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Neuregulin-1 Impairs the Long-term Depression of
Hippocampal Inhibitory Synapses by Facilitating the
Degradation of Endocannabinoid 2-AG
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Endocannabinoids play essential roles in synaptic plasticity; thus, their dysfunction often causes impairments in memory or cognition.
However, it is not well understood whether deficits in the endocannabinoid system account for the cognitive symptoms of schizophrenia.
Here, we show that endocannabinoid-mediated synaptic regulation is impaired by the prolonged elevation of neuregulin-1, the abnor-
mality of which is a hallmark in many patients with schizophrenia. When rat hippocampal slices were chronically treated with
neuregulin-1, the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids, was enhanced due to the increased
expression of its degradative enzyme, monoacylglycerol lipase. As a result, the time course of depolarization-induced 2-AG signaling was
shortened, and the magnitude of 2-AG-dependent long-term depression of inhibitory synapses was reduced. Our study reveals that an
alteration in the signaling of 2-AG contributes to hippocampal synaptic dysfunction in a hyper-neuregulin-1 condition and thus provides
novel insights into potential schizophrenic therapeutics that target the endocannabinoid system.

Introduction

Endocannabinoids (eCBs) are involved in cognitive and emo-
tional behaviors via the regulation of synaptic plasticity (Zanet-
tini et al., 2011; Castillo et al., 2012). Therefore, the dysfunction
of the eCB system is implicated in many psychiatric disorders;
however, the role of eCBs in schizophrenia is unclear (Marco et
al., 2011). eCBs are released from neurons upon an increase in
intracellular calcium and/or the activation of G-proteins.
Then, eCBs stimulate presynaptic type 1 cannabinoid receptors
(CBI1Rs) to block neurotransmission, before being taken up into
cells for enzymatic degradation. CB1Rs are widely expressed in
the brain, including areas involved in schizophrenia, such as the
prefrontal cortex and hippocampus. Alterations in the eCB sys-
tem are found in some schizophrenic patients and animal mod-
els, implying the involvement of eCBs in this disease (Giuffrida et
al., 2004; D’Souza et al., 2005; Boucher et al., 2007b; Vigano et al.,
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2009); however, the pathological mechanisms of eCBs are
uncertain.

The expression and function of neuregulin-1 (NRGI1), a
growth factor, and its receptor, ErbB receptor tyrosine kinase, are
often altered (either increased or decreased) in many patients
with schizophrenia (Mei and Xiong, 2008; Banerjee et al., 2010;
Buonanno, 2010; Rico and Marin, 2011). These observations sug-
gest that a normal range of NRG1-ErbB signaling is essential for
cognitive integrity. NRGI is expressed primarily in glutamatergic
neurons and also in interneurons and astrocytes (Bernstein et al.,
2006; Liu et al., 2011). Among four types of ErbB (ErbB1-4), only
ErbB4 both binds to NRGI1 and possesses an active tyrosine ki-
nase domain; additionally, ErbB4 is the major ErbB that has been
implicated in schizophrenia (Mei and Xiong, 2008; Banerjee et
al., 2010; Buonanno, 2010). ErbB4 in the brain is expressed
largely in various types of y-amino acid butyric acid (GABA)-
ergic interneurons (Yau et al., 2003; Vullhorst et al., 2009; Ned-
dens and Buonanno, 2010). In the stratum radiatum of the
hippocampal CA1 area, 20% and 6% of ErbB4-expressing in-
terneurons coexpress cholecystokinin (CCK) and parvalbumin
(PV), respectively (Neddens and Buonanno, 2010). In contrast,
PV interneurons compose 50—60% of ErbB4-expressing cells in
the hippocampal dentate hilus (Neddens and Buonanno, 2010)
and neocortex (Abe et al., 2011).

Despite the diversity of interneurons, studies on the NRG1-
ErbB4 function in interneurons have been limited to PV in-
terneurons (Chen et al., 2010; Wen et al., 2010; Li et al., 2012;
Shamir et al., 2012; Tan et al., 2012), in part because of the high
incidence of PV/ErbB4 coexpression in some brain areas. Along
with PV cells, CCK-expressing interneurons form a major basket
cell population. Among many differences between PV and CCK
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interneurons, the presence of CB1Rs in CCK, but not PV, in-
terneurons (Katona et al., 1999) is one of the sharpest contrasts.
Because NRG1-ErbB4 signaling in CCK cells is not well known,
the role of eCBs in NRG1-mediated pathology remains elusive.

Here, we report that the chronic elevation of NRGI in hip-
pocampal slice cultures curtails the action of 2-arachi-
donolyglycerol (2-AG), one of the major eCBs, by increasing the
expression of a 2-AG degradative enzyme, monoacylglycerol
lipase (MGL).

Materials and Methods

Hippocampal slice culture. Organotypic slice cultures were prepared from
isolated hippocampi of 14- to 15-day-old male Sprague Dawley rats
(Harlan Laboratories) that were isoflurane-anesthetized and decapi-
tated. Slices (350 wm thick) were made with a vibrating slicer (Leica
VT1200S) in ice-cold saline, which consisted of 108 mm NaCl, 2.5 mm
KCl, 45 mm NaHCOj3, 1 mm NaH,PO,, 0.5 mm CaCl,, 5 mm MgSO,, 12
mM glucose, and 0.5 mM ascorbic acid (300—-305 mOsm), and were bub-
bled with carbogen (95% O, and 5% CO,). After washing the slices with
37°C culture medium, we placed them on culture membranes (Milli-
pore) at the interface of the culture medium and air at 37°C. The medium
was exchanged every 2-3 d and was composed of 50% Basal Medium
Eagle, 25% Earle’s salt solution, 25% horse serum, 2 mM L-glutamine, 10
mM HEPES, and additional 5 mm glucose. The protocol was approved by
the Institutional Animal Care and Use Committee of Georgia Regents
University.

Electrophysiology. Recordings were made from hippocampal slice cul-
tures at 19-25 DIV. The treatment of slice cultures with NRG1 (5 nwm;
B-type epidermal growth factor domain) started as early as 11 DIV and
lasted 8—11 d, except for the experiment illustrated in Figure 2C, D. In all
electrophysiological experiments, we blocked the evoked GABA release
from CB1R-negative synapses by preincubating slices for 15-30 min with
300 nm w-agatoxin IVA (Wilson et al., 2001), an irreversible inhibitor of
P/Q-type calcium channels. Whole-cell voltage-clamp recordings from
CA1 pyramidal neurons were made at a holding potential of —65 mV at
32 *+ 0.5°C while the recording chamber was perfused with bath solution
at 1.6—1.8 ml/min. The bath solution contained 128 mm NaCl, 2.5 mm
KCl, 26 mm NaHCOj3, 1 mm NaH,PO,, 2 mm CaCl,, 2 mm MgSO,,, and 12
mu glucose (300—305 mOsm) and was equilibrated with carbogen. The
electrode resistance in the bath solution was 3—5 M(), and the series
resistance (<20 M()) was stable within 15%. Signals were amplified by a
Multiclamp 700B amplifier (Molecular Devices), filtered at 2 kHz,
and digitized at 50 kHz by a Digidata 1440A and the Clampex 10 program
(Molecular Devices). The pipette solution contained 129 mwM
K-gluconate, 2 mm NaCl, 1 mm QX314-Cl, 4 mm MgSO,, 0.2 mm CaCl,,
2mMm EGTA, 3 mm ATP-Na, 0.3 mm GTP-Na, 10 mm HEPES, and 10 mm
phosphocreatine di(tris) (pH 7.2 with ~15 mm KOH, 290-295 mOsm).
In the experiments of the long-term depression of inhibitory synapses
(iLTD), CaCl, and EGTA in the pipette solution were replaced with 20
mM BAPTA, and K-gluconate was reduced to 86 mm. We used 20 mm
BAPTA in the iLTD pipette solution because a high concentration of
calcium buffer does not affect iLTD (Chevaleyre and Castillo, 2003) but
blocks the metabotropic glutamate receptor (mGluR)-dependent
GABAergiclong-term potentiation (LTP) (Patenaude etal., 2003), which
might obscure the expression of iLTD, as was occasionally observed with
2 mm EGTA in pipettes in our pilot experiment (data not shown).

The evoked IPSC (eIPSC) was recorded in the presence of NBQX (5
uM) and CGP37849 (5 um) and was elicited by a stimulus via a 6 glass
electrode (1020 pum tip diameter) that was filled with the bath solution
and was within the CA1 stratum pyramidale. The presynaptic stimulus
was delivered every 6 s in the depolarization-induced suppression of
inhibition (DSI) experiments and every 12 s in all other eIPSC record-
ings. The vehicle for most cannabinoid drugs was ethanol, which has little
effect on eIPSC amplitudes (Kim and Alger, 2010): 0.01-0.036% (v/v)
for methanandamide (mAEA), 0.01% for SR141716, 0.01-0.02% for
AMA404, and 0.04% for PD158780. We prepared the JZL184 stock solu-
tion by dissolving JZL184 in DMSO to 100 mm and then diluting to 10
mM with ethanol. When slices were treated with both PD158780 and
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NRG1, PD158780 preceded NRG1 by 0.5-1 h. NBQX, CGP37849, gaba-
zine, and mAEA were purchased from Abcam; NRG1, AM404, DHPG,
and PD158780 were from R&D Systems; URB597 was from Cayman
Chemical; and JZL184 was from R&D Systems or Cayman Chemical.
w-Agatoxin IVA was from Peptide International. Basal Medium Eagle
and horse serum were from Invitrogen. Other chemicals were obtained
from Sigma-Aldrich. SR141716 was a gift from the National Institute on
Drug Abuse.

Western blot. Proteins for one set of Western blot experiments were
extracted from six cultured slices. After being washed with carbogenated
bath solution, slices were transferred to RIPA buffer, which was com-
posed of 150 mm NaCl, 1% NP-40, 0.25% deoxycholate, 0.1% SDS, 50
mwM Tris, and 1 mm EDTA (pH 8.0; supplemented with protease inhibitor
mixture), and were homogenized by sonication for 30 s at 2-5°C. The
homogenates were centrifuged for 10 min at 4°C. The protein samples
were denatured at 70°C for 5 min, run on a SDS-PAGE gel, and then
transferred onto nitrocellulose membrane (Bio-Rad). The membranes
were washed with PBS containing Tween 20, blocked with 5% BSA in
Tween PBS, and probed with one of the primary antibodies: rabbit anti-
MGL (1:500) or rabbit anti-CB1R (1:500) antibody (Cayman Chemical).
After overnight probing at 4°C, the membranes were washed with Tween
PBS for 5 X 5 min and were incubated with HRP-conjugated anti-rabbit
IgG (1:3000; Bio-Rad) for 1 h at 22-24°C. Bands were visualized with a
chemiluminescent detection system (Pierce). Then, the membranes were
reused for two cycles of stripping/reprobing with an unused primary
antibody (MGL or CB1R) or rabbit anti-B3-actin antibody (1:100; Santa
Cruz Biotechnology). Western blot films were scanned on a film scanner
(Epson Perfection V700) at 1200 DPI, and the grayscale of bands were
measured with ImageJ software (National Institutes of Health). Band
intensities, after being subtracted by band-free background intensity,
were normalized to the B-actin signal from the same lanes. In each ex-
periment, the signals of NRG1-treated slices were normalized to that of
sister control slices.

Data analysis. All DSI experiments were performed >15 min after the
establishment of a whole-cell recording for the stabilization of the intra-
cellular condition. Postsynaptic cells were depolarized every 3 min; and
for a given cell, 2-5 DSI trials were averaged, except for the DSIs in the
presence of JZL184 and AM404; we applied JZL184 or AM404 for 20-30
min without depolarization to avoid any potential accumulation of eCBs
in the extracellular space and then recorded 1 or 2 DSI episodes. The first
IPSC after each depolarization was evoked 2 s after the termination of
depolarization in all DSI experiments. A recovery of the e[PSC ampli-
tudes from DSI was fitted with an exponential function, f{(t) = Ae™ T+ C,
where tis the time of eIPSC relative to the first postdepolarization eIPSC,
Tisatime constant, and A and C are adjustment variables. The fitting was
performed in a 90 s range that started from the first postdepolarization
eIPSC, except for the DSIs in JZL184. In the presence of JZL184, because
the initiation of recovery from DSI was delayed by ~5 s, the fitting was
conducted for a 100 s range that started from the second eIPSC. The peak
amplitudes of e[PSCs were measured over a 0.4 ms window. Drug-
induced changes in eIPSC amplitudes were measured when the changes
reached a steady state: 10—13 min after the onset of SR141716, 15-20 min
after AM404, 12-15 min after 0.4 um DHPG, 47-52 min after 50 um
DHPG for iLTD, and at variable time points determined blindly for
mAEA. For short-term plasticity, the mean amplitude of the second or
third eIPSC in a 20 Hz train was normalized to the mean of the first
amplitude; the mean amplitudes were obtained from 15-70 eIPSCs.
Stimulus artifacts of eIPSCs were graphically truncated in the figures for
clarity.

The data from NRG1-treated slices were compared only with those
from sister control slices, except for the analysis in Figure 6D (i.e., com-
parisons with non-JZL184 control cells). Comparisons between two
groups were made using f tests with a two-tailed confidence level of p <
0.05. Multiple comparisons were performed with one- or two-way
ANOVA. When ANOVA revealed a significant difference (p < 0.05),
Bonferroni ¢ tests were used for pairwise comparisons.
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Figure 1. The chronic treatment of hippocampal slice cultures with NRG1 (5 nm, 8-11
d) shortens the duration of DSI. A, elPSCs were recorded from CA1 pyramidal neurons, and
the recovery of the amplitude after depolarization (0 mV, 5 s) was examined in control and
NRG1-treated slices. The time after depolarization is indicated above the traces. B, Mean
elPSCamplitudes normalized to the predepolarization baseline were plotted against the
time after the end of depolarization. *p << 0.05 (Bonferroni ¢ test after two-way ANOVA
for the range of 2-205). C, PD158780, an ErbB inhibitor, blocked the effect of NRG1 on the
elPSCrecovery from the DSI (OmV, 55). Slices were treated with 10 .um PD158780and 5 nm
NRG1 or only with the vehicle for PD158780 without NRG1 for 811 d. D, The group data
of DSI from vehicle- or PD158780/NRG1-treated cells. There was no significant difference
in elPSCamplitudes between the two groups in the range of 2-20 5. E, The time constant
of DSI decay, when obtained from a single exponential fitting, in NRG1-treated cells was
significantly smaller than thatin sister control cells. *p = 0.046 (t test). The time constant
in PD158780/NRG1-treated cells was not different from that in vehicle-treated cells. Error
bars indicate SEM.

Results

Chronic treatment with NRG1 shortens the duration of DSI
To chronically increase NRG1 signaling, we treated hippocampal
slice cultures for 8—11 d with NRG1 peptide at 5 nm, which is the
maximum dose for in vitro effects (Woo et al., 2007). The slice
culture method was well suited to our study because (1) NRG1
could be homogeneously applied to all cells; (2) only the effects
directly on the hippocampus could be examined; and (3) life-
long compensation, which could occur in transgenic mice, was
minimized. The function of 2-AG was assayed as DSI, which
is 2-AG-mediated retrograde signaling onto CBI1R-positive
GABAergic terminals (Castillo et al., 2012). Monosynaptic
eIPSCs were recorded from CA1 pyramidal neurons after NRG1
was washed from slices for 0.5-1 h (Fig. 1A-E).

Two seconds after the depolarization (to 0 mV for 5 s) of
postsynaptic cells, eIPSC amplitudes in NRG1-treated cells were
suppressed to 31 = 5% (n = 10) of the predepolarization base-
line, which was similar to that in control cells in sister cultures
(22 = 5%; n = 11) (p = 0.19, Bonferroni ¢ test after two-way
ANOVA; Fig. 1A,B). However, 8 s after depolarization, the
eIPSCs in NRG1-treated slices recovered to 75 = 6% of the base-
line, whereas the control eIPSCs rose only to 54 * 6% of the
baseline (p = 0.002, Bonferroni ¢ test; Fig. 1A, B). The difference
between control and NRG1 groups persisted at 14 s after depo-
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Figure2.  The chronic blockade of ErbB or short-term treatment with NRG1 has no effect on

DSI. A, elPSCs were recorded from cells that were treated with either vehicle or PD158780 (10
um) for 811 d. The time after depolarization (0 mV, 5 5) is indicated above the traces. B, The
group data of DSI from vehicle- or PD158780-treated cells. Normalized eIPSC amplitudes of the
two groups were not different from each other. C, The short-term (1-3 d) treatment of slice
cultures with 5 nm NRG1 did not alter DSI. D, The normalized elPSC amplitude in NRG1-treated
cells was similar to that in control cells during the recovery from DSI. E, The time constant of DSI
decay in PD158780-treated cells was not different from that in sister control cells. After 1-3 d of
treatment with NRG1, the time constant was also similar to that of sister control cells. Error bars
indicate SEM.

larization (p = 0.039, Bonferroni ¢ test; Fig. 1B). The NRGI1-
induced faster recovery from DSI was also evident when the time
constant of the eIPSC recovery, which was obtained from a single
exponential curve fitting, was compared; the time constant was
10.6 = 1.5 sin control cells and 6.4 = 1.2 s in NRG1-treated cells
(p = 0.046, t test; Fig. 1E). This result indicates that the chronic
treatment with NRGI curtails depolarization-induced 2-AG sig-
naling in hippocampal pyramidal neurons.

We tested whether the effect of NRG1 on DSI was mediated by
ErbB receptors. Slice cultures were treated with both NRG1 (5
nM) and PD158780 (10 uMm), an inhibitor of ErbB1, ErbB2, and
ErbB4, for 8—11 d. In PD158780/NRGI-treated cells (n = 12),
NRGI failed to shorten the duration of DSI compared with that
in control cells (n = 10), which were treated with the vehicle for
PD158780 (without NRG1) (p = 0.066, two-way ANOVA; Fig.
1C,D). The time constant of recovery from DSI in the PD158780/
NRGI group (14.1 * 2.9 s) was also similar to that in the vehicle
group (10.2 = 1.0s) (p = 0.26, t test; Fig. 1E). This result suggests
that the NRG1 effect on DSI is mediated by ErbB receptors.

We next examined whether a milder action of NRG1, by either
endogenous low levels of NRG1 or a short-term treatment with
NRG1, could modulate DSI (Fig. 2A—E). Because both upregula-
tion and downregulation of NRGI signaling can induce schizo-
phrenia phenotypes in humans (Hashimoto et al., 2004;
Petryshen et al., 2005; Hahn et al., 2006; Law et al., 2006, 2007;
Bertram et al., 2007; Chong et al., 2008; Barakat et al., 2010;
Shibuya et al., 2010) and rodents (Ehrlichman et al., 2009; Chen
et al., 2010; Dufty et al., 2010; Kato et al., 2010; Deakin et al.,
2012), we hypothesized that the chronic blockade of ErbB, as a
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Figure 3. Treatment with NRGT (5 nm, 8 —11 d) affects neither the function nor the expres-

sion of (B1Rs. A, The suppression of elPSC amplitudes caused by mAEA (0.1 or 5 um), a (B1R
agonist, in NRG1-treated slices was not different from that in control slices. The traces are from
four different representative cells. B, The group data of the mAEA effect on the elPSCamplitude.
C, Western blot analysis shows that the level of (B1R expression was unaffected by NRG1
treatment. In each experiment, the (B1R signal of NRG1-treated slices was normalized to that of
control slices after being normalized to 3-actin intensity. D, The group data from the Western
blot assay of (B1R expression. Error bars indicate SEM.

model of the hypofunction of endogenous basal NRG1, might
also alter the recovery from DSI. When slice cultures were treated
with 10 uM PD158780 (without NRG1), the time course of DSI
decay (n = 8) was similar to that of sister control cells (n = 8)
(p = 0.51, two-way ANOVA; Fig. 2 A, B). Additionally, the time
constant of DSI decay in PD158780-treated cells (13.3 = 0.7 s)
was similar to that in sister control cells (13.8 = 1.0 s) (p = 0.70,
t test; Fig. 2E). Although bidirectional changes in NRG1 may
cause schizophrenia symptoms, the modulation of the eCB sys-
tem appears to be specific to the hyperfunction of NRG1 and not
to the downregulation of basal NRG1 activity in our experimental
conditions.

Next, we tested whether the treatment with 5 nm NRG1 for a
shorter period, 1-3 d, could also curtail the DSI time course. In
this condition, the DSI kinetics in NRG1-treated cells (n = 8)
were not significantly different from those in control cells (n = 7)
(p = 0.46, two-way ANOVA; Fig. 2C,D). The time constant of
DSI decay was also similar in the two groups (12.1 * 3.5 s for
control and 13.7 = 4.8 s for treated cells; p = 0.80, ¢ test; Fig. 2E).
Together, these results indicate that the prolonged and strong
stimulation of ErbB receptors was necessary for the NRG1 effect
on DSI to occur. In all other subsequent experiments, the treat-
ment with NRGI lasted 8—11 d. The NRG1-induced change in
DSI was an entirely CB1R-dependent phenomenon because the
DSI in both groups could be blocked by 1 um SR141716, a CB1R
antagonist. In SR141716, the mean eIPSC amplitudes at 2 s after
depolarization (0 mV, 5 s) were 91 = 3% (n = 6) of the baseline
in control cells and 94 = 2% (n = 8) in cells treated with NRG1 (5
nM, 8—11 d).

NRGI treatment preserves CB1R expression and function

To test whether a reduction in CBIR function is involved in
the faster recovery from DSI, we probed the sensitivity of
agatoxin-resistant eIPSCs to mAEA, a specific CB1R agonist.
The suppression of eIPSC amplitudes caused by 0.1 um mAEA
in NRG1-treated cells (60 = 10% of baseline; n = 11) was not
significantly different from that in control cells (70 * 4% of
baseline; n = 8) (p = 0.41, ¢ test; Fig. 3A, B). The effect of 5 um
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mAEA in NRGI-treated cells (12 * 5% of baseline; n = 6) was
also similar to that in control cells (11 * 5% of baseline; n = 5)
(p = 0.87, t test; Fig. 3A,B). This finding indicates that the
chronic treatment with NRG1 did not alter the CBIR function. In
addition, the expression of CB1R was not affected by the NRG1
treatment when examined with a Western blot method; the level
of CBIR expression in NRG1-treated slices was 100 = 6% of the
control level (n = 6 experiments; p = 0.98, one-sample ¢ test vs
100%; Fig. 3C,D).

Enhanced expression and function of MGL contribute to the
faster recovery from DSI

Because changes in 2-AG degradation often affect the DSI time
course (Kim and Alger, 2004; Makara et al., 2005; Pan et al,,
2009), we hypothesized that the NRG1-induced facilitation of
IPSC recovery from DSI was the result of an increase in the func-
tion and/or expression of MGL, which is a major degradative
enzyme for 2-AG. First, we directly probed changes in the protein
levels of MGL. Western blot assays showed that the expression of
MGL in NRGI-treated slices was 20 = 5% higher than that in
control slices (n = 5 experiments; p = 0.016, one-sample t test vs
100%; Fig. 4A, B). If the increase in MGL expression contributes
to the faster decay of DSI, a blockade of MGL would equalize the
difference in the DSI time course between control and NRG1-
treated cells (e.g., in the presence of JZL184, a specific MGL in-
hibitor). We applied JZL184 (1 um) to the bath solution for
25-30 min and then measured DSI. JZL184 slowed the IPSC
recovery from DSI in both control and NRG1-treated cells, as
predicted (Pan etal., 2009, 2011), resulting in no difference in the
DSI time course between control (n = 8) and NRG1-treated cells
(n=29) (p = 0.42, two-way ANOVA; Fig. 4C,D). The time con-
stant of DSI decay in NRG1-treated cells (25.6 * 6.2 s) was also
similar to the control value (22.8 = 3.8 s) (p = 0.71, t test; Fig.
4@G). This result shows that MGL activity is necessary for NRG1-
treated cells to display the shorter DSI time course, and thus
implies that MGL is involved in the effect of chronic NRG1 treat-
ment on the DSI time course.

We investigated whether the NRG1-induced change in DSI
was specific to MGL and not to another eCB degradative enzyme,
fatty acid amide hydrolase (FAAH), which hydrolyzes another
major eCB anandamide. We measured DSI in the presence of
URB597, a specific FAAH inhibitor, in the extracellular solution
during the eIPSC recording. The eIPSC amplitudes at 8 and 14 s
after depolarization in NRG1-treated cells (n = 6) were signifi-
cantly larger than those in control cells (n = 7) (p < 0.005,
Bonferroni ¢ test after two-way ANOVA; Fig. 4E). The time con-
stant of DSI decay in NRG1-treated cells (7.1 £ 0.7 s) was smaller
than that in sister control cells (13.7 £ 2.2's) (p = 0.021, ¢ test;
Fig. 4G). This result indicates that the effect of NRG1 on DSI is
not dependent on FAAH.

Because 2-AG degradation drives its uptake into cells via eCB
transporters, an inhibitor of the eCB transporter would also abol-
ish the difference in the DSI duration between control and
NRGI-treated slices, as JZL184 did. When recorded in the pres-
ence of AM404 (20 um), an eCB transporter inhibitor, the eIPSC
amplitudes during the recovery from DSI in NRG1-treated cells
(n = 15) were not different from those in control cells (n = 14)
(p = 0.10, two-way ANOVA; Fig. 4F). The recovery time con-
stant in NRG1-treated cells (17.3 * 1.7 s) was also similar to the
control value from sister cultures (16.7 £ 2.7 s) (p = 0.85, t test;
Fig. 4G). Together, these results suggest that the chronic treat-
ment with NRG1 enhanced the MGL expression, and thus facil-
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Figure 4.  The NRG1-induced enhancement of MGL expression and/or function contributes
to the facilitated recovery from DSI. A, Western blot analysis shows that the level of MGL ex-
pression was increased by NRG1 treatment. The blot in Figure 3C was reprobed with an anti-
MGL antibody. B, The quantitative group data from Western blotting for MGL. *p = 0.016
(one-sample ¢ test vs 100%). C, elPSCs were recorded from either a control or NRG1-treated (5
nu, 8—11d) cell in the presence of JZL184 (1 wum) in the extracellular solution. Depol, postsyn-
apticdepolarization (0mV, 55). D, The group data of the DSI measured in T um JZL184 show no
difference between control and NRG1-treated groups. E, In the presence of 1 um URB597 in the
bath solution, the elPSCrecovery from DSI (OmV, 5 ) in NRG1-treated cells was faster than that
in control cells. *p << 0.005 (Bonferronit test after two-way ANOVA). F, In the presence of 20 um
AM404 in the bath solution, the elPSC recovery from DSI (0 mV, 5's) in NRG1-treated cells was
not significantly different from that in control cells. G, In the presence of T um JZL184 or 20 pum
AM404, the time constant of DSI decay in NRG1-treated cells was not significantly different from
thatinrespective ister control cells. In 1 um URB597, the time constant in NRG1-treated cells was
significantly smaller than that in sister control cells. *p = 0.021 (¢ test). Error bars indicate SEM.

itated the uptake and degradation of 2-AG, resulting in a faster
recovery from DSI.

NRG1 treatment does not alter constitutive eCB signaling

If MGL is knocked out or overexpressed in mice, the basal 2-AG
levels in the brain are elevated or reduced, respectively (Chanda et
al., 2010; Schlosburg et al., 2010; Jung et al., 2012). To examine
whether the NRG1-mediated enhancement of MGL expression
decreases constitutive 2-AG effects, we assessed the degree of
basal CBIR activation by measuring an increase in eIPSC ampli-
tude caused by SR141716. If the basal 2-AG level was lowered in
NRGI-treated slices, SR141716 would increase the eIPSC to a
lesser degree than in control cells. SR141716 (1 uMm) increased the
eIPSC amplitude by 34 = 6% (n = 5) in control cells and 30 = 8%
(n = 8) in NRGI-treated cells (Fig. 5A). The similar effects of
SR141716 in the two groups (p = 0.72, f test) imply that the

Du et al. @ Neuregulin-1 Impairs Endocannabinoid Signaling

A Control NRG B Control NRG
<+ SR <+ SR «AM
100 pA
20 ms
SR141716
o 1501 )
el e}
E | ool £
g 100 g'
< <
(@] 50 (@]
& @ Control ? @ Control
o ONRG > ONRG
& 0 T T T T 1 = 0 T T T 1
-10 -5 0 5 10 15 -10 0 10 20
Time (min) Time (min)
(9]
C Control NRG E 100 o\o.:==§O
100 pA S
< 50
2 @ Control
o ONRG
E

MIE MG

Figure5. NRG1 treatment alters neither the constitutive e(B signaling nor basal GABAergic
P.. A, The tonic activation of CBTRs was assessed as an increase in elPSC amplitudes caused by
bath-applied SR141716 (1 wm), a CB1R antagonist. The mean increase in elPSC amplitude in
NRG1-treated cells was not different from that in control cells. B, The constitutive uptake of e(B
was examined with bath-applied AM404 (20 wum), an e(B transporter inhibitor. The elPSC
reduction caused by AM404 in NRG1-treated cells was similar to that in control cells. A vehicle
for AM404 (0.02% ethanol) was present before AM404 application. €, The short-term plasticity
of elPSCwas measured by stimulating presynapticaxons three times at 20 Hz. The amplitudes of
the second or third elPSCs, after being normalized to the first amplitude, in NRG1-treated cells were
not significantly different from their respective values in control cells. Error bars indicate SEM.

IPSC Number

degree of basal CBIR activation was not altered by the treatment
with NRG1.

Next, we examined whether the constitutive uptake of basal
eCB was affected by NRGI treatment. If the tonic uptake of basal
eCB is enhanced, a blockade of eCB transporter would suppress
eIPSC amplitude to a greater extent (Kim and Alger, 2010) be-
cause AM404 can cause the accumulation of basal eCB in the
extracellular space. AM404 (20 M) that was applied to the bath
solution slightly suppressed eIPSC amplitudes to a similar extent
in both NRG1-treated (10.3 £ 3.9% suppression; n = 5) and
control cells (8.9 = 0.9% suppression; n = 5) (p = 0.73, t test; Fig.
5B). This result suggests that the tonic uptake of basal eCB is
unaffected by NRGI treatment. Together, these data indicate that
the chronic elevation of NRG1 level appears to modulate the
phasic signaling of 2-AG but not the constitutive signaling of
eCB.

Because CB1R activation reduces the probability of release
(P,), any reduction in the tonic level of eCB would increase the
basal P, at CBIR-positive GABAergic synapses (Kim and Alger,
2010). We assayed relative P, by measuring the short-term plas-
ticity of IPSCs that were evoked three times at 20 Hz (Fig. 5C)
because P, is inversely proportional to the paired-pulse ratio
(PPR) of synaptic responses (Thomson, 2000). When normalized
to the first IPSC amplitude, the amplitudes of the second (re-
ferred to as “PPR2”) and third (referred to as “PPR3”) IPSCs in
NRG1-treated cells (PPR2, 0.80 * 0.01; PPR3,0.73 = 0.01) (n =
65) were not significantly different from the control values
(PPR2, 0.78 = 0.01; PPR3, 0.70 = 0.01) (n = 68) (p = 0.10,
two-way ANOVA; Fig. 5C). As expected from the unaltered tonic
level of eCB (Fig. 5A), the chronic NRG1 treatment did not
change the basal P, at CB1R-positive GABAergic terminals, leav-
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Figure 6.  The chronic treatment with NRG1 impairs iLTD. A, iLTD was induced by a 10 min

application of DHPG (50 wum), a group | mGIuR agonist. The magnitude of iLTD at 47—52 min in
NRG1-treated cells was significantly smaller than that in control cells. *p = 0.008 (t test). B, The
iLTD experiments were performed in the presence of JZL184 (0.2 pum) in the extracellular solu-
tion. The magnitude of iLTD at 47-52 min in NRG1-treated neurons was not significantly dif-
ferent from the control value. C, An iLTD-induced decrease in 1/PPR3 (PPR3 = third IPSC/first
IPSC evoked at 20 Hz), as an indication of relative P,, was significantly smaller in NRG1-treated
cells than in sister control cells. *p = 0.015 (t test). In JZL184, there was no difference in the
iLTD-induced decrease in 1/PPR3 between the two groups. D, In control slices (i.e., not treated
with NRG1), PPR3 was measured after various periods of JZL184 application at 0.2 or 1 pm.
Dashed lines indicate the PPR3 (mean == SEM) of control slices without JZL184 (replotted from
Fig. 5C). *p << 0.005 (Bonferroni t tests vs other data points, including the non-JZL184 control,
after ANOVA). Error bars indicate SEM.

ing the dynamic range for additional P, modulation, e.g., by
CBIR agonists, unaffected.

iLTD is impaired by treatment with NRG1

Our next focus was the functional significance of the NRG1-
mediated changes in MGL and 2-AG signaling. When the stimu-
lation of mGluRs drives the production of 2-AG from CAl
pyramidal cells, presynaptic iLTD is induced by the 2-AG-
mediated prolonged activation of CB1Rs (Chevaleyre and Cas-
tillo, 2003; Castillo et al., 2012). We tested the hypothesis that the
shortened lifetime of 2-AG after NRG1 treatment might impair
the induction of 2-AG-mediated iLTD (Fig. 6A—C). iLTD was
induced by a 10 min application of 50 um (S)-3,5-DHPG, a
group I mGluR agonist. The magnitude of the iLTD (47-52 min
after the DHPG onset) was 60 = 8% in control slices (n = 6) but
only 26 * 5% in NRG1-treated slices (n = 5) (p = 0.008, ¢ test;
Fig. 6A). We additionally probed the changes in P, during the
iLTD using the changes in 1/PPR3 because PPR3 is inversely
proportional to P,. In the iLTD experiment, eIPSCs were elicited
three times at 20 Hz. In both control and NRG1-treated groups,
1/PPR3 during the iLTD was reduced compared with the respec-
tive pre-iLTD values, as predicted from the presynaptic nature of
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the iLTD expression, but to a lesser degree in NRG1-treated cells
(—13 = 3%) than in control cells (—28 = 4%) (p = 0.015, t test;
Fig. 6C). This result suggests that the impaired iLTD in the
NRG]-treated slices is the result of a smaller depression of P,.

If the iLTD reduction could be attributed to the elevated func-
tion of MGL, then JZL184 would equalize the difference in iLTD
between control and NRG1-treated cells. We tested this hypoth-
esis by measuring the iLTD in JZL184 (0.2 uM), which was ap-
plied to the bath solution ~20 min before the application of
DHPG. In accord with our hypothesis, the MGL inhibitor re-
stored the iLTD in NRG1-treated cells (58 *+ 5%; n = 6) to the
control level (46 = 6%; n = 6) (p = 0.14, t test; Fig. 6B). In the
presence of JZ1L184, an iLTD-induced decrease in 1/PPR3 in
NRGI-treated cells (—31 = 4%) was also similar to that in con-
trol slices (—26 = 4%) (p = 0.36, t test; Fig. 6C). These results
suggest that the enhanced activity of MGL contributes to the
NRGI1-mediated impairment in iLTD.

A potential concern about our iLTD experiment with JZL184
was that a long-term blockade of MGL might increase the basal
level of 2-AG (Chanda et al., 2010; Schlosburg et al., 2010; Pan et
al., 2011), which would cause a decrease in GABAergic P,. We
examined the effect of JZL184 on GABAergic P, (i.e., PPR) in
control slices (i.e., without NRG1). When 0.2 um JZL184 was
applied for 89 = 3 min (range, 75-105 min), the PPR3 (0.78 =
0.04; n = 8) was not significantly different from the PPR3 ob-
tained without JZL184 (0.70 = 0.01; Fig. 5C) (p = 0.47, Bonfer-
roni t test after ANOVA; Fig. 6D). This similarity implies that a
JZ1.184-induced (0.2 uM, ~90 min) increase in basal 2-AG, if
any, was not sufficient to reduce GABAergic P, effectively. There-
fore, the JZL184-mediated rescue of iLTD in the NRGI group
(Fig. 6B) cannot be attributed to the gradual suppression of P,.. At
a higher concentration (1 um), JZL184 applied for 32 = 3 min
(range, 20—49 min) had no effect on PPR3 (0.70 = 0.02; n = 10)
(p = 1.0, Bonferroni f test vs non-JZL184), whereas its extended
application for 96 = 4 min (range, 75-120 min) increased PPR3
to 0.99 * 0.05 (n = 10) (p < 0.005, Bonferroni ¢ test vs other
groups; Fig. 6D). Because JZL184 was applied for 25-30 min in
our DSI experiments (Fig. 4C,D), the interpretation of the DSI
data could not have been complicated by unwanted effects of
JZ1184 on GABAergic P,.

NRGI treatment weakens the mGluR-mediated suppression
of IPSC

If the iLTD impairment (Fig. 6A) is the result of the curtailed
action of 2-AG, then it is possible that the NRG1 treatment re-
duces the strength of mGluR-mediated 2-AG signaling, which
can be assayed as eIPSC suppression. However, a high dose of
DHPG (50 um) had similar effects on eIPSC amplitudes in con-
troland NRG1-treated cells (p = 0.61, t test at 4—9 min of DHPG;
Fig. 6A). To avoid a potential ceiling effect of 50 um DHPG, we
used a low dose (0.4 um) of DHPG. (S)-3,5-DHPG (0.4 uMm)
suppressed the eIPSC amplitude in NRG1-treated cells by 13 *
4% (n = 5; Fig. 7A), which was less than half the effect in control
cells (29 = 1%;n =5) (p = 0.0037,  test; Fig. 7A). This difference
in the efficacy of DHPG at a low concentration was equalized by
JZL184. In the presence of 1 um JZL184, 0.4 uM DHPG reduced
the eIPSC amplitude by 62 * 8% (n = 5) in NRG1-treated cells
and 57 = 5% (n = 5) in control cells (p = 0.64, t test; Fig. 7B).
These results indicate that alow dose of DHPG has a weaker effect
in NRG1-treated cells than in control cells only when MGL is kept
active and thus imply that the enhancement of MGL may con-
tribute to the difference in the DHPG effect.
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Figure8. A schematic diagram of the NRG1-mediated enhancement of MGL and the conse-
quent reduction in 2-AG effects. The chronic treatment of the hippocampus with NRG 1 increases
the expression of MGL, which is a degradative enzyme for 2-AG. This increase facilitates the
degradation of 2-AG, resulting in the shortened duration of DS| and the impairment of iLTD. The
location and biochemical cascade of ErbB-to-MGL signaling that is responsible for the NRG1-
mediated 2-AG curtailment must be determined.

Discussion

Our results show that the chronic treatment of hippocampal slice
cultures with NRGI1 increases the expression of MGL, resulting in
the facilitated degradation of 2-AG and, hence, a shortened du-
ration of DSI and impaired iLTD (Fig. 8). Because NRG1-ErbB4
hyperfunction is a risk factor for schizophrenia, our study implies
that the eCB system, especially MGL, might be involved in the
NRG1-mediated pathophysiology of schizophrenia.

Memory deficits are found in various strains of NRG1-
ErbB4 transgenic mice, including NRG1-overexpressing mice
(Kato et al., 2010; Deakin et al., 2012; Yin et al., 2013), NRG1
heterozygotes (Ehrlichman et al., 2009; Duffy et al., 2010), and
ErbB4 knock-outs (KOs) (Chen et al., 2010), as well as in
human patients with schizophrenia (Stone and Hsi, 2011).
Investigations on the mechanisms of memory impairment in
NRGI1-ErbB4 transgenic mice have focused on the effects of
NRG!1 and/or ErbB4 on long-term synaptic plasticity. Indeed,
NRG1 directly interrupts the LTP of excitatory synapses; LTP
is inhibited by acutely applied NRG1 or enhanced by ErbB4
KO (Kwon et al., 2005; Pitcher et al., 2008, 2011; Chen et al.,
2010; Shamir et al., 2012). However, some types of memory
decline caused by NRGI cannot be explained by the direct
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inhibition of LTP. For instance, NRG1 overexpression in mice
has no effect on LTP (Deakin et al., 2012); ErbB4 KO in PV
interneurons alters LTP but not fear memory (Shamir et al.,
2012), indicating that fear memory in these mice is indepen-
dent of LTP (but also see Chen et al., 2010).

Our data suggest that a reduction in iLTD might be an addi-
tional mechanism by which NRG1 can modulate long-term syn-
aptic plasticity. By strengthening excitation-spike coupling, iLTD
can lower the threshold for LTP induction at excitatory synapses
(Chevaleyre and Castillo, 2003, 2004). Therefore, in addition to
the NRGI1-dependent direct inhibition of LTP, the 2-AG-
mediated metaplasticity of LTP induction might also negatively
influence LTP. This type of metaplasticity involves CBI1R (or
CCK)-positive GABAergic synapses possibly in the following
ways. First, iLTD increases the chance for LTP induction via en-
hanced disinhibition (Chevaleyre and Castillo, 2004; Zhu and
Lovinger, 2007). Therefore, an NRG1-mediated decrease in iLTD
would have a negative effect on LTP. Second, 2-AG can promote
LTP induction through DSI. DSI provides a short temporal win-
dow of disinhibition to allow a reduction in the threshold for LTP
induction (Carlson et al., 2002). Thus, a decrease in DSI duration
(e.g., by NRG1) would impair LTP induction. Third, 2-AG (and
J7Z1.184) can facilitate LTP induction without iLTD when distinct
excitatory inputs in CA1 are simultaneously stimulated (Xu et al.,
2012). Thus, MGL upregulation might reduce this type of asso-
ciativity of LTP. These 2-AG-dependent mechanisms suggest that
a broader range of network components (e.g., various types of
inhibitory interneurons) should be considered for the accurate
determination of the role of LTP in NRG1 pathology. In sum-
mary, the prolonged elevation of NRG1 may be involved in mem-
ory disruption in individuals suffering from schizophrenia by
interfering directly with LTP and/or inducing the 2-AG-
dependent metaplasticity of LTP.

The levels of NRG1 and/or ErbB4 are also increased in the
hippocampus and CSF of patients with Alzheimer’s disease
(Chaudhury et al., 2003; Pankonin et al., 2009). Given the obser-
vation that MGL expression is also elevated in the postmortem
brains of Alzheimer’s disease patients (Mulder et al., 2011), our
study may be relevant to Alzheimer’s disease symptoms; rises in
NRGI1 and MGL, and hence the disruption of 2-AG-mediated
metaplasticity of LTP, may contribute to the memory decline
associated with Alzheimer’s disease.

Although NRG1-expressing neurons are widely distributed in
the brain, not all neurons express NRG1 (Law et al., 2004; Bern-
stein et al., 2006; Bare et al., 2011; Liu et al., 2011). Therefore,
despite the diffusible nature of NRGI, it is possible that some
neurons may not be exposed to high levels of NRG1 in a condi-
tion in which NRGL is overexpressed in vivo (e.g., the brains of
patients with schizophrenia). For this reason, the extrapolation of
our data to in vivo conditions must be made carefully, even
though our study provides a novel insight into the role of eCBs in
the NRG1-mediated pathology. In addition, not all patients with
schizophrenia have abnormal NRG1-ErbB signaling. Therefore,
the role of MGL in schizophrenia pathology, as implicated by our
finding, cannot be generalized for all types of schizophrenic
patients.

Changes in the eCB degradation may alter the basal GABAe-
rgic P, by shifting the resting levels of eCB (Kim and Alger, 2010;
Panetal., 2011). However, in contrast to the reduced 2-AG levels
in MGL-overexpressing mice (Jung et al.,, 2012), the NRGI1-
induced upregulation of MGL did not change the tonic activation
of CBI1Rs in our experimental conditions (Fig. 5). Possible rea-
sons for this discrepancy are as follows: First, a 20% increase in
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MGL expression (Fig. 4A, B) may have little effect on the basal
2-AG tone because even a >10-fold increase in MGL expression
reduces the basal 2-AG level by only 50% (Jung et al., 2012).
Second, the amount of 2-AG that is collected from whole tissue
(Jung et al., 2012) can be different from the amount of 2-AG that
is constitutively activating CB1Rs, perhaps because of the exis-
tence of different pools of 2-AG (Min et al., 2010a; Alger and Kim,
2011; Zhang et al., 2011). Third, it is controversial whether the
tonic activation of CBIR is mediated by 2-AG or anandamide
(Hashimotodani etal., 2007; Kim and Alger, 2010; Alger, 2012). If
2-AG were to constitutively activate CB1Rs, a blockade or KO of
diacylglycerol lipase, a 2-AG synthase, would be expected to in-
crease neurotransmitter release (or P,) by reducing the basal
2-AG levels, but this effect has not been observed (Hashimo-
todanietal., 2007; Min et al., 2010b; Tanimura et al., 2010; Zhang
et al,, 2011). Therefore, it is possible that 2-AG is constitutively
produced, but does not substantially stimulate, CB1Rs because of
limitations of quantity and/or physical access. The NRGI-
mediated enhancement of MGL appears to selectively weaken the
phasic or acute action of 2-AG without a significant disruption of
the GABAergic inhibitory tone.

The distinct modulation of tonic and phasic eCB signaling can
also be found in other conditions. The mutation or deletion of
neuroligin-3 reduces tonic eCB signaling while preserving its
phasic signaling (e.g., DSI) and iLTD in the hippocampus (Foldy
et al., 2013). Therefore, their study implies that the modulatory
mechanism for tonic eCB signaling could be different from that
for DSI and iLTD. Another example of differential modulation is
the effect of chronic inactivity on the eCB system (Kim and Alger,
2010). The long-term deprivation of neuronal activity decreases
the tonic activation of CBIR in a FAAH-dependent manner but
has no effect on DSI (Kim and Alger, 2010). All of these studies,
including our present data, suggest that tonic and phasic eCB
signaling can be separately regulated. It would be interesting to
investigate how only one type of eCB signaling can be selectively
modulated without affecting the other type and what the func-
tional roles for the distinct eCB actions in physiological and path-
ological conditions are.

The interaction between NRG1 and the eCB system is sup-
ported by many studies (Boucher etal., 2007a,b, 2011; Longet al.,
2010, 2012, 2013; Stadelmann et al., 2010; Spencer et al., 2013).
Most of these studies are based on hypomorphic NRGI in ro-
dents, and the detailed patterns of interaction vary with develop-
mental stages, gender, and the duration of cannabinoid action.
Our results additionally show that hypermorphic NRG1 can also
modulate eCB function. In particular, the changes in the DSI time
course in our study are caused by a chronic increase in NRG1
levels but not by a reduction in the basal activity of NRG1. There-
fore, hypermorphic NRG1 appears to have cellular effects that are
distinct from those of hypomorphic NRG1, although both situa-
tions can result in schizophrenic behavioral phenotypes in vivo.
In the future, a detailed investigation of the pathological mecha-
nisms underlying how bidirectional changes in NRG1-ErbB sig-
naling cause similar phenotypes will be an important task.
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