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Persistent Sodium Current Drives Conditional Pacemaking
in CA1 Pyramidal Neurons under Muscarinic Stimulation

Jason Yamada-Hanff and Bruce P. Bean
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115

Hippocampal CA1 pyramidal neurons are normally quiescent but can fire spontaneously when stimulated by muscarinic agonists. In
brain slice recordings from mouse CA1 pyramidal neurons, we examined the ionic basis of this activity using interleaved current-clamp
and voltage-clamp experiments. Both in control and after muscarinic stimulation, the steady-state current–voltage curve was dominated
by inward TTX-sensitive persistent sodium current (INaP ) that activated near �75 mV and increased steeply with depolarization. In
control, total membrane current was net outward (hyperpolarizing) near �70 mV so that cells had a stable resting potential. Muscarinic
stimulation activated a small nonselective cation current so that total membrane current near �70 mV shifted to become barely net
inward (depolarizing). The small depolarization triggers regenerative activation of INaP , which then depolarizes the cell from �70 mV to
spike threshold. We quantified the relative contributions of INaP , hyperpolarization-activated cation current (Ih ), and calcium current to
pacemaking by using the cell’s own firing as a voltage command along with specific blockers. TTX-sensitive sodium current was substan-
tial throughout the entire interspike interval, increasing as the membrane potential approached threshold, while both Ih and calcium
current were minimal. Thus, spontaneous activity is driven primarily by activation of INaP in a positive feedback loop starting near �70
mV and providing increasing inward current to threshold. These results show that the pacemaking “engine” from INaP is an inherent
property of CA1 pyramidal neurons that can be engaged or disengaged by small shifts in net membrane current near �70 mV, as by
muscarinic stimulation.

Introduction
Many central neurons are spontaneously active (Llinás, 1988).
Some neurons fire spontaneously in the complete absence of neu-
rotransmitter stimulation, including thalamic relay neurons
(McCormick and Pape, 1990), Purkinje neurons (Raman and
Bean, 1999), subthalamic nucleus neurons (Bevan and Wilson,
1999), globus pallidus neurons (Deister et al., 2013), and some
GABAergic interneurons (Beatty et al., 2012). Other neurons can
be considered “conditional pacemakers,” and fire in a rhythmic
manner in the presence of modulatory neurotransmitters. Such
neurons include dorsal raphe serotonergic neurons exposed to
norepinephrine (Vandermaelen and Aghajanian, 1983), hypo-
thalamic NPY/AgRP neurons exposed to orexin (van den Top et
al., 2004), and entorhinal cortical neurons exposed to cholinergic
agonists (Egorov et al., 2002).

Cholinergic modulation is critical for hippocampal function
(Dutar et al., 1995; Cobb and Davies, 2005; Hasselmo, 2006), and
its disruption impairs learning and memory (Green et al., 2005;
McGaughy et al., 2005) and has been linked to human cognitive
disorders (Terry and Buccafusco, 2003). At the cellular level, cho-
linergic input acts via both nicotinic ionotropic receptors and

G-protein-linked muscarinic receptors to produce a net excit-
atory effect on the hippocampal network (Fisahn et al., 1998;
Dragoi et al., 1999; Gulyás et al., 2010; Cea-del Rio et al., 2011).

In hippocampal CA1 pyramidal neurons, cholinergic stimu-
lation acts almost exclusively through muscarinic receptors (Du-
tar and Nicoll, 1988) and results in enhanced excitability
(Benardo and Prince, 1982a; Cole and Nicoll, 1983; Madison et
al., 1987), mediated by modulation of both synaptic behavior
(Markram and Segal, 1990; Buchanan et al., 2010; Giessel and
Sabatini, 2010) and intrinsic membrane properties (Cole and
Nicoll, 1984; Park and Spruston, 2012). Muscarinic receptor ac-
tivation causes depolarization and enhanced excitability of CA1
pyramidal neurons both by inhibiting potassium conductances
(Benardo and Prince, 1982b; Madison et al., 1987; Benson et al.,
1988) and activating nonselective cation conductances (Colino
and Halliwell, 1993; Fraser and MacVicar, 1996; Tai et al., 2011).
Muscarinic stimulation can result in spontaneous firing of hip-
pocampal CA1 pyramidal neurons, at least when synaptic trans-
mission is intact (Benardo and Prince, 1982a; Cole and Nicoll,
1983; Dutar and Nicoll, 1988; Fisahn et al., 2002). Under some
conditions, inhibition of muscarine-sensitive Kv7 channels
alone can produce spontaneous firing of rat CA1 pyramidal
neurons in the presence of synaptic blockers (Shah et al.,
2008). Muscarinic enhancement of neuronal excitability is a
relatively widespread phenomenon in central neurons and has
also been observed in hippocampal interneurons (McQuiston
and Madison, 1999; Gulyás et al., 2010) and cortical neurons
(Andrade, 1991; Klink and Alonso, 1997; Egorov et al., 2002;
Yoshida and Hasselmo, 2009).
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We analyzed spontaneous firing induced by muscarinic
stimulation of CA1 pyramidal neurons using interleaved current-
clamp and voltage-clamp experiments to quantify the conduc-
tances most critical for driving firing. We find that the dominant
current driving pacemaking is TTX-sensitive persistent sodium
current (INaP), whose steep voltage dependence produces a strong
regenerative depolarizing drive. Muscarinic stimulation shifts the
balance of background conductances to produce a net inward
current in a critical voltage region near �70 mV, thereby engag-
ing regenerative depolarization from INaP and producing sponta-
neous firing.

Materials and Methods
Slice preparation. Acute horizontal brain slices containing the hippocam-
pus were prepared from Swiss Webster mice of either sex (postnatal day
14 to 21). Animals were anesthetized using isofluorane and decapitated.
Each brain was quickly removed and placed in an ice-cold sucrose slicing
solution containing the following (in mM): 87 NaCl, 25 NaHCO3, 1.25
NaH2PO4, 2.5 KCl, 7.5 MgCl2, 75 sucrose, and 25 glucose, bubbled with
95/5% O2/CO2. A near-horizontal blocking cut was made along the dor-
sal side of the cerebral hemispheres, and tissue blocks were glued to the
slicing chamber on this surface. Slices of 300 �m thickness were cut using
a vibratome (DTK-Zero1; DSK) and incubated for 45 min in a 34°C
holding chamber containing artificial CSF (ACSF) containing the follow-
ing (in mM): 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 1 MgCl2, 2
CaCl2, and 15 glucose, bubbled with 95/5% O2/CO2. After incubation,
slices were held in bubbled ACSF at room temperature for up to 5 h until
recording.

Electrophysiological recordings. For recording, slices were placed in a
submerged slice chamber (RC-22; Warner Instruments) continuously
perfused with ACSF at a rate of 1–3 ml/min, and maintained at a bath
temperature of 34°C. Neurons in the CA1 pyramidal layer were visual-
ized using infrared differential interference contrast imaging on an
Olympus BX50WI microscope. CA1 pyramidal neurons were distin-
guished from other neurons in the CA1 region by size, shape, the pres-
ence of INaP, and a maximal firing rate below �50 Hz. To block synaptic
transmission, all external solutions contained 10 �M 2,3-dihydroxy-6-
nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), 50 �M

D-(�)-2-amino-5-phosphonopentanoic acid (D-AP5), 100 �M picro-
toxin, and 1 �M CGP55845 [(2S)-3-[[(1S)-1-(3,4-Dichlorophenyl)
ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid].

Whole-cell current-clamp and voltage-clamp recordings were made
with a Multiclamp 700B amplifier (Molecular Devices) using borosilicate
patch electrodes (1–3 M�). The internal solution contained the follow-
ing (in mM): 122 K-methanesulfonate, 9 NaCl, 1.8 MgCl2, 4 Mg-ATP, 0.3
Na-GTP, 14 phosphocreatine, 0.09 EGTA, 0.018 CaCl2, and 9 HEPES,
adjusted to pH 7.3 with KOH. Reported voltages are corrected for a �8
mV liquid junction potential between this solution and the ACSF in
which the pipette current was zeroed at the beginning of the experiment.

Pipette capacitance was reduced by wrapping pipettes with Parafilm;
residual capacitance was corrected using the capacitance compensation
and neutralization features of the amplifier. Pipette series resistance (typ-
ically 4 –10 M�) was corrected using bridge balance in current-clamp
experiments and compensated by 70% during voltage-clamp experi-
ments. Cells were accepted for use only if the series resistance was below
12 M�, the input resistance was over 90 M�, and the resting membrane
potential remained stable below �72 mV for over 3 min before applica-
tion of muscarinic agonists. In experiments with extended muscarinic
agonist application, some cells apparently desensitized to the agonist
after 3–10 min, and thus repolarized and stopped firing. When this was
evident, data collected within 2 min of desensitization were not used.
Current and voltage signals were filtered at 10 kHz and sampled at 10 –20
�s using a Digidata 1322A data acquisition interface (Molecular Devices)
and pClamp 10 software (Molecular Devices).

Data analysis. Data analysis was performed using IGOR Pro 6.22
(Wavemetrics) using DataAccess 9.3 (Bruxton) to read pClamp data into
IGOR. The average frequency of firing for each cell was measured as the
average number of spikes per second within a 20 s window of stable firing

taken at least 4 s after the initiation of spontaneous activity. Average
membrane potential during firing was measured as the mean voltage
(including action potentials) over a 20 s window. Spike threshold was
defined as the voltage at which the upstroke velocity reaches 4% of its
maximal value (Khaliq and Bean, 2010); though somewhat arbitrary, this
definition corresponded well to a sharp inflection in the phase-plane plot
of dV/dt versus voltage. During spontaneous firing, the spike threshold
value for each cell was the mean threshold averaged over spikes in a 20 s
window. Average membrane potential and spike threshold were not
measured in cells that fired doublets or in which the trough voltage varied
with time by �4 mV. “Ramp threshold” was defined as the mean thresh-
old of the first spike elicited by a slow current ramp averaged over four
trials. The pacemaking voltage region used to define currents during the
interspike interval was defined as spanning from the lowest trough volt-
age during spontaneous firing up to 4 mV hyperpolarized to the mean
spike threshold. This definition avoided inclusion of poorly controlled
transient sodium current that sometimes occurred near threshold.

Steady-state current–voltage ( I–V) curves were generated from cur-
rent records elicited by slow voltage ramps by taking the mean current
value over 0.01 mV intervals after signal averaging over two trials. Peak
subthreshold current was measured as the maximum (most outward)
current elicited below �45 mV. Some cells exhibited uncontrolled firing
during slow voltage ramps around �65 to �45 mV and were excluded
from peak current measurement and I–V averages. We found that patch-
ing near the axon seemed to decrease the likelihood of this uncontrolled
spiking. For estimation of the magnitude of persistent sodium current
without TTX subtraction, a linear fit was made to the current from �83
to �78 mV, and the extrapolated fit was subtracted from the raw I–V
curve. The estimated peak persistent sodium current is the minimum
(i.e., maximum inward current) in the resulting “resistance-corrected”
I–V. Cells were included in this analysis only if there was no sign of loss of
voltage control up to the peak.

Reported currents elicited from voltage-clamp experiments using the
cell’s own firing as a voltage command (action potential clamp) were
signal averaged over five trials. An average interspike interval I–V curve
for each cell was generated by taking the mean current value at each
voltage over all interspike intervals for that cell.

Statistics are reported as mean � SEM. Statistical significance was
measured using two-tailed Wilcoxon signed-rank tests for paired com-
parisons; Wilcoxon rank-sum tests were used for the unpaired data in
Figure 4D.

Drugs. All drugs were diluted in ACSF to the indicated final concentration
and were bath applied. To induce stable spontaneous firing, increasing con-
centrations of muscarinic agonist [5–25 �M acetylcholine (ACh), 5–25 �M

carbachol, and 5–10 �M oxotremorine-M (oxo-M)] were added to the ex-
ternal solution in 5 min intervals until the cell fired spontaneously; in 1 cell of
60 using oxo-M, 15 �M was necessary to induce firing. Drugs were obtained
from Sigma Chemical, except for oxo-M, CGP55845, D-AP5, NBQX, and
XE991 [10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone] which were
obtained from Tocris Bioscience, and ZD7288 [4-Ethylphenylamino-1,2-
dimethyl-6-m-ethylaminopyrimidinium chloride], which was obtained
from Ascent Scientific.

Results
Recording from mouse CA1 pyramidal neurons in acute hip-
pocampal slices in the presence of synaptic blockers for AMPA,
NMDA, GABAA, and GABAB receptors, we found that applica-
tion of acetylcholine or carbamyl choline (carbachol) induced a
steady depolarization that, in most neurons, resulted in rhythmic
spontaneous activity (Fig. 1A, top, middle). Acetylcholine (5–25
�M) induced spontaneous activity in 21 of 23 cells tested, and
carbachol (5–25 �M) induced spontaneous activity in 6 of 7 cells.
Consistent with previous work showing that CA1 pyramidal neu-
rons do not express detectable levels of nicotinic receptors (Sud-
weeks and Yakel, 2000), the selective muscarinic agonist
oxotremorine-M (5–15 �M) had essentially identical effects as
acetylcholine or carbachol, inducing rhythmic spontaneous ac-
tivity in 54 of 60 cells tested. These results are consistent with
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previous work showing spontaneous activity in CA1 pyramidal
neurons as a result of muscarinic stimulation (Benardo and
Prince, 1982a; Dutar and Nicoll, 1988) and show that network
activity is not required for the induction of spontaneous firing.
Pooling data from all the cholinergic agonists, the mean firing
rate in cells that were spontaneously active was 7.4 � 0.5 Hz (n �
66; Fig. 1B). The mean resting potential before drug application
was �77.9 � 0.4 mV (n � 87), and the mean depolarization
induced by muscarinic stimulation was 15.9 � 1.1 mV (n � 37;
p � 7.2 � 10�12; Fig. 1C).

We found that the concentration of muscarinic agonist
needed to cause firing was variable between cells, which may
reflect intrinsic heterogeneity in the CA1 population (Mizuseki et
al., 2011; Dougherty et al., 2012; Graves et al., 2012) or variations
in slicing angle and cell depth. To account for this variation, we
titrated increasing concentrations of agonist until the neuron
fired (up to a maximal concentration of 15 �M oxo-M, 25 �M

ACh, or 25 �M carbachol). In some cases, as we added more drug,
the cell entered a bistable state that oscillated between spontane-
ous activity and quiescence at regular intervals. Some cells
quickly went into depolarization block. We excluded such cells

from further analysis and focused our attention on cells that were
stably spontaneously active for prolonged periods.

Little effect of muscarinic stimulation on spike threshold
Figure 2, A and B, illustrates a typical trajectory of membrane
potential during acetylcholine-evoked spontaneous firing. This
neuron had a stable resting membrane potential of �79 mV in
control. Application of acetylcholine induced rhythmic firing,
during which the membrane potential reached a minimum value
of about �71 mV immediately after each spike and then depo-
larized slowly to an apparent spike threshold of about �59 mV, at
which voltage the depolarization of the action potential occurred
rapidly. To test whether muscarinic stimulation altered spike
threshold, we determined spike threshold before and after mus-
carinic stimulation using a ramp of current; after muscarinic
stimulation, the ramp was applied on a background of steady
hyperpolarizing current applied to hold the cell near the control
resting potential. There was little difference between threshold in
control (�55.6 � 0.6 mV) and after muscarinic stimulation
(�55.1 � 0.7 mV; n � 17; p � 0.09; Fig. 2C). These results
suggest that there is no major effect of cholinergic stimulation on
the action potential generating machinery of CA1 pyramidal neu-
rons. Rather, muscarinic stimulation induces a slow but steady
spontaneous depolarization at membrane voltages between ap-
proximately �70 mV and spike threshold, near �55 mV.

Effect of muscarinic stimulation on steady-state
current–voltage relationship
To identify the ionic conductances underlying this slow sponta-
neous depolarization induced by muscarinic stimulation, we per-
formed voltage-clamp experiments using slow voltage ramps (20
mV/s) to define steady-state I–V relations. To most closely cor-
relate voltage-clamp records with firing behavior, we collected
current-clamp and voltage-clamp records from the same cell be-
fore and after inducing spontaneous firing with muscarinic stim-
ulation, using physiological potassium-based internal solutions.

An example of such an experiment is shown in Figure 3. In
control, the neuron had a stable resting potential of �79 mV (Fig.
3A, left). Application of 5 �M ACh induced rhythmic firing at 5
Hz, with an average Vm of �63.5 mV (Fig. 3A, right). The steady-
state I–V relationship recorded in control (Fig. 3B, black trace)
was roughly linear between �85 and �70 mV, with a zero-
current intercept at �79.5 mV, close to the cell’s resting potential
in current clamp. Depolarized to �75 mV, outward current in-
creased to reach a local maximum of �65 pA at �68 mV and then
decreased to reach a minimum of �70 pA at �47 mV. As will be
shown in Figures 4 and 6, the “negative-conductance” region
between �65 and �45 mV results mainly from steady-state “per-
sistent” sodium current originating from TTX-sensitive sodium
channels (French et al., 1990; Yue et al., 2005).

After spontaneous firing was induced by ACh, the steady-state
I–V relationship recorded in voltage clamp (Fig. 3B, blue trace)
had a similar shape to the one recorded in control conditions, but
shifted inward at all voltages. Current was now net inward over
the entire voltage range from �85 to �40 mV, so there was no
longer a zero-current intercept at subthreshold voltages. There
was a local maximum at �69 mV that was barely net inward (�9
pA). On average, in control, the local maximum or peak current
at subthreshold voltages was a net outward current of �82.5 �
6.6 pA, reached at �65 � 0.5 mV. After muscarinic stimulation,
the peak was a net inward current of �9.5 � 5.0 pA, reached at
�65 � 0.5 mV (n � 32; p � 4.6 � 10�10 for comparison of
current sizes).

A

B C

Figure 1. Muscarinic stimulation induces spontaneous firing in CA1 pyramidal neurons. A,
Responses of representative CA1 pyramidal neurons before (left) and after (right) application of
ACh, carbachol, and oxo-M. All solutions contained a synaptic blocker cocktail (10 �M NBQX, 50
�M D-AP5, 100 �M picrotoxin, and 1 �M CGP55845). B, Histogram of average spontaneous
firing frequency after application of muscarinic agonist (n � 74). C, Population summary of
average membrane potential before and after muscarinic stimulation. Gray lines represent
individual cells. Thick black line indicates mean � SEM. n � 37, ***p � 7.2 � 10 �12.
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This inward current shift in the steady-
state I–V relationship can account for the
induction of spontaneous firing. A zero-
current intercept on the voltage axis cor-
responds to a stable resting potential if the
intercept occurs where the I–V curve has a
positive slope. If the membrane potential
depolarizes above this zero-current volt-
age, then net current is outward, and the
cell will hyperpolarize back to the stable
point. Conversely, if the membrane po-
tential hyperpolarizes below the intercept
voltage, then net current is inward, and
the cell will depolarize back toward the
intercept. As expected, therefore, the
zero-current intercept of �79 mV in con-
trol exactly matches the resting potential
measured in current clamp. After musca-
rinic stimulation, because the current is
net inward at all voltages negative to spike
threshold, the cell will depolarize when at
any voltage below threshold, leading to
spontaneous firing. Because the I–V curve
has a negative slope above �65 mV, sub-
threshold depolarization operates in a
positive feedback loop that recruits ever
larger inward current as the membrane
potential moves toward threshold.

Thus, the negative slope from INaP is
critical for the behavior of the cell under
muscarinic stimulation, leading to the
question of whether muscarinic stimula-
tion directly affects the size of INaP. Precise
measurement of INaP before and after
muscarinic stimulation would require
subtractions of TTX-sensitive current both before and after mus-
carinic stimulation, which is not practical because recovery from
TTX is slow. However, the magnitude of INaP can be roughly
estimated by measuring the peak of the inward current after sub-
tracting a linear component extrapolated from the linear part of
the I–V near �80 mV. With such an analysis, the peak INaP was
�451 � 30 pA in control and �409 � 30 pA after muscarinic
stimulation (n � 31; p � 0.076). This small, but nonsignificant,
decrease in persistent sodium current with muscarinic stimula-
tion is consistent with previous results suggesting that muscarinic
stimulation acting through protein kinase C leads to a mild re-
duction of INaP in CA1 pyramidal neurons (Cantrell et al., 1996;
Alroy et al., 1999). However, despite this potential decrease in
size, INaP clearly dominates subthreshold behavior both before
and after muscarinic stimulation.

Muscarinic-induced inward current is largely independent of
effects on M-current and TASK current
We next examined which currents were responsible for the in-
creased inward current caused by muscarinic stimulation. In rat
and guinea pig CA1 pyramidal neurons, muscarinic agonists in-
hibit potassium currents, including leak currents (Madison et al.,
1987; Benson et al., 1988) and Kv7/M-current (Halliwell and
Adams, 1982; Brown and Passmore, 2009), and also activate a
nonspecific cation conductance (Benson et al., 1988; Colino and
Halliwell, 1993; Tai et al., 2011). To evaluate the relative contri-
bution of these effects in mouse CA1 pyramidal neurons, we
tested the effect of muscarinic stimulation after blocking

M-current (with XE991) or blocking both M-current and leak
TASK current (with 1 mM Ba 2�). To better resolve effects on
potassium currents without interference from INaP, we included 1
�M TTX in all external solutions in this series of experiments. In
ACSF containing TTX, 10 �M oxo-M reliably elicited an inward
shift in the steady-state I–V curve, which now lacks the negative
slope region from TTX-sensitive sodium current (Fig. 4A). To
block M-current we applied 10 �M XE991. As expected, XE991
reduced outward current in a voltage-dependent manner (Fig.
4B) consistent with the presence of a Kv7/M-current that acti-
vates near �60 mV, typical of M-current (Brown and Passmore,
2009). When 10 �M oxo-M was applied in the continued pres-
ence of XE991, it produced an inward shift in current at all volt-
ages, as in the absence of XE991 (Fig. 4B). We also tested the
effects of oxo-M in the presence of 1 mM Ba 2�, which blocks both
TASK current and M-current. Application of 1 mM Ba 2� reduced
the slope conductance of the I–V curve over the range from �100
to �40 mV and shifted current inward positive to �80 mV (Fig.
4C, left). However, 10 �M oxo-M still induced inward current in
the presence of 1 mM Ba 2� (Fig. 4C, right). To quantify the effect
of oxo-M under different conditions, we measured its effect on
current at �65 mV, the voltage at which steady-state subthresh-
old current was most outward in control and therefore most
critical for determining whether muscarinic stimulation results
in net inward current to trigger INaP and thereby drives pacemak-
ing. In the absence of K� channel blockers, oxo-M-sensitive cur-
rent at �65 mV was �58 � 17 pA (n � 6) and was not
significantly different in the presence of 10 �M XE991 (�71 � 26

A

C

B

Figure 2. Muscarinic stimulation has little effect on action potential threshold. A, Membrane potential before (left) and after
application of 20 �M ACh (right). B, Action potential during ACh-induced spontaneous firing. The waveform shown is an average
of 20 action potentials aligned on their peaks from the region of firing shown in A. Spike threshold (defined as the voltage at 4% of
the maximum upstroke velocity) and average membrane potential are indicated. C, Determination of spike threshold using a slow
current ramp before (left) and after (right) application of 10 �M ACh. Threshold is defined as the voltage at 4% of the maximum
upstroke velocity of the first elicited action potential.
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pA; n � 5; p � 0.86; Wilcoxon rank sum) or 1 mM Ba 2� (�43 �
11 pA; n � 6; p � 0.54; Wilcoxon rank sum), indicating that
inhibition of M-current and TASK current by muscarinic ago-
nists does not account for the majority of the inward current shift
induced by muscarinic agonists.

These results suggest that in mouse CA1 pyramidal neurons,
the activation of a nonselective cation current rather than inhibi-
tion of TASK channels or M-current likely accounts for most
of the inward current activated by muscarinic stimulation. This
initially seemed surprising, because few neurons showed a clear
decrease in input resistance, as might be expected from activation
of a cation conductance, while in more neurons, the inward shift
of current was accompanied by no change or an increase in input
resistance. Under control conditions, 49 of 65 tested neurons
showed little change (	20%) in input resistance after muscarinic
stimulation, as assayed by the slope of the I–V curve near �80
mV, whereas resistance decreased by �20% in only 3 of 65 neu-
rons and increased by �20% in 13 of 65 neurons (Fig. 5A). The
increase in input resistance in a substantial fraction of cells might
seem to imply a decrease in resting potassium conductance.
However, a resistance increase was also seen in most cells (five of
six) when oxo-M was applied in the presence of 1 mM Ba 2� to
block background potassium conductances (Fig. 5B). A likely
explanation of this result is provided by an analysis in cortical
pyramidal neurons (Haj-Dahmane and Andrade, 1996), where
muscarinic depolarization was found to result primarily from
activation of a nonselective cation current, even though accom-
panied by no change or an apparent increase in input resistance.
This is because the cation current induced by muscarinic stimu-
lation typically has a current–voltage relationship that is flat or
sometimes even rectifying so that it becomes smaller as the mem-

brane potential is hyperpolarized in the range from �60 to �90
mV (Shen and North, 1992; Sims, 1992; Haj-Dahmane and An-
drade, 1996), thus resulting in no change or a decreased slope
conductance in the I–V curve near �80 mV.

Dissection of pacemaking currents
We next attempted to quantify the relative contributions of spe-
cific inward currents to driving pacemaking. We focused on three
conductances previously associated with pacemaking in various
neuronal types: hyperpolarization-activated cation current, per-
sistent sodium current, and low-threshold calcium current. Each
of these currents is known to be present in CA1 pyramidal neu-
rons (French et al., 1990; Maccaferri et al., 1993; Su et al., 2002),
and each has been identified as contributing to pacemaking in
other cell types [Ih (McCormick and Pape, 1990; Maccaferri and
McBain, 1996), INaP (Bevan and Wilson, 1999; Bennett et al.,
2000), ICa (Puopolo et al., 2007; Marcantoni et al., 2010)]. We

A

B

Figure 3. Effect of cholinergic stimulation on steady-state current–voltage relationship. A,
Firing behavior in current-clamp mode of a neuron before and after application of ACh. B,
Current–voltage relationships determined in voltage clamp in the same cell before (black) and
after application of ACh (blue) using a slow voltage ramp (20 mV/s) from �98 to �28 mV
(inset). Current traces were obtained within 1 min of the voltage traces shown in A. Currents are
plotted as a function of the command voltage. Each current trace was signal averaged from two
sweeps. Note the shift of maximum ramp-evoked current between �79 and �55 mV from net
outward to net inward after muscarinic stimulation.

A

D

C

B

Figure 4. Inhibition of M-current and TASK current does not contribute substantially to the
inward current shift elicited by muscarinic stimulation. A, Current–voltage relationships elic-
ited by slow voltage ramps (10 mV/s) from �108 to �8 mV in control conditions (black) and
after application of 10 �M oxo-M (blue). Note the inward shift in current caused by oxo-M.
External solutions included 1 �M TTX to better isolate potassium currents. Currents are plotted
as a function of the command voltage. Each current trace was signal averaged from two sweeps.
B, Effect of 10 �M XE991 (XE) and effect of adding oxo-M in the continued presence of XE991. C,
Effect of 1 mM BaCl2 to block both TASK current and M-currents (left) and subsequent effect of
oxo-M in the same cell (right). D, Population data showing that the presence of XE991 (n � 5)
or barium (n � 6) does not change the amount of current induced by oxo-M measured at �65
mV compared to control conditions (n � 6; control vs XE991, p � 0.86; control vs barium, p �
0.54; Wilcoxon rank sum). Small gray dots represent individual cells. n.s., Not significant.
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used blockers to define each current during both slow voltage
ramps and waveforms of the cell’s own spontaneous firing, using
TTX to define voltage-dependent INaP (French et al., 1990),
ZD7288 to define Ih (Gasparini and DiFrancesco, 1997), and
nickel to define low-threshold calcium current carried by T-type
and R-type channels (Su et al., 2002; Metz et al., 2005; Yaari et al.,
2007; Park et al., 2010).

An example experiment is shown in Figure 6A–E. After induc-
ing spontaneous firing by application of a muscarinic agonist
(Fig. 6A), we recorded current during slow voltage ramps and
successively applied 1 �M TTX to define INaP (Fig. 6B), 10 �M

ZD7288 to define Ih (Fig. 6C), and 100 �M Ni 2� to define low-
threshold calcium current carried by T-type and R-type channels
(Fig. 6D). Of these three currents, INaP was by far the largest. INaP

began to activate detectably near �75 mV and increased with
depolarization to reach a peak of �165 pA near �45 mV (Fig.
6E). In contrast, both Ih and low-threshold calcium current were
almost undetectable at voltages between �70 and �50 mV. A
small Ih was evident at voltages negative to �70 mV and was
maximal (approximately �45 pA) near �95 mV. A small low-
threshold calcium current as defined by nickel inhibition acti-
vated positive to �50 mV and reached a maximum of �20 pA
near �35 mV.

Figure 6F shows collected results comparing the three cur-
rents using slow voltage ramps in neurons that were spontane-
ously active after muscarinic stimulation. On average, INaP was
first evident around �75 mV and increased with depolarization
to a maximum of �285 � 38 pA at �45 mV (n � 7) in a steeply

voltage-dependent manner (V1/2 � �53 � 1 mV; k � 5.3 � 0.4
mV; n � 7). Ih was maximal at �106 mV (�47 � 13 pA; n � 8),
decreased with depolarization to near zero around �80 mV
(�2.1 � 5.9 pA), and remained minimal or zero up through

A

B

Figure 5. A, Histogram of the fractional change in input resistance resulting from muscarinic
stimulation in all cells. Input resistance was measured from the slope of the current–voltage
relation from �83 to �78 mV (Fig. 3B, gray). Muscarinic stimulation, on average, had no
significant effect on membrane resistance (control, 120 � 4 M�; after muscarinic stimulation,
127 � 6 M�; n � 65; p � 0.43). B, Input resistance changes in individual cells resulting from
application of 1 mM BaCl2 (middle) and subsequent application of 10 �M oxo-M (right) in the
continued presence of BaCl2 (with 1 �M TTX in all solutions, as in Fig. 4C). Note increase in
resistance in five of six cells by oxo-M application in the presence of Ba 2�.

A

C

E

F

D

B

Figure 6. Persistent sodium current is prominent at pacemaker voltages after muscarinic
stimulation, but Ih and low-threshold calcium current are minimal. A–E, Illustration of strategy
used to measure INaP, Ih, and low-threshold calcium current in a spontaneously firing neuron. A,
Firing behavior recorded in current clamp before and after application of 5 �M ACh. B–D,
Currents evoked by slow voltage ramps (20 mV/s) from �98 to �28 mV were then recorded
from the cell while serially adding 1 �M TTX (B, red) to define INaP, 10 �M ZD7288 (ZD; C, blue)
to define Ih, and 100 �M NiCl2 (D, green) to define low-threshold calcium current. Each trace in
B–D was signal averaged from two sweeps. E, TTX-, ZD7288-, and NiCl2-sensitive current dur-
ing ACh stimulation obtained by subtracting the traces in B–D. F, Collected results from the
same experimental protocol in multiple CA1 neurons, showing average INaP (circles; n � 7), Ih

(squares; n � 7), and ICaT/L (triangles; n � 6). INaP was defined as TTX-sensitive current. Ih was
defined as ZD7288-sensitive current in the presence of TTX. ICaT/L was defined as current sensi-
tive to 100 �M nickel and 10 �M nimodipine coapplied in the presence of TTX. The pacemaking
voltage region is bounded by the lowest trough voltage observed in a spontaneously active cell
(�70 mV) and 4 mV below the mean spike threshold during spontaneous activity (�60 mV).
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about �50 mV (Fig. 6F). In this series of experiments, low-
threshold calcium current was defined by coapplication of 10 �M

nimodipine together with 100 �M Ni 2� to account for a potential
contribution of L-type calcium current from Cav1.3 (Xu and
Lipscombe, 2001) in addition to T-type and R-type channels. We
found essentially zero calcium current across the entire sub-
threshold voltage range (�5.5 � 7.5 pA at �80 mV up to �0.8 �
8.9 pA at �50 mV; n � 6; Fig. 6F).

The voltage region most important for pacemaking is from
�70 mV (the lowest trough voltage we observed during sponta-
neous firing) to about �60 mV (�4 mV hyperpolarized to the
mean spike threshold during activity). These results show that in
this voltage region, INaP is relatively large and increases steeply
with voltage. Conversely, we found almost no inward current
from Ih and T- and L-type calcium current (ICaT/L) at these pace-
making voltages, suggesting that they play little role in pacemak-
ing in CA1 pyramidal neurons.

INaP , Ih , and ICa during spontaneous firing
Slow voltage ramps characterize current behavior under steady-
state conditions. However, during spontaneous firing, the voltage
trajectory is different. For instance, the interspike interval is im-
mediately preceded by a spike and also typically depolarizes more
quickly than during slow ramps (20 mV/s). To directly test the
behavior of INaP, Ih, and ICaT/L during spontaneous activity, we
used blockers to quantify their activity during interspike intervals
by applying records of the cell’s own spontaneous activity as a
voltage-clamp command (action potential clamp). Figure 7, A
and B, shows an example experiment, recorded from the same
neuron as in Figure 6A–E. Ih and T-type calcium current during
the interspike interval were both close to zero and did not
change as the interspike interval progressed (Fig. 7B). Con-
versely, sodium current was already sizeable at the beginning of
the interspike interval and increased as the membrane potential
approached threshold.

Figure 7C shows collected results comparing the interspike
behavior of these three currents. On average, interspike sodium
current was �35 � 12 pA at �66 mV (n � 8) and increased with
depolarization to �91 � 18 pA at �59 mV, after which an action
current was generated. We found essentially no current from Ih

(�2.2 � 8.6 pA at �66 mV to �0.7 � 8.6 pA at �59 mV; n � 5),
nor from T- and L-type calcium current (�1.9 � 3.4 pA at �66
mV and �2.4 � 2.6 pA at �59 mV; n � 5). Some individual cells
showed small inward currents during interspike intervals from Ih

and calcium current, but these were always much smaller than the
sodium current in the same cell (Fig. 8). In agreement with the
results from the slow ramp experiments, these results suggest that
INaP is the principal driver of spontaneous firing in CA1 pyra-
midal neurons, and that Ih and calcium current play at most a
small role.

To test in another way whether Ih plays any role in driving
spontaneous activity, we applied 10 �M ZD7288 after inducing
firing with muscarinic agonist. In most cells tested (8 of 11),
spontaneous firing persisted in ZD7288 (Fig. 9A). In 3 of 11
neurons, firing stopped within a few minutes of application of
ZD7288. We also tested the effect of blocking L-type calcium
channels with nimodipine, which inhibits pacemaking in some
other cell types (Puopolo et al., 2007; Marcantoni et al., 2010) and
some instances of spontaneous firing in CA1 pyramidal neurons
induced by hyperthermia (Radzicki et al., 2013). Firing induced
by muscarinic stimulation persisted after application of 10 �M

nimodipine in five of six cells tested (Fig. 9B), indicating that
L-type calcium currents are not required for spontaneous firing.

In four of these cells, after application of nimodipine, we also
added 100 �M Ni 2�, and firing persisted in all cases. The cessa-
tion of firing after ZD7288 application in three cells and after
nimodipine application in one cell may indicate that a small cur-

A

B

C

Figure 7. INaP, but not Ih or low-threshold calcium current, grows dynamically during the
interspike interval after muscarinic stimulation. A, Section of firing recorded during application
of ACh (top), and the total current recorded under voltage clamp, using the recorded firing as a
voltage command in the same cell (bottom). Data are from the same cell shown in Figure 6. B,
Expanded view showing the TTX-, ZD7288-, and NiCl2-sensitive current flowing during the
interspike interval. Currents were obtained by subtraction as in Figure 6. Currents were signal
averaged from five sweeps before subtraction. C, Collected results for measurement of INaP

(circles; n � 8), Ih (squares; n � 5), and T- and L-type calcium current (triangles; n � 5) during
the interspike interval, plotted as a function of voltage. INaP was defined as TTX-sensitive cur-
rent. Ih was defined as ZD7288-sensitive current in the presence of TTX. ICaT/L was defined as
current sensitive to 100 �M nickel and 10 �M nimodipine coapplied in the presence of TTX.
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rent from Ih or low-threshold L-type calcium currents can make
the difference between a just barely inward or just barely outward
net current in the critical voltage region near �70 to �65 mV.
However, because some cells desensitize to the effects of musca-
rinic agonists and stop firing without any intervention during
long agonist applications, we cannot exclude the possibility that
the cessation of firing in these cases would have occurred without
block of Ih or low-threshold L-type current.

Discussion
Our results show that CA1 pyramidal neurons have an intrinsic
ability to generate spontaneous activity, which is revealed by
muscarinic stimulation. Muscarinic stimulation induced a depo-

larization by shifting the balance of membrane current from net
outward to net inward in the �70 to �65 mV voltage region. The
resulting net inward current then recruits regenerative depolar-
ization via voltage-dependent activation of INaP, thereby driving
spontaneous activity. Although present in CA1 pyramidal neu-
rons, Ih carries very little current during the pacemaking cycle
because it is largely deactivated at pacemaking voltages (greater
than �70 mV). Calcium current also apparently contributes very
little to pacemaking.

Current–voltage dynamics during spontaneous firing
The induction of spontaneous activity by muscarinic stimulation
can be understood by analyzing the steady-state current–voltage
relationships obtained by slow voltage ramps (Fig. 3), using pre-
viously developed concepts relating I–V dynamics to repetitive
firing (Rinzel and Ermentrout, 1998; Bennett et al., 2000; Farries
et al., 2010). This steady-state I–V curve has an “N” shape due to
a negative slope region resulting from TTX-sensitive INaP. Under
control conditions, this N-shaped curve has a net outward cur-
rent region enclosed by two zero-current intercepts, one around
�75 mV, where the slope is positive, and one around �60 mV,
where the slope is negative.

The intercept near �75 mV occurs where the I–V curve has
positive slope and thus corresponds to a stable resting potential.
After muscarinic stimulation, the I–V curve is shifted inward.
Without the negative slope region created by INaP, this inward
shift would simply cause a small depolarization in resting poten-
tial (as it does with TTX present; Fig. 4A). However, because of
INaP, the curve reverses just before it reaches zero, and the stable
point represented by the zero-current intercept is lost. Conse-
quently, current is net inward at all subthreshold voltages, and
the cell will depolarize and fire from any voltage. In this condi-
tion, as long as there is sufficient repolarizing K� current to avoid
depolarization block, the cell will be spontaneously active. Thus,
muscarinic stimulation converts a quiescent cell into a spontane-
ously active one because it shifts the balance of steady-state cur-
rent at voltages between �75 and �60 mV from net outward to
net inward, and thereby eliminates a stable resting potential. The
negative slope region conferred by INaP means that current is
increasingly inward once the cell depolarizes to �65 mV, produc-
ing further regenerative depolarization that drives the cell to
threshold. The same mechanism involving regenerative recruit-
ment of INaP likely operates during other conditions that induce
spontaneous firing in CA1 pyramidal neurons such as low exter-
nal calcium (Konnerth et al., 1984; Taylor and Dudek, 1984),
high temperature (Kim and Connors, 2012), or Kv7 blockade
(Shah et al., 2008), and also during tonic repetitive firing under
control conditions (Stafstrom et al., 1982), where a steady current
injection mimics the inward shift due to muscarinic stimulation.

The shape of the I–V curve also suggests an explanation for the
bistable behavior we sometimes saw after muscarinic stimulation
in which a cell oscillated between quiescence and spontaneous
firing. If muscarinic stimulation shifts the I–V curve so the peak
near �70 to �65 mV is just barely outward, the I–V curve retains
two zero-current intercepts, but they are now very close together.
The second (more positive) intercept is unstable, because it oc-
curs in a region where the I–V curve has negative slope, meaning
that movement in either direction away from the intercept volt-
age recruits a positive feedback loop that drives the membrane
farther away from the starting voltage. Thus, a cell with just barely
net outward current sitting at rest will be sensitive to small tran-
sient fluctuations in voltage, which can easily reach the nearby
unstable second intercept voltage and trigger firing.

Figure 8. Current from INaP, Ih, and ICaT/L during the interspike interval in individual cells.
Currents were determined from action-potential-clamp experiments as shown in Figure 7C,
averaged from �66 to �59 mV. Connected data points indicate data from the same cell. Small
gray lines represent individual cells.

A

B

Figure 9. Ih and L-type calcium channels are not required for muscarinic-induced pacemak-
ing in CA1 pyramidal neurons. A, Block of Ih by 10 �M ZD7288 (right) does not halt spontaneous
firing induced by application of 10 �M oxo-M (middle). B, Block of L-type calcium channels by
10 �M nimodipine (right) also does not halt spontaneous firing induced by application of 5 �M

oxo-M (middle).
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Ionic mechanism of muscarinic depolarization
In rat CA1 neurons, muscarinic stimulation both inhibits back-
ground potassium currents and activates a nonselective cation
current. Our results suggest that the latter mechanism is domi-
nant in mouse CA1 pyramidal neurons, since the inward shift of
current by muscarinic stimulation was not significantly affected
by blocking M-current or TASK channels. The effects of musca-
rinic stimulation in our experiments were very similar to those in
rat cortical pyramidal neurons (Haj-Dahmane and Andrade,
1996), where activation of a nonselective cation current is accom-
panied by no change or an increase in input resistance, because of
rectification of the cation current. This rectifying behavior is typ-
ical of TRPC channels (Cvetkovic-Lopes et al., 2010; Wang et al.,
2011), which are plausible candidates for mediating the musca-
rinic cation current (Tai et al., 2011; but see Dasari et al., 2013).
TRPC channels have also been proposed to underlie the
muscarine-sensitive calcium-activated nonselective (CAN) cur-
rent that supports persistent repetitive firing in entorhinal corti-
cal neurons (Klink and Alonso, 1997; Zhang et al., 2011; Yoshida
et al., 2012). Indeed, persistent firing in entorhinal cortex and
spontaneous firing in CA1 pyramidal neurons may share an un-
derlying mechanism in which a TRPC-like muscarine-sensitive
cation current provides a small steady depolarization that acti-
vates a larger voltage-dependent pacemaking current to generate
repetitive firing.

Persistent sodium current and pacemaking drive
In CA1 pyramidal neurons, INaP plays the dominant pacemaking
role by providing a large and dynamic current at subthreshold
voltages. A key feature of INaP is its steep voltage dependence,
doubling every 3–5 mV, which provides a strongly regenerative
element: inward current produces depolarization, which in turn
activates a larger inward current. This positive feedback property
of INaP at subthreshold voltages is similar in principle to the ex-
plosively regenerative behavior of transient sodium current
above spike threshold, but on a smaller and slower scale. Because
the steep voltage dependence of INaP is an intrinsic feature of this
current, a propensity toward spontaneous firing can be viewed as
an intrinsic tendency of any cell with a sizable INaP. Indeed, INaP

underlies pacemaking in many spontaneously active cell types
(Uteshev et al., 1995; Bevan and Wilson, 1999; Koizumi and
Smith, 2008; Khaliq and Bean, 2010; Milescu et al., 2010). Many
other neuronal types, including cortical pyramidal neurons
(Stafstrom et al., 1982; Fleidervish and Gutnick, 1996), have large
INaP but are normally quiescent like CA1 pyramidal neurons.
Presumably, such neurons express sufficient outward current be-
tween �75 and �65 mV to hold INaP in check. However, our
results suggest that INaP predisposes these neurons to spontane-
ous activity that can be engaged by relatively small changes in
resting potential. This property may make neurons with large
INaP particularly susceptible to hyperexcitability disorders such as
temporal lobe epilepsy. Indeed, INaP is enhanced in some sodium
channel mutations linked to epilepsy (Lossin et al., 2002;
Stafstrom, 2007), and chronic seizure models lead to upregula-
tion of INaP in hippocampal and cortical pyramidal neurons
(Agrawal et al., 2003; Blumenfeld et al., 2009; Chen et al., 2011).

Although INaP provides the main depolarizing drive for pace-
making, many other conductances in the cell will affect features
of spontaneous activity. For example, contribution of subthresh-
old currents like M-current and IA may partly oppose and slow
the pacemaking depolarization from INaP, and suprathreshold
potassium currents activated during the spike will determine the
voltage after the spike from which pacemaking occurs. Exactly

how such currents interact with INaP to shape the frequency of
spontaneous activity remains to be determined.

Triggering current versus pacemaking current
A notable feature of the I–V curves in the presence of muscarinic
stimulation is that the local maximum near �70 to �65 mV is
often only a few picoamperes negative to zero current. This
means that a very small change in any current in this voltage
region can make the difference between a barely inward net cur-
rent that triggers engagement of INaP and a barely outward net
current that results in a stable resting potential. For example, a
current from Ih or low-threshold L-type calcium current of only a
few picoamperes near �65 mV could tip the balance between
a just-outward or a just-inward current at the critical voltage.
This could explain the cessation of firing seen with ZD7288 in 3 of
11 cells, and with nimodipine in 1 of 6 cells. A very small but
nonzero Ih at voltages near �65 to �70 mV would be consistent
with a contribution of Ih to resting potential seen in some CA1
pyramidal neurons (Fisahn et al., 2002; Dougherty et al., 2013).
Interestingly, mild hyperthermia enhances subthreshold calcium
current in CA1 pyramidal neurons and can induce spontaneous
firing that is more readily blocked by nimodipine (Radzicki et al.,
2013) than muscarine-activated firing.

These results illustrate the limitation of approaching the
mechanism of pacemaking solely by using blockers in current-
clamp recordings. Reduction of any inward current near �65 mV
by only a few picoamperes might stop pacemaking, but would not
necessarily indicate that the blocked current provides a major
depolarizing drive during the pacemaking cycle, which in CA1
pyramidal neurons is clearly provided by INaP. The voltage-clamp
results allow a distinction between the tiny net current near �65
mV that triggers pacemaking versus the much larger inward cur-
rent from INaP that flows depolarized to �65 mV and is mainly
responsible for driving pacemaking.
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