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The endoplasmic reticulum (ER) is a site
of protein processing and quality control
in the cell, replete with mechanisms for
recognizing misfolded proteins and re-
solving proteotoxic stress. These control
mechanisms are collectively known as the
ER unfolded protein response (UPR; re-
viewed by Schröder and Kaufman, 2005).
UPR signal transduction pathways are
orchestrated by the coordinated actions
of three key transmembrane proteins:
inositol-requiring enzyme 1� (IRE1�),
activating transcription factor 6 (ATF6),
and protein kinase RNA-like ER kinase
(PERK). Together with the ER chaperone
BiP, which helps ensure proper protein
folding, these factors mediate a rapid and
multifaceted response to the accumula-
tion of unfolded proteins in the ER lu-
men. When activated, the UPR initially
induces selective suppression of protein
translation, and elevates the expression of
chaperones and antioxidant proteins. Ad-
ditionally, the UPR promotes the stepwise
removal of persistently misfolded pro-
teins through ER-associated degradation
(ERAD) and the ubiquitin proteasome
system (Schröder and Kaufman, 2005).
However, chronic activation of the UPR

elicits a transition from these generalized
prosurvival responses toward one of cell
death via apoptosis. Neurological disor-
ders such as Parkinson’s disease, Hun-
tington’s disease, amyotrophic lateral
sclerosis (ALS), and Alzheimer’s disease
(AD) feature both UPR activation and
ERAD dysfunction (Roussel et al., 2013).

In AD and other neurodegenerative
diseases collectively called tauopathies,
the microtubule-associated protein tau
becomeshyper-phosphorylatedandformsin-
soluble intracellular aggregates associated
with disease progression (reviewed by Spill-
antini and Goedert, 2013). Although a
tremendous amount of research has investi-
gated the role of tau in neurodegeneration,
the underlying mechanisms of tau toxicity
remain elusive.

In their recent article in The Journal of
Neuroscience, Abisambra et al. (2013)
offer insight into the nature of tau toxicity
by revealing that aberrant soluble tau species
impair ERAD and activate the UPR. The au-
thors first demonstrate that the appearance
of phosphorylated PERK (pPERK), an early
marker of incipient ER stress and UPR acti-
vation, accompanies the accumulation of
soluble tau in rTg4510 mice. These animals
conditionally express P301L mutant human
4R0N tau, which has an increased tendency
to aggregate and is associated with the heri-
table tauopathy, frontotemporal dementia
(Alonso Adel et al., 2004; Santacruz et al.,
2005). At 9 months of age, levels of pPERK,
the ER chaperone BiP, and ubiquitinylated
proteins were higher in transgenic animals
than in controls (Abisambra et al., 2013,
their Fig. 1). Doxycycline administration
suppressed the expression of soluble tau and

concomitantly reduced levels of pPERK
(Abisambra et al., 2013, their Fig. 5D–H).

Next, Abisambra et al. (2013) induced
expression of wild-type human 4R0N tau
in HEK cells lacking detectable endoge-
nous tau. Levels of pPERK increased in
parallel with soluble transgenic tau, peak-
ing �72 h after induction (Abisambra et
al., 2013, their Fig. 2A–B). Ubiquitiny-
lated proteins rapidly accumulated before
PERK phosphorylation, and BiP contin-
ued to accumulate beyond 72 h. Cessation
of tau overexpression significantly re-
duced pPERK levels. These data suggest
that 4R0N tau expression at least tran-
siently activates the UPR in HEK cells.

Elevated levels of ubiquitinylated pro-
teins accompanied tau accumulation in
both HEK cells and rTg4510 animals, and
this was also observed in the brains of AD
patients (Abisambra et al., 2013, their
Figs. 1A, 2A, 3, and 4). The majority of
this ubiquitinylated protein pool was not
attributable to pathologically phosphory-
lated cytosolic tau. Notably, in rTg4510
mice and AD brains, 17 and 31% of re-
spective ubiquitin immunostaining colo-
calized with the ER membrane protein
calnexin, whereas immunostaining of
phosphorylated tau did not (Abisambra et
al. 2013, their Figs. 3– 4). These observa-
tions raised the possibility that general
proteasomal degradation and ERAD may
be impaired in the context of both exper-
imental murine tauopathy and human
AD tau pathology.

Consistent with this possibility, tau
was detected ectopically in microsomes
isolated from tau-expressing HEK cells. In
rTg5410 mice, tau coimmunoprecipitated
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with two cytosolic components of the
ERAD and ubiquitin proteasome machin-
ery: VCP/p97 and Hrd1 (Abisambra et al.,
2013, their Fig. 6). CD3� (a protein nor-
mally degraded via ERAD) accumulated
in microsomal fractions isolated from
tau-expressing HEK cells and rTg4510
animals, indicating ERAD dysfunction.
Strikingly, CD3� accumulation was also
identified in tissue from AD patients
(Abisambra et al. 2013, their Fig. 6K–L).
These results implicate tau as a cause of
ERAD dysfunction, and in light of previ-
ously observed UPR activity, suggest pro-
tein accumulation in the ER lumen arising
from decreased efflux via ERAD.

The authors suggest that impaired
ERAD and UPR activation leads to cell
death, potentially directly linking tau and
neurodegeneration. There are important
caveats to this conclusion, however. First,
as mentioned above, the UPR is thought
to initially serve a prosurvival function,
only transitioning to proapoptotic signal-
ing upon chronic or severe ER stress. In
this regard, Abisambra et al. (2013) do not
show involvement of classically proapop-
totic UPR factors such as TRAF2, CHOP,
ATF4, or caspases 12, 9, and 3 (Schröder
and Kaufman, 2005). Second, their data
do not include an assessment of cell via-
bility following UPR activation by tau.
This is unfortunate because wild-type and
P301L variants of 4R0N tau result in dis-
tinct neurological pathologies when over-
expressed in the brains of mice: P301L
4R0N tau induces neuronal degeneration
whereas wild-type 4R0N tau does not,
despite impairing synaptic function (Hoover
et al., 2010). It is noteworthy, therefore,
that Abisambra and colleagues found that
both P301L and wild-type 4R0N tau sim-
ilarly activate the PERK arm of the UPR.
Collectively, this suggests that the P301L
mutation is not completely responsible
for the tau-induced ER stress observed in
vivo, and that UPR activation in these
cases might be ancillary to or independent
of overt degeneration.

While the impact of tau-mediated
UPR activation on cell viability remains
unresolved, the results presented by
Abisambra et al. (2013) show that ERAD
dysfunction can result from the accumu-
lation of soluble 4R0N tau, and that simi-
lar ERAD impairment occurs in the brains
of AD patients. Furthermore, the revers-
ible impact of tau expression on UPR ac-
tivation as shown by Abisambra et al.
(2013) supports the growing view that sol-
uble tau species actively mediate tau tox-
icity, in addition to (or perhaps despite)

insoluble tau aggregates (Santacruz et al.,
2005).

The results of Abisambra and cowork-
ers differ from those presented by Spatara
and Robinson (2010), who showed a lack
of UPR induction by wild-type and P301L
tau in HEK293 cells. This may reflect sev-
eral key differences between the two stud-
ies. First, Spatara and Robinson evaluated
UPR activation 24 and 48 h after induc-
tion of tau expression. Abisambra et al.
(2013) show mild, nonsignificant UPR
activation at these time points in their
cell model (Abisambra et al., 2013, their
Fig. 1A–B). Second, Abisambra and col-
leagues identified UPR induction via
post-translational modification of PERK
itself. In contrast, Spatara and Robinson
(2010) assessed IRE-1� activity and phos-
phorylation of the PERK substrate eIF2�.
PERK activity can be inferred by the detec-
tion of phosphorylated eIF2� (Schröder
and Kaufman, 2005), but Spatara and Rob-
inson show a lack of robust eIF2� phos-
phorylation in response to tau expression. It
is therefore unfortunate that Abisambra et
al. (2013) do not provide evidence of PERK
activity in the form of phosphorylated eIF2a
at any time point in their study, as their data
primarily indicate UPR activation beyond
the time points assessed by Spatara and
Robinson (2010).

In their discussion, Abisambra and
colleagues speculate that tau accumula-
tion seeds the production of additional

toxic tau species. Nijholt et al., (2013)
provide a potential mechanism by which
this might occur. These authors showed
that UPR stimulation (indicated by pPERK
and downstream eIF2� phosphorylation)
selectively activates glycogen synthase ki-
nase 3 (GSK-3). GSK-3 is a serine/threonine
kinase that directly phosphorylates tau
at epitopes commonly identified in tau
aggregates. As mentioned above, hyper-
phosphorylated tau is characteristic of tau
pathology and hyper-phosphorylation is
suggested to promote tau aggregation
(Alonso Adel et al., 2004; Jeganathan et al.,
2008). The UPR may therefore initiate two
key aspects of tau pathology by generating
abnormally phosphorylated tau species and
promoting tau aggregation. In support of
this possibility, Ho et al. (2012) demon-
strated tau phosphorylation following UPR
activation in primary neuronal cultures
from rats.

Notably, the aggregation of tau has
been suggested to promote cell survival by
sequestering toxic soluble tau species into
less toxic insoluble aggregates, similar to
mutant huntingtin protein (Arrasate et
al., 2004; Santacruz et al., 2005; Spires-
Jones et al., 2009). One may therefore syn-
thesize the findings of Abisambra et al.
(2013) and others as follows: First, tau ac-
cumulation activates the UPR by impair-
ing ERAD and activating GSK-3. This
leads to persistent hyper-phosphorylation
of tau and enhanced aggregation poten-

Figure 1. A hypothetical model of tauopathy promoted by ER stress in response to multiple stimuli. Activation of the UPR may
result from toxic soluble tau species impairing ERAD through interactions with Hrd1 and VCP/p97, or directly via amyloid-�
toxicity. Impaired ERAD increases unfolded protein levels in the ER lumen, triggering the UPR by competitively titrating BiP from
PERK. Subsequent PERK dimerization and autophosphorylation initiates UPR signaling. The UPR may then direct the misprocess-
ing of tau via selective GSK-3 activation, facilitating tau aggregation. Unresolved UPR activity may alternatively result in cell death
via apoptosis. A�: Amyloid-�, UPR: Unfolded Protein Response, GSK-3: Glycogen Synthase kinase 3, p: Phosphate group, U:
Ubiquitin.
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tial. If this occurs, then the hallmark tau
aggregates seen in AD and related tauopa-
thies might protect cells by sequestering
toxic tau and preventing sustained UPR
activation and apoptosis.

A model incorporating the above fea-
tures is illustrated in Figure 1. This model
accommodates multiple initial insults to
theCNS, and may help describe the long-
term tau-related sequelae observed in
chronic traumatic encephalopathy (Hawkins
et al., 2013), following transient cerebral
ischemia (Wen et al., 2004), or perhaps
from amyloid � (A�)-induced ER stress in
AD. Uptake or misprocessing of soluble tau
following traumatic brain injury or isch-
emia could ostensibly lead to tauopathy by
causing ER stress. Trans-synaptic propaga-
tion of tau pathology, which has been pro-
posed to be mediated by neuronal activity
(Pooler et al., 2013) might similarly activate
the UPR and promote tau pathology in ad-
jacent cells by transmitting toxic or mispro-
cessed tau. Such stimuli may introduce a
cycle of ER stress, altered tau processing,
and concomitant aggregation.

The recent association of polymor-
phisms in the EIF2AK3 locus (encoding
PERK) with progressive supranuclear palsy
(Hoglinger et al., 2011) has genetically
linked the UPR to tauopathy. Abisambra et
al. (2013) hypothesize that such genetic
variations might alter the expression of
PERK, though detailed investigation of hap-
lotype groups carrying the risk alleles has
uncovered variations within the coding se-
quence of PERK, instead suggesting altered
function of the protein itself (Stutzbach et
al., 2013).

These possibilities require additional
investigation. While it is unlikely that
UPR activation and ERAD dysfunction
are the only factors involved, the publica-
tion by Abisambra et al. (2013) highlights
the relevance of ER homeostasis and stress
response mechanisms in tau pathology.
Their work demonstrates that ERAD can
be hampered by tau, revealing a straight-
forward mechanism by which tau impairs
cellular function. More broadly, these
findings contribute to an increasingly nu-

anced view of tau in neurodegenerative
disorders; one in which the enigmatic
protein might behave as both a potent ini-
tiator of ER stress, and perhaps a down-
stream target of it as well.
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