RNA binding protein
that recognizes adenylate and uridylate-rich elements (AREs;
Bolognani et al., 2010). Thus, HuD may bind directly to
3'Nrnl in CNS neurons. HuD directly binds to GAP-43 mR-
NA’s ARE (Chung et al., 1997), and this element is sufficient
for axonal localization in DRGs (Yoo et al., 2013). Because HuD
clearly expressed in DRGs and apparently contributes to GAP-43
mRNA localization (Yoo et al., 2013), then other factors must be
present in the hippocampal neurons to account for activity of
3'Nrnl. Similarly, other RNA binding proteins must account for
activity of 5'Nrnl1 for localization in the DRGs.

Nrnl was initially identified as a light-responsive gene in
the visual cortex (Nedivi et al., 1996) and a kainate-induced
gene in the hippocampus (Naeve et al., 1997). Subsequent
studies pointed Nrn1’s role in synapse development, synapse
stability, and neurite growth (Loebrich and Nedivi, 2009, and
references within). Overexpression of Nrnl in Xenopus motor
neurons promotes axonal growth (Javaherian and Cline,
2005), and exogenous neuritin increases neurite outgrowth
from cultured neurons (Naeve et al., 1997; Fujino et al., 2008).
Effects of exogenous neuritin on neurite growth could point to
paracrine or autocrine growth-promoting activities for the
endogenous protein. Axonal synthesis of neuritin protein
shown here would provide a spatially restricted mechanism
for this axonal growth promotion. Overall levels of Nrnl
mRNA increase after spinal cord injury, cerebral ischemia,
and axotomy of motor neurons (Di Giovanni et al., 2005; Han
et al., 2007; Rickhag et al., 2007; Fargo et al., 2008). Although
we see no increase in Nrn1 mRNA in the DRG following sciatic
nerve crush, upregulation of Nrnl in these other injuries
could set the stage for an increase in locally generated neuritin
given that the molecular machinery needed for its transport
into axons is not limiting as seen for other axonal mRNAs
(Donnelly et al., 2011, 2013).
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