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Statistics of the Electrosensory Input in the Freely Swimming
Weakly Electric Fish Apteronotus leptorhynchus

Haleh Fotowat,' Reid R. Harrison,? and Riidiger Krahe!
'Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada, and ?Intan Technologies, LLC, Los Angeles, California 90045

The neural computations underlying sensory-guided behaviors can best be understood in view of the sensory stimuli to be processed
under natural conditions. This input is often actively shaped by the movements of the animal and its sensory receptors. Little is known
about natural sensory scene statistics taking into account the concomitant movement of sensory receptors in freely moving animals.
South American weakly electric fish use a self-generated quasi-sinusoidal electric field for electrolocation and electrocommunication.
Thousands of cutaneous electroreceptors detect changes in the transdermal potential (TDP) as the fish interact with conspecifics and the
environment. Despite substantial knowledge about the circuitry and physiology of the electrosensory system, the statistical properties of
the electrosensory input evoked by natural swimming movements have never been measured directly. Using underwater wireless tele-
metry, we recorded the TDP of Apteronotus leptorhynchus as they swam freely by themselves and during interaction with a conspecific.
Swimming movements caused low-frequency TDP amplitude modulations (AMs). Interacting with a conspecific caused additional AMs
around the difference frequency of their electric fields, with the amplitude of the AMs (envelope) varying at low frequencies due to mutual
movements. Both AMs and envelopes showed a power-law relationship with frequency, indicating spectral scale invariance. Combining
a computational model of the electric field with video tracking of movements, we show that specific swimming patterns cause character-

istic spatiotemporal sensory input correlations that contain information that may be used by the brain to guide behavior.

Introduction
Characterizing the statistics of natural sensory stimuli is an im-
portant step for discovering how the nervous system extracts
behaviorally relevant information from the world (Barlow, 1961;
Simoncelli and Olshausen, 2001; Kurtz and Egelhaaf, 2003; Gei-
sler, 2008). These statistics should ideally be measured in freely
moving animals taking into account the concurrent, often ac-
tively controlled, movements of their sensory receptors (Schroe-
der et al., 2010; Egelhaaf et al., 2012). However, tracking the
movement of receptor arrays and measuring their physical input
in freely moving animals is often challenging. In the visual sys-
tem, for example, the statistics of sensory input has been mostly
studied using videos taken from natural scenes or by head-
mounted video cameras (Dong and Atick, 1995; Billock et al.,
2001; Kayser et al., 2003). Nevertheless, the effect of eye move-
ments on these statistics remains poorly understood.

The South American weakly electric fish Apteronotus lepto-
rhynchus is an excellent model system for characterizing the sta-
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tistics of sensory input caused by an animal’s self-generated
movements, which are often actively controlled to acquire informa-
tion about the environment (Stamper et al., 2012; Hofmann et al.,
2013). These fish generate a quasi-sinusoidal electric field through an
electric organ discharge (EOD). Thousands of cutaneous electrore-
ceptors that are mostly sensitive to amplitude modulations (AMs) of
the oscillating transdermal potential (TDP) sense changes in the
electric field caused by body movements, nearby objects, and
the electric fields of conspecifics (Bastian, 1981; Carr et al.,
1982; Bastian, 1995). As the electroreceptors are distributed
on the skin, their physical input can be measured transder-
mally and their position can be determined by tracking the
fish’s body, an important experimental advantage.

Investigating the characteristics of the electrosensory input
has played a pivotal role in unraveling neural mechanisms under-
lying behavior (Fortune, 2006). For example, the discovery of the
jamming avoidance response, in which the fish changes its EOD
frequency when exposed to the electric field of a conspecific with
similar frequency, has led to the complete description of its un-
derlying neural circuitry (Heiligenberg, 1991). This behavior
serves to avoid conspecific-evoked low-frequency AMs that are in
the same frequency range as those evoked by prey (Maclver et al.,
2001) and could thereby interfere with prey detection (Heiligen-
berg, 1991).

Despite the wealth of knowledge about the anatomy and phys-
iology of the electrosensory system (Bullock et al., 2005), the
spatiotemporal characteristics of the electrosensory input evoked
by natural swimming remain unknown. In fact, the electric field
structure and its modulations due to body movements and con-
specific EODs have only been measured in immobilized fish
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(Rasnow et al., 1993; Bastian, 1995; Assad et al., 1999; Chen et al.,
2005; Yu et al., 2012).

We used a wireless transmitter to record the TDP of freely
swimming weakly electric fish and characterized the dynamic
range and spectral properties of the electrosensory input
evoked by swimming and interactions with a conspecific.
Combining a computational model of the electric organ with
video tracking of the fish’s body, we describe the spatiotem-
poral correlations across the sensory receptor array that arise
from the organism’s movements.

Materials and Methods

Fish preparation for wireless telemetry

We used the weakly electric fish A. leptorhynchus (the brown ghost knife-
fish) of either sex for the experiments. All animal care and surgical pro-
cedures were approved by the McGill University animal care committee.
Fish were anesthetized in 100 ppm MS-222 (buffered with sodium bicar-
bonate to pH 7) during transmitter positioning and electrode implanta-
tion. Three equal-length Teflon-coated silver wires (75 um bare
diameter, model 785500; A-M Systems) were used as recording, refer-
ence, and ground electrodes. The insulation was removed from the tip of
the electrodes, at which point they were chlorided to achieve recording
stability. The other ends of the electrodes were soldered to the transmitter
board, which was then made waterproof and sutured to both sides of the
fish’s body slightly caudal to the gills and pectoral fins. The electrodes
were forced to run parallel to each other along the fish’s trunk by suturing
them together to the skin at several points. A small hole was made in the
fish’s skin on the lateral mid-trunk using an insect pin and the recording
electrode was slid through it for about 2 cm toward the tail. The reference
and ground electrodes remained on the outside of the skin and were
sutured to the skin caudal to the point of recording electrode insertion.
After implanting the electrodes and positioning the transmitter back-
pack, the fish was placed in the experimental tank and allowed to recover
from anesthesia for about 10 min, by which time it had resumed normal
swimming.

Wireless transmitter

We used a miniature wireless telemetry system (Harrison et al., 2011; Fig.
1A) to transmit the potential difference recorded across the fish’s skin (the
TDP) at a point on the mid-trunk of freely swimming fish. The transdermal
potential was differentially amplified 1000 times, filtered in the range of
300-5200 Hz, and sampled at 11.52 kHz by a 9-bit analog-to-digital con-
verter on board. It was then transmitted wirelessly at 920 MHz. The trans-

Wireless transmitter for recording the transdermal potential and the experimental setup. A, Wireless transmitter
consisted of a telemetry chip mounted on a9 X 13 mm 2 PCB board, which was powered by a pair of 1.5 V batteries. The whole
board was made waterproof and sutured to the fish’s skin like a backpack. The transdermal potential input to the board was
amplified, filtered, digitized on board, and then transmitted digitally via the dipole antenna. B, Fish’s movements in the experi-
mental tank were monitored using a pair of video cameras while acquiring its transdermal potential through a custom receiver with
its antenna placed in the tank water. The cartesian coordinates of different points along the fish’s body were defined relative to the

30cm a USB port, which was also used to power it. The tip

of the receiver antenna was placed inside the tank
water for the best signal reception (Fig. 1B). The
wireless transmitter was made waterproof using lig-
uid latex, beeswax, and vacuum grease after the elec-
S trodes were soldered to the input and ground ports.

Experimental setup

The experimental tank was 60 X 60 X 30 cm?
(W X L X H), made of acrylic, and filled to
about half-height with water (water depth var-
ied between 15 and 20 cm across experimental
sessions; Fig. 1B). Two video cameras (Guppy
Pro, model #F031C; Allied Vision Technolo-
gies) equipped with f = 5 mm lenses (H0514-
MP2; Computar) were used to monitor the
behavior of the fish from top and side views
(Figs. 1B, 2A) at a frame rate of 25 Hz. The two
cameras were synchronized with the TDP sig-
nal using TTL pulses that were generated by the
acquisition computer and recorded through the receiver. Video and
wireless recordings were acquired during multiple 20-s-long periods (re-
cording sequences). The distances of the cameras from the tank were set
such that the field of view included the boundaries of the tank, resulting
in a length-to-pixel ratio of 0.12 cm for the top-view camera.

Quality of the wireless recordings

The recordings were stable except occasionally when the receiver failed to
receive any signal. These instances were clearly discernible visually as
large amplitude noise in the received signal. The average (SD) duration of
these episodes was 0.4 s (0.3 s), after which the signal returned back to
normal. These noise events did not occur at any particular time within or
across recording sequences or relate consistently to the fish movements.
The segments of the recording, which corresponded to the loss of recep-
tion, were identified based on the error bits generated by the receiver
system and were removed from the recording sequence. The recording
segments before and after the artifact were then joined together directly
before subsequent analysis. Out of a total of 600 s of recordings from 3
single fish and 500 s from 2 pairs of fish, 60.2 and 87.3 s were discarded,
respectively, due to such errors; the mean (SD) of the total error time
within a 20-s-long recording sequence was 2 s (1.9 s) and 3.55 (2.5 s)
for single and pairs of fish, respectively. The higher relative total error
time for the pairs of fish was likely due to physical contacts, which
may have resulted in touching of the transmitter antenna by the
second fish. We believe that removing these episodes from recordings
did not significantly affect our results because they comprised <20%
of the total recording time, with individual episodes lasting on aver-
age 0.4 s.

Analysis of the transdermal potential recordings
Single fish. All data analysis and modeling were carried out using
custom MATLAB software (MathWorks). To extract the AMs of the
EOD carrier signal, the TDP was first band-pass filtered to remove the
EOD harmonics and occasional 60 Hz noise contamination. The fil-
ter’s pass band was centered on the f. o, and its bandwidth was equal
to 800 Hz. The time course of the TDP could then be simplified as
follows:

TDP = Vig,(t) X cos 2 frop 1), Vigp(t) = 0 (1)
Given that the temporal variation of V4, is much slower than cos(2m
fropt), it can be shown that Vg, is equal to the amplitude of the
analytic signal of the TDP, which can be calculated using the Hilbert
transform (Zeimer et al., 1990):
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Vigp(t) = [TDP + j X H(TDP)| = |Vig,(t) X cos (27 fyopt) + j
X Vigp(t) X sin 2 foopd)|.  (2)

where 9 is the Hilbert transform, and j = \/—71 . Low-frequency
amplitude modulations caused by body movements were characterized
using V4, (t) low-pass filtered at 50 Hz. The power spectrum of the Vi,
for each recording sequence of each fish was normalized to the maximum
power across all recording sequences for that fish. Only recording se-
quences that were 12 s or longer (after removing the segments with
reception error) were used for calculating the power spectrum (with a
total of 24 recording sequences in three fish). This restriction satisfied an
equal FFT length for all sequences, which was chosen as the next power 2
from the length of the recording sequence and resulted in the FFT bin size
of 0.044 Hz. Given the maximum sequence length of 20 s, the minimum
resolvable frequency was 0.05 Hz. The power-frequency plots are shown
in logarithmic scale. The linear fit on the log-log plot was calculated using
the least-squares method over frequencies smaller than 20 Hz, where the
low-pass filter had a flat magnitude response.

The percent change in TDP amplitude relative to the mean was calcu-
lated as follows:

Vldp(t) - Vldp

) (3)
thp

AVldp(t) = 100 X

where the thp was calculated for each fish as the mean V4, across all
single-swimming recording sequences. The histogram for AV, was es-
timated in bins of 1% width for both single and pairs of fish.

Pairs of fish. Two pairs of fish were studied in these experiments. The
raw recordings were initially band-pass filtered with the filter’s upper and
lower limits extending 400 Hz above and below the larger and smaller
frops of the pair of fish, respectively. A Hilbert transform was then ap-
plied to the band-pass filtered recording and the resulting waveform was
low-pass filtered at 400 Hz to estimate the AMs caused by body move-
ments and the presence of the second fish. The AM signal showed signif-
icant power in the low-frequency range and around the frequency
difference of the two fish (beat frequency, Af = 70 and 100 Hz for the
pairs tested, with the transmitter fish having a higher and lower fre-
quency than the other fish, respectively). When a conspecific came in
close proximity of a fish, its electric field was added linearly to that of the
fish’s own at all points in space. The TDP at a point on one fish’s skin
(e.g., fish 1) can be simplified as follows:

TDP = V,(t) X cos 27 fropit) + Vo(t) X cos 27 frop, 1)-
(4)

where fzop; and fzop, are the EOD frequencies of each fish. V| (¢) repre-
sents amplitude modulations caused by fish’s own movement, and V,(¢)
represents the strength of the signal of fish 2 on the skin of fish 1 at the
point of interest. Similar to equation 2, assuming that V; and V, vary
much slower than their associated cosine terms, the amplitude of the
TDP can be estimated using its analytic function:

Viap(t) = |Vi X cos Qm fiopt) + Vo X cos Q7 fropa t) + j
X (Vy X sin (27 fyopyt) + Vo X sin Q7 frops 1) (5)

By trigonometry it can be shown that:

V(D) = Vi@ + Vo) + 2 X V() Vy(t)cos QmAft),
(6)

where Af is the beat frequency. Therefore, V4, has power both at low
frequencies and around the beat frequency, the spectral distribution of
which is a function of the spectral distributions of V; and V,. The ampli-
tude modulations around the beat frequency (envelope) were extracted
by first high-pass filtering the V4, above 50 Hz and then applying a
Hilbert transform to the resulting waveform. The power spectrum of
low-frequency V4, and the envelope for the recording sequences in each
fish pair were normalized to their respective maxima across recording
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sequences in that pair. Only recording sequences 12 s or longer were used
for the spectral analysis (four recording sequences per fish pair). Least-
squares linear regression was used to fit the log-log plot of low-frequency
AM and envelope powers for frequencies between 0 and 20 Hz.

Analysis of the video recordings

The two cameras were first calibrated using an object marked with points
with known x-y-z coordinates. The calibration object consisted of a pair
of cardboards marked at regular intervals along rectangular grids. One
cardboard was placed on the bottom of the tank (z = 0 plane) and the
other one was held at various x positions at a 45° angle relative to the first,
amounting to a total of 99 points with known x-y-z values distributed
throughout the volume of the tank. Pairs of points with pixel coordinates
[u;, v;] and [u';, v';] corresponding to a given point [x;, ¥;, z;] were then
manually identified in the pairs of images taken by the cameras (i = 1:99).
A set of calibration coefficients was then calculated based on the direct
linear transform (DLT) method with DLT tracking software (Hedrick,
2008) and used to calculate the [x, y, z] values in centimeters of any points
of interest in the video recordings. The DLT software was also used to
track in 3D the position of the fish’s head (h), tip of its tail (¢), the wireless
transmitter (), the approximate position of the electrode (s), and a point
in between the tip of its tail and the approximate electrode position (1)
(Fig. 2A, green crosses).

We used the MATLAB image processing toolbox to fit a polynomial to
the fish’s backbone and profile for each video frame captured from the
top- and side-view cameras, respectively (Fig. 2A, red curves). The order
of the polynomial was chosen between 3 and 5 for achieving minimal
least-squares error. The polynomial fit to the backbone (Fig. 2A, top
view) was initially constrained to pass through all the points identified in
the previous step (h, t, 1, 5, m). If a solution could not be found, the fitting
condition was relaxed by reducing the number of points the curve had to
go through, though always keeping points /1 and t. The polynomial fit to
the fish’s profile was constrained to pass through A, ¢, and m, resulting in
a curve that passed approximately through the middle of the trunk (Fig.
2A, side view).The fish’s length in pixels (L) was calculated as the median
of the length of the curves fitted to its backbone across all video frames.

The speed of the fish relative to the nearby tank walls (i.e., those that
were closer than 10 cm) was calculated as the change in distance to those
walls within successive video frames multiplied by the frame rate (25 Hz).
For each recording sequence, we calculated the median of the speed
relative to each tank wall. The average swimming speed relative to the
nearby tank walls was then calculated as the average of the median speeds
and used to divide recording sequences into two groups with average
speeds larger or smaller than 0.25 cm/s (Groups 1 and 2, respectively).

Computational model of the electric field

The fish’s electric field was modeled by adapting the computational
model of the electric organ proposed by Chen et al. (2005) for immobi-
lized fish to the case of a freely swimming fish as follows. For each top-
view video frame, one negative electric charge ( pole) was assigned to the
fish’s tail (Fig. 2B, blue circle) and L-1-positive electric charges were
distributed along the curve fitted to its backbone at equal distances (1
pole/pixel; Fig. 2B, red circles). The total positive electric charge of 20
mV/cm was equally divided among the L-1 poles and the charge of the
negative pole at the tail was set to —20 mV/cm. The charge spacing and
amount were chosen to match the optimal values reported by Chen et al.
(2005) for fish of comparable size. For each frame of the side-view cam-
era, the corresponding pixel coordinates for the poles were calculated
using the previously measured calibration coefficients with the con-
straint of being located on the curve fitted to the fish’s profile. The posi-
tions of the poles in centimeters were then reconstructed in 3D for each
frame based on their pixel values obtained from the top- and side-view
cameras.

The effect of the non-conducting tank walls and the water surface (six
non-conducting boundaries) was modeled using the method of image
charges (Jackson, 1975; Chen et al., 2005). Briefly, due to the big conduc-
tivity difference between water and acrylic (or air), the normal compo-
nent of the electric field at the boundary is effectively zero. One can thus
model the effect of each boundary by replacing it with a mirror image of
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Figure2.  Tracking of the fish's midline and positioning of the model poles. A, Example of a

pair of video frames captured by the top- and side-view cameras. The fish’s body has been made
darker for the purposes of this illustration. The position of the wireless transmitter (r) and its
approximate size relative to the fish are labeled with a green cross and a yellow circle, respec-
tively. Other points of interest that were tracked across all video frames are marked with green
crosses: h, s, m, and t. Polynomial fits to the backbone of the fish (top) and its profile (bottom)
were calculated using the least-squares method and are plotted in red. B, Positions of the
positive and negative model electric poles for the same frame as shown in A are marked with red
and blue circles, respectively. The points on the mid-trunk (S, ) for which the net electric field
vector was calculated are marked with black circles. €, The position of the real electric poles
corresponding to the fish’s electric organ, their mirror images (i) calculated against the tank
boundaries (solid lines), and the image of the image poles (ii) calculated against the extended
tank boundaries (dashed lines) for the same frame as in A and B. The effect of the tank bound-
aries on the electric field at any point in the space was taken as equivalent to the presence of the
image fishes based on the method of image charges (see Materials and Methods). Red and blue
circles correspond to positive and negative charges, respectively. Only a subset of poles and their
images are shown as viewed in the y-z plane for clarity. 0, origin.

the real electric poles against that boundary. In the case of a rectangular
tank to satisfy the boundary condition for zero normal component of the
electric field, the charges should be symmetrical across all six surfaces. A
subset of the image poles as viewed on the y—z plane are shown in Figure
2C (same frame as in Fig. 2 A, B). In addition to the six images found from
the real poles against the tank boundaries (Fig. 2C,7), images of the image
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poles should also be calculated across extended tank boundaries (Fig.
2GC,ii), resulting in a total of 26 image fish.

We next calculated the net electric field for pairs of points S, (k =
[1,2]) located on either side of each pole, p,, in the mid-trunk area
defined as the middle 30% of the fish’s body length (Fig. 2B, black circles,
point number L/3 to point number 2 L/3). The x and y values of S, | were
chosen such that they were both at a distance d, to p,, and that the line
connecting them to p, was locally orthogonal to the curve fitted to the
backbone. The distance d,, was chosen such that it varied approximately
in accordance with the natural variation in the width of the fish along the
rostro-caudal axis (Fig. 2B, gray curve). The points S, therefore corre-
spond to points on the skin of the model fish. The z values of the points
were set equal to the zvalue of p,,, for simplicity. For each video frame the
net electric field vector (E"%") was calculated as the vector sum of the
electric field vectors contributed by all real and image electric poles (Jack-
son, 1975) as follows:

mx(L—1)

> L -1 >
Emodels — - . X
(Sn,k) 2 |Sn,k _ S’P+ |3 (Sn,k SJP+)

j=1

m q .
- E == X (Sux —
3 n,!
i=1 |Sn,k Si |

where E"ode! (S, is the net electric field vector estimated by the model,
q is the total charge of 20 mV/cm, L is the total number of real poles, m is
total number of real and image fishes, S, are the vector coordinates of
the point at which the field is being calculated, S{,+ and S{,, are the vector
coordinates of the j™ positive and negative pole, respectively.
Theoretically, at any point S,, ; on the skin, the amplitude of the com-
ponent of the electric field vector orthogonal to the skin, E__;,, is related
to the amplitude of the transdermal potential, V,4,,, as follows:

= 2. Pskin Pskin
V(dp(sn,k) = E(Sn,k) ‘ N(Sn,k) X = onho(sn,k) X >

water Pwater
(8)

where E(S,,) is the electric field vector, N(S,) is the unit vector orthog-
onal to the skin at point S, , * is the vector dot product, pg;, is the specific
conductivity of the skin, and p,., is the bulk resistivity of the water
(Rasnow and Bower, 1996; Chen et al., 2005).

Statistical analysis

The variability of linear fit slopes was quantified by SE as described in
Moore and McCabe (2006). Variability in data was otherwise quantified
as SD. The Kruskal-Wallis test (KWT) was used to compare the medians
of populations across different treatments. The level of statistical signif-
icance is denoted by pywr- ANCOVA was used to compare the slopes of
linear fits to the log-log plots of power spectra. The level of statistical
significance for this analysis is denoted by pncova-

Results

Wireless recording of TDP in freely swimming fish

Brown ghost knifefish equipped with a transdermal electrode and
a wireless transmitter backpack started exploring the experimen-
tal tank as soon as they recovered from anesthesia. They showed
the typical forward and backward swimming and fin movements,
with a preference to swim close to the walls and the bottom of the
tank (Fig. 3A). Swimming movements caused transient modula-
tions in the amplitude of TDP, Viy,, (Fig. 3B, TDP: black curve,
V.ap: blue curve; see also Eqs. 1 and 2 in the Materials and Meth-
ods). Tail bends toward (away from) a given point on the skin and
an increase (decrease) in the distance of that point from ipsilat-
eral non-conducting boundaries had been previously associated
with increases (decreases) in the V.4, at that point in immobilized
fish (Chen et al., 2005). In freely swimming fish, however, in-
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feop= 625 Hz
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The distribution of the fish’s positions in the experimental tank and an example wireless recording. A, Probability distribution of the fish’s positions in the experimental tank. Data were

pooled across 30 20-s-long recording sequences obtained from three fish. We tracked the x-y-z position of the wireless transmitter across all frames in all fish (500 frames per recording sequence)
and used it as an indicator of the fish’s position. We chose the position of the transmitter for this purpose because it could be tracked automatically due to its large relative contrast. The fish tended
to swim around the corners of the tank (large or small x-y values, top two) and near the bottom (small z values, bottom). B, Example recording of the TDP at a point on the mid-trunk (black curve)
and its amplitude (blue curve). Inset: Top left, The gray area is shown on an expanded time scale to depict the quasi-sinusoidal electric organ discharge pattern ( fzo, = 625 Hz). Top right: The x-y-z
trajectory of the transmitter for this recording sequence (red points). The lighter shades of red correspond to the positions later in the sequence. The projections of this trajectory onz = 0 and x =
60 planes are shown in shades of gray, with lighter shades corresponding to the position later in the sequence. The water level was atz = 15 cm in this example, which is outside the range of the

expanded scale shown here for the z-axis.

stances of increase or decrease in the V4, were not clearly related
to tail bends toward or away from the point of recording, because
various body movements occurred at the same time. For exam-
ple, the fish could be bending its tail to one side while also bend-
ing it in the dorsoventral plane. In addition, the distance to the
boundaries of the tank could vary at the same time as a result of
those body movements. To explain quantitatively the amplitude
modulations observed in the wireless recordings, we tracked the
details of the fish’s body movements in 3D and then combined
the video-tracking data with a computational model of the elec-
tric organ previously proposed for the case of immobilized fish
(Chen et al., 2005).

Estimation of the TDP amplitude based on the

video recordings

We tracked the shape of the fish’s body in 3D across all video
frames by fitting a polynomial to several key points along its
midline (Fig. 24, red curve). We modeled the electric organ as a
negative electric charge (pole) located at the tip of the tail and a
set of equally spaced positive poles along the midline, such that
the sum of all positive charges was equal to that of the negative
charge (Chen et al., 2005; see Materials and Methclds). Using this
model, we then calculated the electric field vector, E"*?*, at evenly
distributed points along the side of the fish’s mid-trunk (see also
Equation 7 in Materials and Methods and Fig. 2B).

We then calculated the orthogonal component of the electric
field vector (E%!) at each of those points. In theory, Viap at any
point on the skin should be proportional to the orthogonal com-
ponent of the electric field vector at that point (Rasnow and
Bower, 1996; see Equation 8 in Materials and Methods). We com-
pared the Pearson correlation coefficient (p,,) between the Emodel
calculated from the video recordings and that of V4, obtained
from the wireless recording down-sampled to the frame rate of
the video recordings (25 Hz). The time course of the E"%! calcu-
lated at many points along the mid-trunk ipsilateral to the point

of the implanted electrode was indeed highly correlated with the

Viqp measured from the wireless recordings (Fig. 4A, black cir-
cles). This correlation pattern did not exist at any point between
the E"% and random shuffles of the Vigp time series (Fig. 44,
green circles correspond to 10 random shuffles).

This result indicates that the model performs well in capturing
the temporal dynamics in the V4, caused by body movements
and position changes relative to the tank boundaries. Because the
exact position of the electrode could not be tracked from our
video recordings, we chose the electrode position as the point in
the mid-trunk region that showed the highest temporal correla-
tion between its E"% and the Viap (Fig. 4A, blue vertical line:

ortho

Pp-max = 0.72). The point-by-point relation between V4, and
Emodel o Pp-max OVer the duration of the recording sequence could

be well fitted using a least-squares linear regression (Fig. 4B, red
line). The V:Q;d” calculated from E"%! using this linear relation-
ship (Fig. 4C, red dots) captured the variations observed in the
wirelessly acquired V4, (Fig. 4C, blue dots) quite well (percent
explained variance = R“ = 51%). In this example, the points with
larger estimation error (black asterisks) parallel the points that
were off the linear fit (Fig. 4B, left) and correspond to instances
where the fish made rolling movements (Fig. 4B, inset). Such
errors are likely due to the error in the estimate of the electrode’s
z-position, which was set equal to that of the nearest electric pole
in the model for simplicity (see Materials and Methods). Al-
though this assumption is generally valid, it is violated during
rolling movements. For the example shown, the rolling move-
ments resulted in an increase in the distance of the electrode to
the bottom of the tank, causing an increase in Vg,

Table 1 shows the values for the correlation coefficient, slope,
intercept, and R” for three recording sequences from the same
fish. The corresponding V4, calculated from the wireless record-
ing and estimated from the model (Vt"é‘;,dd ) for each sequence are
shown in Figure 4C. The E"% was linearly related to Vidp a8
predicted, but with a non-zero intercept (bias). The bias in the
E"od! \which was variable across recording sequences, could have
been due to various estimation errors including inaccurate pre-
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diction of the electrode position, limitations inherent in the lin-
ear model of the electric organ, and disregarding the effect of the
fish’s body on the shape of the electric field lines (Babineau et al.,
2006). It should be noted that the slope and intercept of the linear
fits were highly correlated (p, = —0.98) indicating that the
E%iebs estimation error is manifested in both parameters. In all
recording sequences, however, we found an overall high degree of
correlation between the 75! and the wirelessly acquired Viap at
many points along the mid-trunk, ipsilateral to the position of
the implanted electrode. Therefore, we are confident that the
model is able to explain most of the variations in the transdermal
potential of a single freely swimming fish measured through the
wireless telemetry. We next used the computational model of the
electric field to quantify the temporal correlation between the
electrosensory input impinging on different points on the fish’s
mid-trunk.

Movement-evoked spatiotemporal correlation patterns of
electrosensory input

Because the Vi, at any point on the skin is a linear function of the
orthogonal component of the electric field (E"5¢') at that point
(see Materials and Methods), we could quantify the movement-
specific temporal correlations evoked in the V4, of any pairs of
points on the skin by calculating the correlation coefficient
between the time course of E" of those two points. We
focused on three distinct swimming movements for this anal-
ysis: (1) side-to- side tail bends, (2) approaching a tank wall,
and (3) body bends in the dorsoventral plane. As mentioned
previously, the fish often made different body movements
concurrently, making it difficult to isolate individual body
movements.

We identified a recording sequence during which these move-
ments could be approximately isolated and calculated the E752!
for points on either side of the mid-trunk (Fig. 2B, point number
L/3 to point number 2L/3 on each side of the trunk; in this ex-
ample, L/3,2L/3, and L were 47, 95, and 142 pixels, respectively).
As an example, we show the x-y-z position and E"%*' of a number
of points located on the fish’s mid-trunk (Fig. 5). Points a and b
(Fig. 5A inset, black and red larger circles, corresponding to
points 78 and 88 of 142) are located on the same side of the trunk.
Point b’ is located directly across the midline from point b on the
contralateral side of the trunk (Fig. 54, inset, larger purple circle).
The time course of the x-y-z movement of this point is very close
to that of point b and is not shown.

In the beginning of this recording sequence (Fig. 54, wl), the
fish was swimming far from the tank’s side walls with all points
along its midtrunk positioned >10 cm away from the side walls,
a distance at which large, non-conducting boundaries are
thought to have minimal effect on the TDP (Fig. 6 A in Chen etal.,
2005). During this time, the fish made occasional side-to-side tail
bends and only slightly moved its trunk relative to the tank floor
(Fig. 5C, z). We found that such body movements resulted in a

positive correlation between the E"%' of points that were on the

<«

Vap 3t Pp-max COUld be well fitted with a line (slope and intercept of the linear fit were 0.071 cm,
SE=10.003 cm, and —0.278 mV, SE = 0.021 mV). The linear relationship is consistent with the
theoretical relationship between the two (see Equation 8 in Materials and Methods). Inset
shows the definition of a rolling movement, with the fish viewed head on. €, Wirelessly acquired
Vg (blue circles) and Vo (red circles) as estimated from the linear it in Bin three different
recording sequences from the same fish. The first recording sequence corresponds to Figure 3B.
The parameters of the linear fit for these recording sequences (1-3) are presented in Table 1.
Asterisks correspond to the time points around rolling movements.
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Table 1. B0 — Vygp linear fit parameters for three example recording sequences
shown in Figure 4C

Recording
SeqUeNCe Py Duration(s)  Slope (SE) (cm)  Intercept (SE) (mV) R? (%)
1 0.72 18.9 0.071(0.003) —0.278 (0.021) 51
2 0.85 16.8 0.039(0.001) —0.084 (0.007) 74
3 0.83 18.1 0.085 (0.003) —0.457 (0.021) 68
t
20, W1 w2 w3
h ab
10 b’

Point a
0 ——Pointb

Time (s)

Figure5.  Theposition of example points on the fish’s trunk and time course of the amplitude
of the electric field orthogonal to the skin at those points during an example recording se-
quence. A—C, x-y-z position of example pointsaand b (black and red curves, respectively) on the
mid-trunk of the fish (inset). Shaded boxes mark the three time windows (w1-ws3) that con-
sisted of distinct swimming movements. During w1, the fish was swimming far from the side
walls of the tank (x,y > 10 cm, 4, B) and made side-to-side body bends. During w2, the fish was
approaching the tank wall corresponding to.x = 0 (x < 10 cm, A) and, during w3, the fish was
near the same wall and made body bends in the dorsoventral (y—z) axis. D, Amplitude of the
electric field vector orthogonal to the fish’s skin (E%*') normalized to its mean across the
recording sequence is shown for the example points a, b, and b” (gray circles). The black, red,
and purple curves are the five-point moving averages of the data for points a, b, and b’, respec-

model

tively. Vertical scale bar corresponds to percent change from the mean and E . pp,, and

model

Pr,, are the Pearson correlation coefficients calculated for the E7 " of points a and b, and

pointshand b’, respectively. During w1, the E"%' of points a and b were positively correlated

with each other and negatively correlated with point b” located on the contralateral trunk. A
model

similar, but stronger correlation pattern existed during w2. During w3, E e of all three
points were positively correlated.

same side (e.g., points a and b, Fig. 5D, wl) and negative corre-
lation between the points that were on opposite sides of the trunk
(e.g., example points b and b’; Fig. 5D, wl).

The degree of temporal correlation in the E"5%' of all pairs of
points located on the same side (ipsilateral) and opposite sides
(contralateral) of the trunk within this time window is presented
in Figure 6, left [(95 — 47 + 1 = 49) X 49 pairs of points, value of
the Pearson correlation coefficient is represented by the color

Fotowat et al. ® Electrosensory Input in Swimming Electric Fish

code]. The movements during time window w1 (Fig. 5) re-
sulted in large-scale positive correlations between points on
the same side of the body (Fig. 6A, top left) and negative
correlations between points on opposite sides of the body (Fig.
6A, bottom left). To assess the extent to which the presence of
tank boundaries could have contributed to these correlations,
we removed them from the model by removing the image
fishes (see Materials and Methods) and calculated the matrix
of correlation coefficients again. As expected, because the fish
was >10 cm away from the tank side walls, removing them
from the model did not affect the correlation pattern (Fig. 6A,
right) and therefore these correlations were mainly due to the
side-to-side tail bends.

During the second time window, the fish was swimming to-
ward the tank wall located at x = 0 (Fig. 5A, w2). As the fish
approached the non-conducting boundary, there was an overall
decrease in the amplitude of the E"%! for points facing the wall
(e.g., points a and b, Fig. 5D, w2) and an overall increase for those
on the opposite side (e.g., point b’, Fig. 5D, w2). In fact, ap-
proaching the tank wall resulted in strong positive correlations
between the sensory input impinging on all the points located on
the same side and strong negative correlations between the points
located on the opposite sides of the trunk (Fig. 6B, left). This
correlation pattern was mainly imposed by movement relative to
the tank walls because removing them from the model abolished
it completely (Fig. 6B, right).

Body bends along the dorsoventral axis (up-down) are ex-
pected to affect the sensory input to points on either side of the
trunk similarly and therefore cause positively correlated activity
between the inputs to these points. Such correlations were indeed
observed during the third time window (Fig. 5, w3), where the
fish bent its body along the dorsoventral axis, causing an increase,
peak, and decrease in the z position of the points along the mid-
trunk (Fig. 5C, w3). As a result of this movement, the E"%% for
points on either side of the midtrunk increased and then de-
creased (Fig. 5D, w3), giving rise to positive correlations, espe-
cially among the points closer to the tail (Fig. 6C, left). Removing
the tank boundaries had a relatively small effect on these correla-
tions (Fig. 6C, right), indicating that they mainly resulted from
the change in the structure of the electric field caused by the
up-down body bends. The small effect of the tank walls on these
correlations was expected because the distance to the tank’s side
walls was either large (Fig. 5B, w3) or relatively stable along the
orthogonal axis (Fig. 54, w3). It should be noted that although
the distance of the points relative to the bottom surface of the
tank (Fig. 5C, z, w3) was changing, this non-conducting bound-
ary itself could not have an effect on the time course of the E"%!
because the vector orthogonal to fish’s trunk was set parallel to
the bottom surface of the tank in our model.

The above analysis enabled us to isolate the major effects of
body movements on spatiotemporal correlations of sensory in-
put, the dynamics of which can inform the fish about multiple
aspects of its interaction with its environment. For example,
strong positive (negative) temporal correlation among the
points on the same (opposite) side of the trunk, which trans-
lates into global in-phase/anti-phase synchronization in affer-
ent activity, could be integrated by the next processing stages
to signal the approach to a boundary. Similar analysis could be
performed in future in the context of specific electrolocation
tasks to shed light on the role of these correlations in guiding
active sensation.
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Figure6.  Spatiotemporal correlation patterns of the sensory input evoked by various swim-
ming movements. A-C, Pearson correlation coefficients were calculated between the E"5! of
pairs of points located on the same (ipsilateral) or opposite (contralateral) side of the body along
the midtrunk in three time windows within a recording sequence (Fig. 5, w1-w3). Points
located in the middle third of either side of the body (between L/3 and 2L/3, for a fish length of
L = 142 in this example, a total of 49 points on each side) were used for this calculation,
resulting in a 49 X 49 correlation matrix. The value of the correlation coefficient is represented
by the color code (bottom). The segment of the schematic fish highlighted in red corresponds to
the side of the mid-trunk used for the calculation (gray or black corresponding to the right and
left side, respectively). For A-C, the top left shows correlation coefficients among the points
located ipsilaterally and the bottom left show the coefficients for points located contralaterally.
The correlation matrix in the right top and bottom are calculated in the same manner after
removing the tank walls from the model. 4, Side-to-side tail movements far away from the tank
boundaries (d > 10 cm; Fig. 5, w1) resulted in positive temporal correlation among the points
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Dynamics of the TDP amplitude evoked by swimming and
interactions with a conspecific

We used the wireless TDP recordings to quantify the range of the
amplitude modulations (AV,y,) caused by natural swimming
movements as the percent change from the mean Vi, (Vi4,)
estimated separately for each fish over all recording sequences (30
recording sequences, see Equation 3 in Materials and Methods).
The means (SDs) of the Vg4, for the three tested fish were as
follows: fish 1: 0.157 mV (0.013 mV) over 144 s, fish 2: 0.105 mV
(0.007 mV) over 156 s, and fish 3: 0.276 mV (0.018 mV) over
240 s of recording. We found that swimming movements within
the non-conducting boundaries of the tank could cause AMs as
large as 20% (Fig. 7A). The Gaussian fit to the distribution pooled
across the three tested fish had an SD of 9%, indicating that about
68% of the observed amplitude modulations were within 9% of
the mean.

We next introduced a conspecific to the tank and continued
measuring the TDP (two of the three fish tested individually were
used for these experiments). The V4, measured at a point on the
skin of one fish during its interaction with a conspecific is a func-
tion of the linear sum of the electric fields along the axis orthog-
onal to the fish’s skin at that point. Because the electric organs of
individual brown ghost knifefish discharge at individual-specific
frequencies, the V4, will vary at the difference of their discharge
frequencies (beat frequency, Af), even in the absence of any body
movements. During natural interactions with a conspecific, the
amplitude of the Vi, varies as a result of the fish’s own body
movements, its position change relative to the environment, and
the conspecific (Fig. 7B, blue lines, Af = 100 Hz, see Equation 6 in
Materials and Methods).

We found that interacting with a conspecific caused a much
larger range of AMs compared with those caused by a single
fish’s swimming movements (Fig. 7C, 10 recording sequences
from two pairs of fish amounting to a total of 165.36 s of
recording). In this case, the same baseline value as used in the
case of single swimming fish was used to calculate AV, 4,. A
Gaussian fit to the distribution had a SD of 19.7%, with the tail
of the distribution even extending up to 100%. This is more
than twice the SD of the Gaussian fit to the distribution of the
AMs in the case of a single swimming fish (9.0%). The ampli-
tude of AMs around the beat frequency (Fig. 7B, envelope, red
curve) changes as a function of the relative orientation of the
two fish.

We found that at distances larger than ~23 c¢m (distance cal-
culated between the fish’s midpoints), the envelope was always
<20% of the mean V4, (Fig. 7D), a value that corresponds to the
upper bound of AMs in the case of a single swimming fish (Fig.
7A). Conversely, at shorter distances, it was possible to get mod-
ulations of <20% and up to 100% (Fig. 7D). Therefore, the dis-
tance between the two fish could not be a simple predictor of the
AMs around the beat frequency and the relative orientation of
fish bodies could affect the extent of these modulations signifi-

<«

on the same side of the trunk: ipsilateral (ipsi, top left) and negative correlation with the points
located on the opposite side of the trunk: contralateral (contra, bottom left). Removing the tank
walls in the model did not affect the correlation patterns (right). B, Approaching a tank wall
(Fig. 5, w2) resulted in very strong positive and negative correlation among the points located
on the same and opposite sides of the trunk, respectively (left). Removing the tank walls in the
model removes those correlations (right). €, Up-down tail movements (Fig. 5, w3) resulted in
positive correlation among the points on the same side and the ones on opposite sides of the
trunk (left). In this example, the modulations were not affected after removing the tank walls in
the model because the orthogonal distance to the walls was relatively stable (right).
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Range of transdermal potential amplitude modulations experienced by electric fish swimming alone and during interactions with a conspecific. A, Range of observed amplitude

modulations around the mean Vy, (Al see Equation 3 in Materials and Methods, data are from 30 recording sequencesin three fish). The amplitude modulations caused by body movements and

theresulting displacement relative to the non-conducting boundaries of the tank were generally <<20% of the mean. Red curve, Gaussian fit to the distribution (SD = 9%). B, During interaction with
a conspecific, the net transdermal potential (black) is equal to the sum of the two EOD waveforms; therefore, its amplitude (Vyg,, blue curve) oscillates at the difference frequency (100 Hz in this
example). The amplitude of the V,,, at the beat frequency (envelope, red curve) varies as a function of relative body movements of the two fish. The recording is shown on an expanded time scale
for two time windows (w1, w2) at the bottom. ¢, Range of modulations observed around the mean V‘dp of one fish during interaction with a conspecific (AVIdp' dataare from 10recording sequences
intwo pairs of fish). The AMs caused by interactions with a conspecific, body movements, and displacements relative to the non-conducting boundaries of the tank ranged up to 100% of the mean.
Red curve, Gaussian fit to the distribution (SD = 19.7%). D, Examples of the relation between the inter-fish distance (distance between their centers) and the percentage of AMs around the beat
frequency (envelope normalized to mean V) for three recording sequences obtained in the same pair of fish. Red, green, and blue dots show data points from three different sequences. The vertical
blue line marks the maximum inter-fish distance at which modulations of >20% (horizontal blue line) from baseline were observed. Although at distances longer than 23 cm, the modulations were
always smaller than 20%, at shorter distances, the modulations could assume larger or smaller values.

cantly. To explain the variations observed in the case of two fish,
the computational model described in the previous section must
be developed further to account for the conspecific’s electric field
and its physical presence as an external conductive object, which
is beyond the scope of the present study.

Spectral characteristics of the AMs and envelopes

The AMs caused by swimming movements within the non-
conducting boundaries of the tank had power mainly at low fre-
quencies, with the mean normalized power smaller than 10 ~* for
frequencies larger than 20 Hz. The power-frequency relationship
on the log-log scale could be generally fit well with a line for the
full frequency range indicating a power-law relationship with
frequency (power = 1/f®) with the power exponent 8 = —1 X
slope of the linear fit (Fig. 8A, blue line; red curve is the median of

the power spectra). The details of the structure of the power
spectrum within this range, however, depended on the fish’s
swimming pattern in relation to the tank boundaries during a
given recording sequence. We divided the recording sequences
into two groups based on the fish’s swimming speed relative to
the tank boundaries. The first group consisted of recording se-
quences during which the fish was actively swimming with speeds
larger than 0.25 cm/s (Group 1, 15 recording sequences in 3
fish, average speed = 1.7 cm/s; SD = 1.2 cm/s) and the second
group consisted of those during which the fish was either
“hovering in place” or moving very slowly relative to the
nearby tank walls and its swimming speed was smaller than
0.25 cm/s (Group 2, 9 recording sequences in 3 fish, average
speed = 0.15 cm/s; SD = 0.06 cm/s). Although for lower
frequencies the power spectrum of the recording sequences
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Figure 8.  Spectral properties of the amplitude modulations in single swimming fish. 4,
Normalized power spectrum of the Vy, plotted on a log-log scale (black) for all recording
sequences 12 s or longer (n = 15) obtained from three single-swimming fish with relatively
high activity level (average swimming speed > 0.25 cm/s) and their median (red). The blueline
is the linear fit to the median (slope = —1.62; SE = 0.029; R? = 87%). Such a linear relation-
ship indicates a power-law relationship with frequency with power exponent 8 = 1.62 and
spectral scale invariance. B, Normalized power spectrum of the Vy, (black) for all recording
sequences (n = 9) obtained from three single-swimming fish with low activity levels (average
swimming speed << 0.25 cm/s) and their median (red). The blue line shows the linear fit to the
median for frequencies smaller than 7 Hz (slope = —1.57; SE = 0.005; R? = 85%). C, Mean
and SD of the goodness of the linear fit (R?) for the recording sequences in which the swimming
speed was larger (black) and smaller (red) than 0.25 cm/s. For upper-bound frequencies larger
than 7 Hz, the linear fit was significantly worse for the recording sequences with very slow
swimming speeds (py; < 0.05).

from both groups could be well fit with a line in the log-log
domain (Fig. 8 A, B), the power spectrum of the AMs of the
second group tended to resemble that of the white noise for
larger frequencies (i.e., it flattened for larger frequencies and
therefore could not be well fit with a line for the whole fre-
quency range; Fig. 8B, red curve, median power spectrum).
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Considering that the fish was only moving very slowly during
these recording sequences, the low signal-to-noise-ratio for
larger frequencies was expected. This result could be further
quantified by calculating the goodness of the linear fit to the
power spectra in different frequency bands with equal lower-
bound frequency (0.044 Hz) and variable upper-bound frequen-
cies (1-20 Hz in 1 Hz steps; Fig. 8C). For upper bound
frequencies smaller than 7 Hz, the power spectrum of both
groups could be equally well fit with a line (R? values were not
significantly different, pyy > 0.05), whereas for higher frequen-
cies, the fit to the power spectra of the second group became
significantly worse. The slopes of linear fits to the spectra of the
recording sequences of the two groups for the upper-bound fre-
quency of 7 Hz were not significantly different (Group 1: slope=
—1.81, SD = 0.26; Group 2= —1.52, SD = 0.32; pxwr = 0.07).
These slopes were not significantly different from the slopes of
the linear fits to the spectra of the recordings of the first group up
to 20 Hz either (pancova = 0.15, mean slope Group 1 fit to the
full range = —1.72; SD = 0.39).

During interactions with a conspecific, V4, showed variations
atlow frequencies and around the beat frequency (Fig. 94). Both
the spectral power of the low-frequency ( f < 20 Hz) component
of the Viy, (Fig. 9B) and that of the V4, around the beat fre-
quency (Fig. 9C, envelope) decayed with increasing frequency,
and the spectra could be equally well fit with a line on a log-log
scale for the full frequency range ( f < 20 Hz; Fig. 9D).

For frequencies smaller than 1 Hz, the goodness of the linear
fit to the spectrum of the V4, of a single swimming fish (Fig. 8C)
and the spectrum of the low-frequency V4, and the envelope
during interaction with a conspecific (Fig. 9D) showed large vari-
ability across recording sequences. In the case of the single swim-
ming fish, the R could vary between 11% and 77%. In the
context of interacting with a conspecific, the R* values ranged
between 2% and 57% for low-frequency Vi, and between 2%
and 72% for the envelope. The variability in the power spectrum
structure for frequencies smaller than 1 Hz was likely due to the
difference in the low-frequency swimming patterns and/or
movements relative to the non-conducting boundaries or the
conspecific within the limited duration (<20 s) of individual
recording sequences. It was, however, often difficult to relate
specific patterns of swimming causally to the specific shape of the
power spectrum due to the large diversity of the swimming move-
ments that could occur within different recording sequences.
Calculating the power spectrum over shorter segments of a re-
cording sequence that contained specific swimming patterns
could not help resolve low-frequency structure of the power spec-
trum either, because it resulted in an increase in the minimum
resolvable frequency (1/duration of the recording). The problem
becomes even more involved for the case of pairs of interacting
fish. In the following section, we present a more detailed analysis
of the power spectra of the V4, of single swimming fish using a
few example recording sequences during which the fish’s swim-
ming patterns were relatively simple and could be classified in a
rather straightforward manner.

In the course of a recording sequence in which the fish made
slow approaching and receding movements relative to a tank
boundary (Fig. 10AI, average swimming speed = 0.75 cm/s), the
V.4p contained large low-frequency fluctuations (Fig. 10AIT) and
fluctuations at higher frequencies and the power spectrum could
be very well fit with a line across all frequencies (Fig. 10AIII, red
line, R> = 66%). The spectrum could be similarly well fit for
frequencies smaller than 1 Hz (R* = 72%) and the slope of the
linear fit for this frequency range (Fig. 10AIIl, blue line, slope=
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Figure 9.  Spectral properties of the amplitude modulations in pairs of swimming fish. 4,
Log-log plot of the normalized power spectra of the V4, (black) and their median (red); dataare
from four recording sequences obtained from the same pair of fish used as an example in Figure
7B.The V4, has power both at low frequencies, around the difference frequency of the two EODs
(100Hz) and its harmonics. B, Log-log plot of the normalized power spectra of the low-pass Vi,
(black) and their median (red, data are from eight recording sequences in two pairs of fish). The
blue line is the fit to the median AM power with slope = —1.70 (SE = 0.03), indicating a power-law
relationship with an exponent of 3 = 1.70. €, Log-log plot of the normalized power spectra of
the envelopes (black) and their median (red, data are from eight recording sequences
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—1.83; SE = 0.25) was not significantly different from that fit to
the full frequency range (Fig. 10AIll, red line, slope = —1.89;
SE = 0.06; Pyxncova = 0.86), indicating a consistent power-law
relationship for low and high frequencies.

Low-frequency drifts in transdermal potential were also ob-
served during a recording sequence in which the fish swam slowly
very close to a tank wall (Fig. 10BI, BII, average swimming
speed = 0.26 cm/s). Similar to the previous example, the power
spectrum of this sequence could be well fit with a line over the full
frequency range (Fig. 10BIII, red line, R* = 69%) and for fre-
quencies smaller than 1 Hz (Fig. 10BIII, blueline, R?=53%),and
the slope of the fit to frequencies smaller than 1 Hz (slope =
—1.63; SE = 0.34) was not significantly different than that fit to
the full frequency range (slope= —2.1; SE = 0.06; Pyncova =
0.21). Conversely, during a recording sequence (from a different
fish) in which the fish was hovering in place, making very small
periodic position changes (Fig. 10CI, average swimming speed =
0.05 cm/s), the V.4, showed only small periodic low-frequency
fluctuations (Fig. 10CII). This recording sequence belonged to
the second group (swimming speed < 0.25 cm/s), as described
above, and its power spectrum flattened for large frequencies
(Fig. 10CII). The power spectrum could be well fit with a line for
the upper-bound frequency of 7 Hz (Fig. 10CIII, red line, slope =
—1.83; SE = 0.12; R? = 63%). However, it could not be well fit
with a line for frequencies smaller than 1 Hz due to the presence
of peaks in the spectrum corresponding to the Vg4, fluctuation
frequency around 0.2 Hz.

Finally, during a recording sequence in which the fish only
made faster scanning movements near the tank walls (Fig. 10DI,
average swimming speed = 1.16 cm/s), the V4, fluctuations oc-
curred at a relatively faster rate (Fig. 10DII ). The power spectrum
of this sequence could be well fit with a line over the full frequency
range (Fig. 10DIII, red line, slope = —2.14; SE = 0.06; R*> =
71%), however, the linear fit overestimated the power at lower
frequencies (Fig. 10DIII) and the spectrum could not be fit as well
for frequencies smaller than 1 Hz (R* = 16%), indicating the lack
of a power-law relationship for low frequencies due to the ab-
sence of very slow movements.

Based on the above analysis, we predict that for a recording
sequence long enough to encompass all possible swimming pat-
terns of single fish (or relative swimming patterns of pairs of fish),
the power spectrum of V4, (and/or envelope) would follow a
power-law relationship with frequency across all frequencies
(with an upper frequency bound imposed by the largest possible
movement frequency).

Power-law scaling of the spectrum indicates that spectral
scale invariance, that is, the ratio of the signal power at any two
frequencies, depends only on the ratio of those two frequen-
cies and not their absolute values. Given a power exponent 1 <
B < 2, as found for low-frequency AMs and envelopes, it can
be shown that the underlying time series can be approximated
as fractional Brownian motion with long-range temporal anti-
correlations (Mandelbrot and Van Ness, 1968; Eke et al.,
2002). Long-range anti-correlations tend to stabilize the tem-
poral variations in that a change in one direction (e.g., an

<«

intwo pairs of fish). The blue line is the it to the median envelope power with slope = —1.73
(SE = 0.03), indicating a power-law relationship with an exponent of 3 = 1.73. D, Mean and
SD of the goodness of the linear fit (R %) for the AM and envelope of the individual record-
ing sequences. The R? values of the linear fits to the power spectra of AMs (black) and
envelopes (red) for various upper bound frequencies (1-20 Hz) were not significantly
different ( pyy; > 0.05).
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Figure10.  Example of the time course and power spectrum of V, evoked by distinct swimming patterns. Al, Fish location during the recording sequence from the top view. The position of the

transmitter was tracked during the recording sequence and used to represent the location of the fish within the tank (lighter points represent fish position later in the sequence). The four side walls
of the tank were located atx = 0,y = 0, x = 60, and y = 60 cm. The x-axis is shown broken to save space. The average swimming speed relative to walls closer than 10 cm (the wall atx = 0in
this case) was 0.75 cm/s in this example. All, The percent change in the V,y, acquired wirelessly relative to baseline TDP amplitude of 0.157 mV marked by the horizontal dashed line (AV,; see
Materials and Methods). The electrode position in this example was ipsilateral to the wall at x = 0. The vertical dashed line corresponds to the time point after which the electrode distance to the
x = Owall was smaller than 10 cm. Approaching/receding from the tank wall (x = 0 cm) caused slow driftsin Vy, in addition to faster fluctuations evoked by body movements. Alll, Power spectrum
0f Vg, could be well fit with a line in the log-log scale over the full frequency range ( f << 20 Hz, red line; slope = —1.89; SE = 0.06; R? = 66%) and for frequencies smaller than 1Hz (blue line;
slope = —1.83; SE = 0.25; R? = 72%). BI, Fish was swimming slowly back and forth near the tank wall at x = 0 (average speed = 0.26 cm/s; the inset shows the movement pattern on an
expanded scale). Bll, The percent change in the V,, acquired wirelessly relative to baseline TDP amplitude marked by the horizontal dashed line (AVy,, same fish as in A). Slow swimming
movements near the tank wall evoked low-frequency amplitude modulationsin the Vy,. The electrode position in this example was ipsilateral to the wall atx = 0. BIII, Power spectrum of Vy, could
be fit well with a line on the log-log scale for the full frequency range (red line; slope = —2.1; SE = 0.06; R* = 69%) and for frequencies smaller than 1 Hz (blue line; slope = —1.63; SE = 0.34;
R? = 53%). €I, Fish was hovering in place in a corner of the tank (average speed = 0.05 cm/s; the inset shows the movement pattern on an expanded scale). C/I, The percent change in the Viap
acquired wirelessly, relative to the baseline TDP amplitude of 0.276 mV marked by the horizontal dashed line. Slow swimming movements near the tank wall evoked low-frequency amplitude
modulations in the V. The electrode position in this example was ipsilateral to the wall at.x = 0. (I, The power spectrum of V,, could be well fit with aline in the log-log scale up to 7 Hz (slope =
—1.83;SE = 0.12; R* = 63%), but not for frequencies smaller than 1 Hz (R> = 21%). For larger frequencies, the spectrum resembled that of the white noise. DI, Fish scanned the two tank walls
located at x = 60 cm and y = 60 cm, with an average speed of 1.16 cm/s, always remaining within 10 cm of either wall. DI, Percent change in the V4, acquired wirelessly relative to baseline TDP
amplitude marked by the horizontal dashed line (AV,,, same fish asin A and B). The electrode position in this example was contralateral to the wall atx = 60. DI, The power spectrum of the Vg,
could be fit well with a line for the upper-bound frequency of 20 Hz (slope= —2.14; SE = 0.064; R? = 71%), but not for frequencies smaller than 1 Hz (R2 = 16%).

increase in the amplitude) is more likely to be followed by one
in the opposite direction (decrease in the amplitude). Assess-
ing scale invariance and long-range temporal correlations in
the time domain using detrended fluctuation analysis (Hard-
stone et al., 2012) led to similar results, as expected (data not
shown), because the two methods are directly related
(Heneghan and McDarby, 2000).

Discussion

Using a wireless transmitter system, we recorded the input to the
electrosensory system of freely swimming weakly electric fish.
This setup allowed us to characterize the statistics of electrosen-

sory input taking into account the movement of the receptor
array relative to the environment.

Body movements and displacement relative to non-
conducting boundaries caused low- frequency AMs of <20% of
the baseline (Fig. 7A). We could predict the time course of the
wirelessly measured AMs independently through the analysis of
body movements and a computational model of the fish’s electric
organ (Fig. 4). Using this model, we show that specific body
movements, such as side-to-side versus up-down tail move-
ments, as well as approaches to non-conducting boundaries
evoke distinct correlation patterns in the sensory input (Fig. 6).
Such correlations contain information that may be used by the
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brain to guide behavior. There is now indeed evidence that
weakly electric fish actively use their body movements to extract
electrosensory information about the environment. During the
search for prey, Apteronotus albifrons often tilts its body head-
down, makes a rapid reversal in swimming direction once it de-
tects prey, and shifts its body closer to it before finally capturing it
(Nelson and Maclver, 1999; Maclver et al., 2001). Such swim-
ming maneuvers result in a transient increase in local AM fre-
quency, an increase in the size of the prey’s image on the skin, and
an increase in sensory volume (Maclver et al., 2010).The weakly
electric fish Eigenmannia makes whole-body oscillations and tail
bends while tracking the movement of an oscillating refuge
(Stamper et al., 2012). Such movements induce changes in the
spatiotemporal pattern of the input and electrosensory feedback
and likely provide information to the brain about the relative
location of the fish in its environment.

In the context of interaction with a conspecific, AMs could be
as large as a 100% of the baseline (Fig. 7C) and had power at low
frequencies and around the beat frequency (Figs. 94). The degree
of modulation around the beat frequency (envelope) was not a
simple function of the distance between the two fish (Fig. 7D). In
fact, a change in the relative orientation of the fish bodies during
close interactions could significantly change the modulation
depth, as predicted by an earlier modeling study (Kelly et al.,
2008). Whether the fish actively alter their orientation relative to
a conspecific as a means for electrical display behavior is an in-
teresting subject for future studies. The spectral power of the V4,
of a single swimming fish (Fig. 8A,B) and the low-frequency
component of the Vi, of the fish during interactions with a con-
specific as well its envelope (Fig. 9B, C) decrease with frequency
according to a power law with the power exponent in the range of
1.5-1.8, indicating the presence of spectral scale invariance and
long-range temporal correlations in the natural electrosensory
input.

The primary electrosensory afferents respond linearly to
AMs smaller than 20% (Gussin et al., 2007), which, interest-
ingly, corresponds to the upper bound of the modulations we
observe in a single swimming fish. Conversely, they show non-
linear behavior (saturation and rectification) for larger mod-
ulations (Bastian, 1981; Nelson et al., 1997; Gussin et al.,
2007). In the context of interaction with conspecifics, there-
fore, the afferents are driven into their nonlinear coding range
(Gussin et al., 2007), where they respond not only to the AMs,
but also to their slowly varying envelopes (Savard et al., 2011).
In the frequency domain, the afferents act as high-pass filters
for AM frequencies in the range of 0.2-100 Hz (Hagiwara and
Morita, 1963; Bastian, 1981; Xu et al., 1996; Nelson et al., 1997;
Chacron et al., 2005), with the steepness of the gain-frequency
curve increasing with frequency (Nelson et al., 1997). This
property results in increased sensitivity to high-frequency
AMs such as those encountered during interactions with con-
specifics. For frequencies smaller than 20 Hz, the slope of the
afferent frequency response curve in the log-log domain is
positive and smaller than 0.8 (calculated based on the pro-
posed model of Nelson et al., 1997). Therefore, the afferents
decorrelate, or “whiten,” the sensory input with power-law
statistics, although not completely in this case because the
maximum positive slope of the filter’s gain curve is smaller
than the negative slope of the fit to the stimulus power
spectrum.

Power-law scaling in space and time is an ubiquitous phenome-
non in nature (Gisiger, 2001). Spectral power of images of natural
scenes, the envelopes of natural sounds, and the temporal dynamics
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of pixel intensities across frames of videos taken from natural scenes
follow a power-law relationship with frequency (Voss and Clarke,
1975; van Hateren, 1993; Ruderman and Bialek, 1994; Dong and
Atick, 1995; Attias and Schreiner, 1997; Billock et al., 2001). Here we
provide the critical result that power-law scaling of sensory input is
maintained even when natural movements of the sensor array are
taken into account, a factor that had not yet been included in mea-
surements of sensory input statistics.

There is now much evidence that sensory systems exploit the
power-law scaling and spatiotemporal correlation structures of
natural scenes to efficiently encode sensory stimuli (Simoncelli
and Olshausen, 2001). Remarkably, sensory adaptation in mo-
tion sensitive neurons of flies (Fairhall et al., 2001) and thalamic
and cortical neurons of the rat vibrissa pathway (Lundstrom et
al., 2008, 2010) act over a wide range of time scales depending on
the time scale of the stimulus, making these neurons particularly
suitable for encoding stimuli with power-law statistics. In the
auditory system of cats, the modulation bandwidth of neurons in
the central nucleus of the inferior colliculus scales with their char-
acteristic modulation frequency, a property that opposes the
power-law scaling in the envelope of natural sounds, and in-
creases coding efficiency (Rodriguez et al., 2010). The envelope
dynamics resulting from movements relative to a conspecific can
be compared with the change in the intensity of an auditory
stimulus arriving at the ears from a moving source. Specialized,
well characterized circuitry within auditory nuclei including su-
perior olive, lateral lemniscus, and inferior colliculus use inter-
aural time difference or interaural intensity difference to localize
sound (Joris et al., 2004; Pollak, 2012). It would be interesting to
study the response characteristics of different elements of this
circuitry using stimuli simulating a moving sound source with
power-law statistics.

The electrosensory primary afferents provide input to distinct
classes of pyramidal cells in the electrosensory lateral line (ELL)
lobe of the hindbrain (Shumway, 1989; Krahe et al., 2008; Maler,
2009). The deep pyramidal cells respond linearly to stimuli and
show little plasticity (Bastian et al., 2004), whereas the superficial
ones receive extensive electrosensory and proprioceptive feed-
back (Sas and Maler, 1987; Bastian, 1995; Bastian and Nguyen-
kim, 2001) and respond nonlinearly to stimuli (Chacron, 2006).
These cells are plastic and do not respond to periodic AMs caused
by repetitive body movements due to the formation of a central
“negative image” mediated by a cerebellar feedback pathway
(Bastian, 1999). Based on our experiments, the movement-
evoked AMs could be non-repetitive and therefore may still drive
those cells. It would be interesting to assess the spectral properties
of the AMs in the context of specific electrolocation tasks such
as prey capture because they might exhibit specific character-
istics. For example, repetitive tail bends during the search for
prey could cause the prey’s image to stand out through dis-
rupting the expected input correlation pattern. Enhanced re-
sponses to unpredictable sensory stimuli against ongoing
predictable input have been reported in the context of inter-
action with a conspecific, in which the responses of ELL pyra-
midal cells to specific electrocommunication signals are
enhanced in the context of ongoing predictable AMs at beat
frequency (Marsat and Maler, 2012).

The information contained in the amplitude and envelope of
sensory inputs is critical for sensory processing across sensory
modalities and animal species. In weakly electric fish, the infor-
mation contained in the AM and envelope of TDP is represented
in the activity of cells in successive stages of electrosensory pro-
cessing from electroreceptors (Savard et al., 2011) and ELL pyra-
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midal cells (Middleton et al., 2006) to cells in the midbrain
(McGillivray et al., 2012). In the primary visual cortices of cats
and monkeys, some neurons respond not only to sinusoidal grat-
ings, but also to their time-varying contrast, which can be con-
sidered as a 2D envelope (Zhou and Baker, 1994; Mareschal and
Baker, 1998). Neurons tuned to the envelope of sound stimuli are
found at all stages of the vertebrate auditory system (Joris et al.,
2004). In certain grasshopper species, a small set of auditory in-
terneurons conveys information about the song envelope
through their relative spike count and timing (Krahe et al., 2002).
The processing of the stimulus and its envelope is commonly
accomplished through parallel linear and nonlinear pathways
and likely shares common neural mechanisms across sensory
systems.
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