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Responses to Random Dot Motion Reveal Prevalence of
Pattern-Motion Selectivity in Area MT

Hironori Kumano and Takanori Uka
Department of Neurophysiology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan

How the visual system reconstructs global patterns of motion from components is an important issue in vision. Conventional studies
using plaids have shown that approximately one-third of neurons in cortical area MT respond to one-dimensional (1D) components of a
moving pattern (component cells), whereas another third responds to the global two-dimensional (2D) motion of a pattern (pattern cells).
Conversely, studies using spots of light or random dots that contain multiple orientations have seldom reported directional tuning that
is consistent with 1D motion preference. To bridge the gap between these studies, we recorded from isolated neurons in macaque area MT
and measured tuning for velocity (direction and speed) using random dot stimuli. We used the “intersection of constraints” principle to
classify our population into pattern-direction-selective (PDS) neurons and component-direction-selective (CDS) neurons. We found a
larger proportion of PDS cells (68%) and a smaller proportion of CDS cells (8%) compared with prior studies using plaids. We further
compared velocity tuning, measured using random dot stimuli, with direction tuning, measured using plaids. Although there was a
correlation between the degree of preference for 2D over 1D motion of the two measurements, tuning seemed to prefer 2D motion using
random dot stimuli. Modeling analyses suggest that integration across orientations contributes to the 2D motion preference of both dots
and plaids, but opponent inhibition mainly contributes to the 2D motion preference of plaids. We conclude that MT neurons become

more capable of identifying a particular 2D velocity when stimuli contain multiple orientations.

Introduction

One of many important issues in motion perception is the inte-
gration of one-dimensional (1D) to two-dimensional (2D) mo-
tion (Born and Bradley, 2005; Bradley and Goyal, 2008). When
vision is restricted to a particular portion, motion detection is
limited to motion perpendicular to an observed edge in cases
where only one edge can be observed through the aperture. Be-
cause neurons have small receptive fields (RFs), the brain is effec-
tively confronted with this so-called aperture problem. One way
to solve this problem is to add motion originating from another
edge. Observation of two edges, in theory, can resolve the aper-
ture problem for rigid motion in 2D space (Bradley and Goyal,
2008). Thus, the visual system must integrate across various ori-
entations to determine true 2D motion.

In the primate visual system, neurons in the primary visual
cortex first respond to motion stimuli in a direction-selective
manner (Hubel and Wiesel, 1968). They respond, however, to
motion components (i.e., 1D motion) and do not combine across
orientations (Movshon et al., 1985; Khawaja et al., 2009). Ap-
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proximately one-third of MT neurons, on the other hand, re-
spond to pattern motion (i.e., 2D motion) by combining motion
information across orientations (e.g., Movshon et al., 1985; Rust
et al., 2006; Khawaja et al., 2009). These conclusions resulted
from experiments using plaids.

Conversely, many studies of area MT have used random dot
stimuli. Random dot motion contains various orientation and
spatiotemporal frequency components. That most MT neurons
are strongly tuned to motion direction and speed using random
dots indicates that they convey information about 2D motion.
However, the existence of component cells predicts that some
neurons should have broad or bimodal direction tuning when
presented with random dot stimuli at high speed (Hammond and
Smith, 1983; Simoncelli et al., 1996; Simoncelli and Heeger,
1998). Indeed, Okamoto et al. (1999) found such neurons, al-
though Rodman and Albright (1987) did not in a similar exper-
iment. In both studies, responses of MT neurons were measured
using a single dot. Moreover, it is still not fully understood how
pattern-motion selectivity, measured using plaids, is related to
that using random dots that contain multiple orientation and
spatiotemporal frequency components on a single-neuron basis.

Here, we measured the direction and speed tuning of MT
neurons using random dot stimuli. We found that only a minor-
ity of neurons behaved in accordance with predictions of com-
ponent cells when random dots were used. We further compared,
on a single-neuron basis, pattern-motion selectivity using ran-
dom dots with that using plaids. Although there was a weak cor-
relation between the degree of preference for 2D over 1D motion
of the two measurements, tuning seemed to prefer 2D motion
using random dot stimuli. Analyses using a standard computa-
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tional model (Simoncelli and Heeger, 1998) suggested that inte-
gration across orientations contributes to the 2D motion
preference of both dots and plaids, but opponent inhibition
mainly contributes to the 2D motion preference of plaids. Our
results suggest that MT neurons become more capable of iden-
tifying a particular 2D velocity when stimuli contain multiple
orientations.

Materials and Methods

The general experimental procedures were as described previously (Uka
and DeAngelis, 2003; Kumano and Uka, 2010). Here, we briefly summa-
rize aspects relevant to the present study. All animal care, training, and
experimental procedures were in accordance with the National Institutes
of Health guidelines and were approved by the Juntendo University An-
imal Care and Use Committee.

Subjects and surgery. We used two Japanese macaque monkeys
(Macaca fuscata): one female (Monkey P; 6 kg) and one male (Monkey K;
8 kg). Animals were prepared for experiments using standard aseptic
surgeries. A post for head restraint and a recording chamber were im-
planted chronically in each monkey. To monitor eye movements, we
implanted scleral search coils into both eyes for Monkey P and one eye for
Monkey K (Judge et al., 1980). A cylindrical recording chamber was
mounted over the occipital cortex ~17 mm lateral and 14 mm dorsal to
the occipital ridge, at an angle of 25° above the horizontal. Area MT was
accessed by passing through the striate cortex and extrastriate visual areas
in the lunate sulcus.

Task and visual stimuli. The behavioral task and data acquisition were
controlled using a commercial software package (TEMPO, Reflective
Computing). The monkeys were seated with their heads restrained in a
primate chair. A DLP projector (Mirage S+ 2K, Christie Digital Systems)
back-projected a visual stimulus on a tangent screen positioned 57 cm in
front of the monkeys’ eyes. The screen subtended a visual angle of 122° X
91°, and the frame rate was 100 Hz. The monkeys viewed random dot
stimuli while maintaining fixation on a yellow dot (0.15°) on the screen.
The monkeys received a drop of water as a reward when their conjugate
eye position remained within a 2.0° X 2.0° electronic window around the
fixation point during stimulus presentation (500 ms). If the monkeys
broke fixation during the trial, the trial was terminated, the data were
discarded, and the monkeys were not rewarded.

Random dot stimuli were presented using an OpenGL accelerator
board (Quadro FX 1400, NVIDIA). Each random dot stimulus was pre-
sented within a circular aperture. The dot density was 64 dots per square
degree per second, with each dot subtending ~0.1°. The starting position
of each dot was newly randomized for each trial. The random dot stim-
ulus consisted of red dots (5.3 cd/m?) presented on a black background
(0.10 cd/m?). Smooth motion was achieved by plotting dots with sub-
pixel resolution using anti-aliasing provided by the OpenGL board.

Electrophysiological recordings. We used a tungsten microelectrode
(FHC) with impedance values between 0.5 and 2.0 M() (at 1 kHz) for
recording the extracellular activity of single neurons. The electrode was
advanced through the cortex via a transdural guide tube using a pulse
motor micromanipulator (MO-951, Narishige) mounted on the record-
ing chamber. Raw signals from the electrode were amplified and band-
pass filtered (200—10,000 Hz) using conventional electronic equipment
(Bak Electronics). We isolated single neurons using a voltage—time win-
dow discriminator (Bak Electronics). Times of action potential and trial
event occurrences were stored to disk with 1 ms resolution. Eye position
was monitored using a magnetic search coil system (Sankeikizai) and
stored to disk at 250 Hz. Area MT was identified on interpreting the
pattern of gray matter and white matter encountered during electrode
penetration and on the physiological response properties (direction,
speed tuning, RF location, and size) of single neurons and multiunit
clusters.

Experimental protocols. After isolating a single MT neuron, we quali-
tatively explored RF size and location, as well as the tuning properties
(direction, speed) of the neuron using a small circular patch of coherently
moving random dots. Next, we conducted a set of quantitative prelimi-
nary tests to measure direction tuning, speed tuning, RF location, and
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size tuning (area summation) of each MT neuron. Each of these mea-
surements was performed in a separate block of randomly interleaved
trials, with each unique stimulus presented at least three times. During
these tests, a tuning curve or RF map was constructed online, and the
preferred stimulus parameter was used in subsequent tests. First, direc-
tion tuning was measured by presenting eight motion directions 45°
apart. Speed tuning was then measured by presenting dots that drifted at
0, 1, 2, 4, 8, 16, 32, and 64°/s toward the preferred direction. Next, we
mapped the RF by presenting a small (~0.25 X approximate RF diame-
ter) patch of random dots drifting at the preferred velocity at each loca-
tion on a4 X 4 grid that covered the entire RF. A 2D Gaussian function
with an identical radius along two cardinal axes was fitted to this RF map.
After determining the RF center, we assessed size tuning by presenting
dots within circular apertures at the RF center. We presented aperture
sizes of 1, 2, 4, 8, 16, 32, and 64° in diameter, with all other parameters
optimized.

Measurement of 2D velocity tuning using random dot stimuli. After
preliminary tests, we measured neuronal responses to random dot stim-
uli moving in various directions at various speeds. Responses to a com-
bination of eight motion directions 45° apart and seven speeds (1, 2, 4, 8,
16, 32, and 64°/s) as well as those to static and flickering random dot
stimuli (all dots were randomly replotted every fourth video frame) were
recorded. For neurons with high-pass speed tuning, we also tested 128°/s
speed and for low-pass speed-tuned neurons, 0.5°/s speed. The RF loca-
tion and aperture size were kept constant across trials. All stimulus con-
ditions were pseudo-randomly interleaved within a block. Data were
discarded if single-unit isolation was lost before three repetitions. The
median number of trial repetitions across the range of accepted datasets
was five.

Measurement of direction tuning using Gabor and plaid. For a subpop-
ulation of neurons, we also measured direction tuning using a Gabor
patch and a plaid stimulus (see Fig. 54) and determined whether the
neuron could be classified as a component cell or a pattern cell. First, we
measured spatiotemporal frequency tuning using a Gabor moving in the
preferred direction determined from the direction-tuning curve using
random dot stimuli (described above). The Gabor had one of six carrier
spatial frequencies (0.0625,0.125,0.25,0.5, 1, or 2 cycles/degree) and one
of eight temporal frequencies (0.1953125, 0.390625, 0.78125, 1.5625,
3.125,6.25, 12.5, or 25 Hz). The envelope was a 2D Gaussian with an SD
of 1.33 or 2.66° depending on eccentricity. Next, direction tuning of a
Gabor and a plaid was measured at the preferred spatial and temporal
frequency. The plaid contained two Gabors 120° apart. Both the Gabor
and the plaid were high contrast (0.9) and moved in one of 24 directions
15° apart. Data were discarded if the neuron was lost before three repe-
titions. The median number of trial repetitions across the range of ac-
cepted datasets was five.

Data analysis. Neuronal responses to each stimulus condition were
defined as the mean firing rate across trial repetitions in the time window
of visual stimulus duration. The spontaneous firing rate was calculated
from spiking activity during presentation of a blank screen.

For both 2D velocity tuning and plaid experiments, we sought to
classify each MT neuron as a pattern-direction-selective (PDS) or
component-direction-selective (CDS) neuron. We created predictions of
ideal PDS and CDS neurons for 2D velocity tuning and direction tuning
for plaids, as described in Results. We computed partial correlations (R,
and R_) of the measured responses with the pattern and component
predictions as follows:

(rp - rcrpc)

Ja& =20 - )
where 7, is the correlation of the data with the pattern prediction, . is the
correlation of the data with the component prediction, and 7, is the
correlation between the two predictions. The component correlation
(R,) can be obtained by exchanging the subscripts p and ¢ in the above
equation. These correlation values were converted into Z-scores using
Fisher’s r-to-Z transformation using the following equation:
In{(1 + R,)/(1 — R,)}

\/1/ (n — 3)

R, =
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quency in 3D spatiotemporal frequency space.
The model MT neuron linearly summed the
outputs of a set of direction-selective V1 neu-
rons that were equally distributed on a ring-
like structure on a plane corresponding to the
preferred direction of the model MT neuron in
the 3D spatiotemporal frequency domain (Si-
moncelli and Heeger, 1998, their Fig. 3B). In
addition to summation, the model MT neuron

Horizontal speed

CDS neuron

Horizontal speed

subtracted the outputs of V1 neurons that lay
off this plane. In the analysis of model re-
sponses, we varied the number of V1 neurons
that fed into the model MT neuron from 1 (no
integration across orientations; i.e., CDS neu-
rons) to 8 (V1 neurons separated by 22.5°). For

C D

each integration bandwidth, we also modified
the balance of excitation and inhibition by
multiplying the inhibitory V1 afferent weight
by a coefficient ranging from 0 to 1 in steps of
0.2. We measured responses of the model MT
neuron with each of these parameters to ran-
dom dot motion, Gabors, and plaids. When
using random dot motion, for each unique
stimulus condition, we calculated responses
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for 100 different dot patterns. These dot pat-
terns were used across all parameters of the
model to compare the responses across differ-
ent parameters. The preferred speed of the
model MT neuron was ~8°/s.

Results

We recorded from a total of 168 neurons
from 2 monkeys (109 from Monkey K and
59 from Monkey P). For each neuron, we
measured 2D velocity tuning using ran-
dom dot motion at a combination of eight
directions and seven or eight speeds. For
our population, most of the neurons were
selective (p < 0.05, ANOVA) for direction
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Figure1. Characterizing pattern-motion selectivity using random dot motion. 4, Random dot stimuli contain components of all

orientations. The velocity of a random dot stimulus (object velocity, red arrow) and the velocity of each orientation component
(component velocity, blue arrow) are related by a cosinusoidal function. B, A single component velocity is consistent with two-
object velocity at a faster speed. This indicates that (DS neurons respond to two directions away from the preferred direction at
faster speeds. C, The direction-tuning curve of an ideal (DS neuron selective for upward motion. Different shadings represent
different motion speeds. For speed = optimal speed, the direction-tuning curve has a single peak (brighter lines). For speed >
optimal speed, the direction-tuning curve is bimodal (darker lines). D, These direction-tuning curves across all speeds are con-
verted to the 2D velocity-tuning map by plotting responses in polar coordinates. There is elongation of the response region
orthogonal to the preferred direction. £, An ideal PDS neuron is selective for the same direction across all speeds. F, The 2D velocity

tuning of an ideal PDS neuron does not show elongation.

where 7 is the number of stimulus conditions. The Z-scored component
correlation (Z,) can be computed analogously using R.. Each of the
Z-scored correlations was tested for significance. As in previous studies,
we used a criterion of 1.28, equivalent to p = 0.90 (Smith et al., 2005;
Khawaja et al., 2009; Jazayeri et al., 2012). The difference in Z-scored
correlations (Z, — Z,) yields the pattern index, with negative values
indicating component-motion selectivity and positive values indicating
pattern-motion selectivity.

Modeling responses of MT neurons. Several computational models have
been proposed to describe the computation of MT neurons (Simoncelli
and Heeger, 1998; Rust et al., 2006; Nishimoto and Gallant, 2011). To
determine the kinds of mechanisms that might account for our results,
we implemented a publically available code for neuronal responses of
area MT (Simoncelli and Heeger, 1998). Model direction-selective V1
neurons were represented as a blob at a particular spatiotemporal fre-

at the optimal speed (165 of 168, 98%) and
for speed in the optimal direction (160 of
168, 95%). Of the 168 neurons, 75 (52 from
Monkey K and 23 from Monkey P) were
available for direction-tuning measure-
ments with a Gabor and a plaid. In the
following text, we first considered the pre-
dictions of 2D velocity tuning for ideal CDS
and PDS neurons. We then examined 2D
velocity tuning of MT neurons, measured
using random dot motion, and compared
these data with direction tuning, measured
using a Gabor and a plaid.

2D velocity tuning of ideal CDS and PDS neurons

We first considered how ideal CDS and PDS neurons respond to
random dot motion across directions and speeds. The random
dot stimulus contains components of all orientations. Accord-
ing to the intersection of constraints principle (Adelson and
Movshon, 1982), for a particular object velocity, the speed of each
orientation component is determined by the angle between the
component direction and the direction of object motion. Figure
1A illustrates an example of this relationship for an upward-
moving object (red arrow). The speed of the orientation compo-
nents (length of blue arrows) is given as follows:

S. = S, X cosb (1)
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a particular speed (Fig. 1B). A CDS neu-
ron thus responds to two directions away
from its preferred direction at faster
speeds (Fig. 1B, red arrows). The direc- 60
tional difference from the preferred direc-

tion is determined by solving Equation 1

for 6, as follows:

60

0 0
0 = arccos(S,/S,). (2)

This equation suggests that the E F Rp=0.98
direction-tuning curve of a CDS neuron 120 120
for speed faster than the preferred speed
(S,) is bimodal and that the two peaks be-
come more separated for faster speeds. - -

Based on this scheme, for an ideal CDS
neuron tuned to upward motion, we pre-
dicted the direction-tuning curves across

multiple speeds in Figure 1C. Here, we as- 0
sumed that the direction-tuning curve at
the preferred speed can be approximated
by a circular Gaussian (von Mises) func-
tion (Liu and Newsome, 2003; Kohn and
Movshon, 2004). For speeds slower than
the preferred speed (brighter lines), the
direction-tuning curve was invariant. For
faster speeds (darker lines), the direction-
tuning curve was the sum of two circular
Gaussian functions, the center positions
of which were shifted away from the preferred direction, accord-
ing to Equation 2. The peak and trough responses of the
direction-tuning curves were approximated to match the speed
preference of typical MT neurons. Figure 1D shows the 2D veloc-
ity tuning of the ideal CDS neuron by plotting the responses in 2D
polar coordinates, with direction mapped on the angular axis and
speeds on the radial axis. The response map was elongated along
a line orthogonal to the preferred direction.

An ideal PDS neuron, on the other hand, had invariant
direction-tuning curves across all speeds, with the peak responses
matching the speed preference of typical MT neurons (Fig. 1E).
The 2D velocity tuning of the ideal PDS neuron had a single
response peak, corresponding to the preferred velocity (Fig. 1F).
The extent and shape of the response map depended on the width
of the direction- and speed-tuning curves. Even for a PDS neuron
with extremely broad direction tuning, however, the response
map did not elongate along a line orthogonal to the preferred
direction, as the CDS neuron did. This is because direction was
mapped on the iso-speed angular axis in the 2D velocity space. If
an MT neuron preferred the fastest speed we examined, we could

Figure 2.

tuning maps.

Direction (deg)

-50 0 50
Horizontal speed (deg/sec)

An example PDS neuron. 4, Direction-tuning curves across all speeds. Different colors denote different speeds, as
indicated in the inset. Error bars indicate SEM. B, 2D velocity-tuning map. €, For (DS predictions, a periodic spline curve was
interpolated to the direction-tuning data at the optimal speed. The direction tuning for a speed higher than the optimal speed was
computed as the sum of two interpolated curves, each shifted by an amount determined from the ratio of the optimal speed to each
speed. D, 2D velocity-tuning map of (DS predictions. E, For PDS predictions, the interpolated curve was used across all speeds. F, 2D
velocity-tuning map of PDS predictions. The pattern and component correlations are noted on the top right of the 2D velocity-

not classify the neuron as PDS or CDS based on this method. In
this case, the PDS and CDS predictions would be identical.

2D velocity tuning of MT neurons

We next examined the 2D velocity tuning of MT neurons and
evaluated pattern-motion selectivity using the predictions of the
2D velocity tuning of the ideal CDS and PDS neurons. Figure 2A
shows direction-tuning curves across all speeds for a representa-
tive MT neuron classified as a PDS neuron, as described below.
First, we interpolated direction-tuning data with a periodic spline
at the optimal speed where the maximum response occurred (4°/s
for this neuron). This interpolated curve was used as a template
for the prediction of the ideal CDS and PDS neurons. For predic-
tion of the ideal CDS neuron, the direction-tuning curves for
speeds equal to or less than optimal speed were the same as the
interpolated tuning curve. For speeds greater than optimal speed,
the predicted direction tuning was computed as the sum of two
interpolated curves, each shifted by an amount determined from
the ratio of the optimal speed to each speed (Eq. 2). Finally, the
predicted peak and minimum responses at each speed were nor-
malized to the peak and minimum values obtained from the raw
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at the optimal speed was used across all
speeds. As for the CDS prediction, the
peak and minimum responses were nor-

m6c406r5

malized to the corresponding values
obtained from the raw direction-tuning
curves (Fig. 2E). The 2D velocity map of
the ideal PDS neuron showed a single
peak and a nearly round shape (Fig. 2F).
The 2D velocity map of this example
neuron (Fig. 2B) seemed to match the pre-
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diction of the ideal PDS neuron (Fig. 2F),
but not that of the ideal CDS neuron (Fig.
2D). This impression was quantified by
computing the partial correlation be-

tween the actual responses and the pre-
dictions of the PDS and CDS responses.
For this example neuron, the pattern cor-
relation (R,) was 0.98, and the component
correlation (R.) was —0.2. These correla-
tion values were converted into Z-scores
(Z, and Z,) using Fisher’s r-to-Z transfor-

mation. The difference in Z-scores (Z, — Z,)
yielded the pattern index, for which negative
values indicate component-motion selec-
tivity and positive values indicate pattern-
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motion selectivity. The pattern index of this
example neuron was 18.3. Because the pat-
tern index was >1.28 (corresponding to p =
0.90), this neuron was classified as a PDS
neuron.

Figure 3 shows data from an example
neuron classified as a CDS neuron. The
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Figure 4.  Pattern- and component-motion selectivity obtained from the responses to ran-
dom dot motion. The Z-scored pattern correlation was plotted against the Z-scored component
correlation. Gray symbols represent the examples in Figures 2 and 3.

direction-tuning curves. The resulting direction-tuning curves
of the CDS prediction were bimodal at fast speeds (Fig. 2C).
The predicted 2D velocity-tuning map exhibited elongation
along a line orthogonal to the preferred direction (Fig. 2D). For
prediction of the ideal PDS neuron, the interpolated spline curve

Horizontal speed (deg/sec)

direction-tuning curves for speeds = op-
timal speed (16°/s) were unimodal. For
faster speeds, the direction-tuning curves
broadened, and two peaks were evident at
the fastest speed of 64°/s (Fig. 3A). This bi-
modality led to the elongation of the response map in 2D velocity
space (Fig. 3B). These characteristics were consistent with the pre-
diction of the ideal CDS neuron (Fig. 3C,D), but not with that of the
ideal PDS neuron (Fig. 3E, F). The component correlation was 0.80,
and the pattern correlation was 0.66. These values resulted in a pat-
tern index of —2.11, suggesting component-motion selectivity.

Of the 168 neurons we recorded from, 37 were excluded from
this analysis because the maximum response occurred at the fast-
est speed we examined, and thus the CDS and PDS predictions
were identical. Figure 4 plots Z, against Z_ across the remaining
131 neurons. The distribution formed a continuum from
component-motion selectivity (bottom right sector) to pattern-
motion selectivity (top left sector). Previous studies on plaids
demonstrated approximately equal numbers of PDS and CDS
neurons in MT (Movshon et al., 1985; Smith et al., 2005; Rust et
al., 2006; Khawaja et al., 2009; Jazayeri et al., 2012). In contrast,
most of our MT neurons (113 of 131, 86%) were classified as PDS
neurons, 6 (5%) as CDS neurons, and 12 (9%) as unclassified,
based on the responses to random dot motion. The median pat-
tern index was 6.58.

The distinction between PDS and CDS neurons based on this
method relied on the differential predictions for speeds faster
than the optimal speed (Fig. 1C,E, darklines). Thus, classification
of MT neurons that preferred a high speed could be problematic.
To avoid this issue, we examined only MT neurons with preferred
speeds = 8°/s. Even for this subpopulation (n = 69), the predom-
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inance of PDS neurons remained; 62 of 69 (90%) neurons were
classified as PDS neurons, one (1%) as CDS neurons, and six
(9%) as unclassified. The median pattern index was 8.90.

We further examined whether the number of trials affected
our results. We found no correlation between the pattern index
and the number of trials (r, = 0.09, p = 0.28), suggesting that the
prevalence of pattern-motion selectivity was not the result of the
relatively small number of trials per stimulus (median, 5). Addi-
tionally, for neurons that were measured for 10 repetitions, we
subsampled (with replacement) responses for a given number of
trials and asked how the pattern index depended on the trial
number. The mean estimated pattern index tended to increase
when the trial number increased from three (median, 5.3) to 10
(median, 6.0). Thus, we did not overestimate, but rather under-
estimated the pattern index when the trial numbers were small.

Direction tuning for Gabor and plaid

Given the predominance of PDS neurons with random dot mo-
tion, we sought to compare pattern-motion selectivity for ran-
dom dot motion and pattern-motion selectivity using the
conventional plaid method. For 75 of 168 neurons, we measured
direction tuning to Gabor patches and plaids that were con-
structed by superimposing two Gabors drifting 120° apart (Fig.
5A). A CDS neuron responds to the direction of the component
Gabors and not to the overall motion of the plaid pattern. Thus,
the direction-tuning curve of CDS neurons for plaids is bimodal,
with each peak corresponding to one of two component Gabors
drifting in the preferred direction. In contrast, a PDS neuron
signals the motion direction of a plaid pattern, not individual
component Gabors, and has nearly identical direction-tuning
curves for Gabors and plaids. We characterized the pattern-
motion selectivity of each neuron in our population using a stan-
dard method (Smith et al., 2005). Consistent with previous
studies, we found each type of MT neuron, including CDS neu-
rons (Fig. 5B) and PDS neurons (Fig. 5C). As in the analysis of 2D
velocity tuning, we quantified pattern-motion selectivity for
plaids by calculating the pattern index as the difference between
the Z-scored pattern correlation and Z-scored component corre-
lation. For our population, 17 (23%) neurons were classified as
PDS neurons, 37 (49%) as CDS neurons, and 21 (28%) were
unclassified (Fig. 5D). The median pattern index was —1.01.

Relationship between pattern-motion selectivity for random
dot motion and plaids

For the subpopulation of 75 neurons where both random dot
motion and plaid data were available, we compared pattern-
motion selectivity between the two stimuli. Nineteen neurons
were excluded from this comparison because these neurons pre-
ferred the fastest speed we examined and thus were not usable for
calculation of pattern-motion selectivity using random dot mo-
tion. Figure 6A plots the pattern index for random dot motion
against the pattern index for plaids for the remaining 56 neurons.
The color of the data points denote the classification based on
plaids. Of the 28 neurons classified as CDS, based on plaids (blue
points), 21 neurons were PDS when tested with random dot mo-
tion, and only one neuron was classified as CDS. The majority of
PDS neurons based on plaids (red points) were also judged as
PDS for random dot motion (10/11). As a result, the pattern
index for random dot motion was significantly larger than the
pattern index for plaids (p = 3.4 X 10 ~'°, Wilcoxon signed-rank
test). We also found a weak but significant positive correlation
between the two pattern indices (r, = 0.38, p = 0.004). This
suggests that integration across orientations observed using
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Figure5.  Analysis of direction tuning for a Gabor and a plaid. 4, For each neuron, we mea-
sured the direction-tuning curve for a Gabor and a plaid that was constructed by superimposing
two Gabors drifting 120° apart. B, An example (DS neuron. The polar plots represent the
direction-tuning curve for Gabors (left), plaids (middle), and the two predictions (right). The
pattern prediction (red) was the same as the direction-tuning curve for Gabors. The component
prediction (blue) was computed as the sum of two direction-tuning curves, each shifted by 60°.
C, An example PDS neuron. D, Pattern and component-motion selectivity for plaids. Z-scored
pattern correlations were plotted against Z-scored component correlations. Based on the cor-
relation values, each neuron was classified as a PDS neuron (red), a (DS neuron (blue), or
unclassified (black).
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Figure 6. The distribution of pattern indices for random dot motion and plaids. A, The
pattern index for random dot motion was plotted against the pattern index for plaids. Color
denotes the classification, based on plaids. Many blue points (classified as (DS for plaids) lie
above the diagonal line, suggesting pattern-motion selectivity. B, The pattern index for random
dot motion (ordinate) was recalculated using direction tuning at the optimal speed and a speed
justabove it. The pattern index for plaids was also recalculated using the subsampled direction-
tuning data at 45° and spline interpolation. C, The pattern indices for random dot motion and
plaids were calculated using a standard computational model of MT neurons. The band-
width of integration across orientations and inhibitory weights on V1 afferents were
modified. Each line represents pattern indices for a unique inhibitory weight. For each
inhibitory weight, from the top right to bottom left, the integration bandwidth across
orientations decreased from 8 to 1. Gray dots represent a subpopulation of neurons from
A whose preferred speed was <<8°/s.

plaids was at least partially responsible for the prevalence of

pattern-motion selectivity measured using random dot stimuli.
We further analyzed the pattern-motion selectivity for ran-

dom dot motion in a slightly different way to perform a fair
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comparison with the data for plaids. Specifically, we used only
two direction-tuning data at the optimal speed and at the
speed just above it (e.g., the optimal speed of 4°/s and 8°/s). We
interpolated direction-tuning data with a periodic spline at
the optimal speed, and the interpolated curve was used to
create CDS and PDS predictions at the speed just above the
optimal speed. The speed ratio of the two resulted in a direc-
tional difference of 120° between the two component motions
(Eq. 2), which was the same as in the plaid experiment. We
further analyzed the direction tuning for Gabors and plaids
using a spline interpolation. We also downsampled the direction-
tuning data at 45° for Gabors and plaids because the increment
in the direction for the 2D velocity data was 45°. For each
neuron, we interpolated the direction-tuning curve for the
Gabor with a periodic spline. A CDS prediction was created by
summing two interpolated curves, each shifted by 60°. A PDS
prediction was identical to the interpolated curve. The pattern
index for random dot motion calculated using two speeds was
plotted against the pattern index for plaids calculated with
spline interpolation, as shown in Figure 6B. Even in this anal-
ysis, the pattern index for random dot motion was signifi-
cantly larger than the pattern index for plaids (p = 4.0 X 10 7,
Wilcoxon signed-rank test).

Model MT responses

We implemented a computational model of MT neurons
provided by Simoncelli and Heeger (1998) to determine the
mechanisms that might underlie the observed prevalence of
pattern-motion selectivity for random dot motion (Fig. 6A). A
model MT neuron linearly summed the outputs of a set of
direction-selective V1 neurons that were equally distributed on a
ring-like structure on a plane corresponding to the preferred di-
rection of the model MT neuron. In addition to summation, the
model MT neuron subtracted the outputs of V1 neurons that lay
off this plane. Here, we varied the number of V1 neurons that fed
into the model MT neuron from 1 (no integration across orien-
tations; that is, CDS neurons) to 8 (larger than the original: V1
neurons were separated by 22.5°). For each integration band-
width, we also modified the balance of excitation and inhibition
by multiplying the inhibitory V1 afferent weight by a coefficient
ranging from 0 to 1 in steps of 0.2. We measured the responses of
the model MT neuron with each of these parameters to random
dot motion, Gabors, and plaids.

Figure 6C shows the pattern indices for the model MT
neuron overlaid on the pattern indices for real MT neurons.
Because the model prediction depended on the preferred
speed of the model MT neuron, the model prediction was
overlaid on the pattern indices for neurons with preferred
speeds of =8°/s (gray symbols; subpopulation of Fig. 6A).
Each solid line connects the pattern indices for adjacent inte-
gration bandwidths for each inhibitory weight condition. As
expected, with increased orientation integration, pattern indi-
ces increased for both random dots and plaids under all inhib-
itory weight conditions. In contrast, increasing the inhibitory
weights shifted the trajectory of pattern indices toward the
right (Fig. 6C, from green to orange), suggesting that inhibi-
tion contributes to pattern selectivity of plaids more strongly
than that of dots. The model predictions were above the diag-
onal in Figure 6C, suggesting that the basic framework of the
MT model (Simoncelli and Heeger, 1998) partly accounted for
the observed prevalence of PDS neurons for random dot mo-
tion. Additionally, we suggest that part of the discrepancy
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between pattern selectivity for plaids versus dots was the result
of opponent inhibition.

Relationship between pattern-motion selectivity and
spatiotemporal separability

Random dot stimuli contain multiple orientations and spatio-
temporal frequencies. Previous studies have shown that some
MT neurons possess speed tuning independent of stimulus
spatial frequency (Perrone and Thiele, 2001; Priebe et al.,
2003). These speed-tuned neurons could summate inputs
along a line that bypasses the origin in the 3D spatiotemporal
frequency volume. We examined the relationship between
pattern-motion selectivity and the dependence of speed tun-
ing on spatial frequency. As in the study by Priebe et al. (2003),
we analyzed the response map obtained with a Gabor stimulus
in 2D spatial and temporal frequency space. To quantify the
dependence of speed tuning on spatial frequency, we fitted a
variant of the 2D Gaussian function on log-log coordinates of
the 2D frequency response map as follows:

_ —(log, (sf) — log, (sfy))*
o

{ — (log, (f) — log, (#, (Sf)))z}
exp O%f

R(sf,tf) = B + A - exp{

where #f, depends on spatial frequency and is given by the
following:

tf, (sf) = 2(Q+ D og () = log (o) + loga (0

The fitted parameter Q quantifies the dependence of speed
tuning on spatial frequency (Priebe et al., 2003). Specifically,
when Q is zero, the response map on 2D frequency space is
elongated such that speed tuning does not depend on spatial
frequency. A Q value of —1 indicates that the 2D response map
is separable, and the preferred speed decreased with increasing
spatial frequency.

The response map on 2D frequency space was available for
124 neurons (88 from Monkey K and 36 from Monkey P). The
distribution of Q values from this population was unimodal,
with a mean value of —0.53, consistent with that found by
Priebe et al. (2003). Both the 2D velocity tuning for random
dots and the spatiotemporal frequency tuning were available
for 94 neurons. Of these, 25 neurons preferred the fastest
speed we examined; thus, the pattern index could not be cal-
culated. Consistent with Priebe et al. (2003), we found no
correlation between the pattern index for random dot motion
and Q values (r, = 0.13, p = 0.29, N = 69) and no correlation
between the pattern index for plaids and Q values (r, = 0.03,
p=0.79, N =75).

Discussion

Our results show that so-called “component cells” in area MT
can give rise to 2D motion tuning when stimuli are broadband
in orientation. The modeling analysis confirmed that the basic
framework of MT computation, in which weighted linear
summation of V1 outputs is followed by normalization, can
partly account for our results. Furthermore, we suggest that
this characteristic is partly attributed to MT neurons with
weak inhibitory inputs from V1 afferents. Although we have
not tested this explicitly, most MT neurons presumably have
the ability to encode 2D velocity during normal viewing be-
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cause objects in our world typically contain multiple orienta-
tions and spatiotemporal frequencies.

Pattern-motion selectivity using random dot stimuli

In this study, pattern-motion selectivity for random dot stimuli
was predicted based on the shape of the direction-tuning curve at
each speed. In theory, if a neuron responds purely to motion
components, the 2D velocity map should be elongated along a
line perpendicular to the preferred direction. In reality, responses
gradually fall off, but the way in which they decrease may be
difficult to predict. Direction tuning is usually described by a
Gaussian function (Britten et al., 1993; DeAngelis and Uka,
2003). Speed tuning can be described by a log-Gaussian function,
consistent with Weber’s law (Nover et al., 2005). If direction
tuning is Gaussian and speed tuning is log-Gaussian for CDS
neurons, then the 2D velocity map should be elongated along a
line perpendicular to the preferred direction, with a tail elon-
gating toward faster speed. However, applying a log-Gaussian
function in Cartesian coordinates is difficult, especially be-
cause the prediction for static stimuli is ambiguous. For PDS
neurons, a likely prediction would be that the 2D velocity map
is the product of a Gaussian direction-tuning curve and a
log-Gaussian speed-tuning curve. However, it is unclear how
these would arise from CDS neurons. For these reasons, we
decided not to make precise predictions using mathematical
formulations but instead just predicted the preferred direction
at each speed. We also assumed that the shape of direction
tuning did not change with speed. Although it is unclear
whether these assumptions are valid, they nonetheless pro-
vided a fairly good description of the data.

To critically assess our CDS and PDS predictions, we per-
formed several control analyses. First, we predicted pattern selec-
tivity from direction-tuning curves at two speeds (Fig. 6B). This
tended to underestimate the pattern index, presumably because
of undersampling of the data, pointing to the importance of map-
ping the entire pattern of direction/speed tuning. Second, we
tested how the number of trials might affect our results and found
that we might have underestimated the pattern index when the
trial numbers were small. Finally, we focused on neurons with a
slow speed preference. Pattern indices for this population were
actually larger than those for the whole population. Because CDS
and PDS predictions become less distinguishable for neurons
with high-speed preferences, the pattern indices might have been
underestimated in neurons that prefer high speeds. Therefore, it
is possible that pattern indices for the population of neurons with
a slow speed preference represent the true distribution of pattern
indices.

Relationship to previous studies measuring

direction/speed tuning

Several previous studies have measured direction/speed tuning
using stimuli with multiple orientations. Hammond and Smith
(1983) were the first to show bimodality of direction tuning at
high speeds in the cat visual cortex. In the monkey MT, Rodman
and Albright (1987) used a dot stimulus and found that direction
tuning for most neurons can be explained by a change in gain,
depending on speed. Okamoto et al. (1999), on the other hand,
found neurons with bimodal peaks at fast speeds. There are two
potential issues with these studies. First, because these stimuli
only consisted of one element, the time during which the stimu-
lus was contained in the RF could have changed depending on the
speed. Second, inaccurate mapping of the RF may have led to
stimulation of different parts of the RF depending on direction.



Kumano and Uka e Pattern-Motion Selectivity for Random Dot Motion

These issues might have contributed to the apparent discrepancy
between the two studies, where Rodman and Albright (1987)
reported no bimodal direction tuning with fast speeds, whereas
Okamoto et al. (1999) reported a fairly substantial population (6
of 35, 17%).

Random dot stimuli contain multiple elements and thus
can continue to stimulate the same location regardless of di-
rection and speed. In their preliminary report, Simoncelli et al.
(1996) found that some component cells have bimodal
direction-tuning curves at high speeds for random dot stimuli.
However, they reported neither the pattern indices nor the
incidence of bimodality. By quantifying the degree of pattern
selectivity using random dot stimuli, our results show that the
incidence of bimodality lies between those of the two studies
described above. We found a large proportion of PDS neurons
(86%) and a small proportion of CDS neurons (5%). Thus, our
results confirm those of Okamoto et al. (1999), although the
percentage of CDS neurons using multioriented stimuli was
smaller than their population (17%). Moreover, our results are
similar to Okamoto et al. (1999) in that only a minority of neu-
rons classified as CDS using bioriented stimuli (plaids or crosses)
had bimodal direction tuning at fast speed using multioriented
stimuli (1 of 28 in our study, 6 of 15 in Okamoto et al., 1999).

Explanations for the difference between pattern-motion
selectivity for random dot stimuli and that for plaid

Many studies using plaids have confirmed that approximately
one-third of MT neurons are PDS neurons, and another third
comprises CDS neurons (Movshon et al., 1985; Smith et al., 2005;
Rust et al., 2006; Khawaja et al., 2009; Jazayeri et al., 2012). Con-
versely, studies using random dot stimuli have shown sharp di-
rection and speed tuning (Britten et al., 1993; DeAngelis and Uka,
2003; Nover et al., 2005), suggesting that neurons encode 2D
motion. Here, we estimated pattern-motion selectivity using ran-
dom dot stimuli and compared this directly with measurements
using plaids. Our results show a striking difference in pattern-
motion selectivity depending on stimuli and suggest that MT
neurons are more capable of identifying a particular 2D velocity
when stimuli contain multiple orientations. Although the weak,
but significant, correlation between pattern index for random
dot stimuli and that for plaids suggests that the same mechanisms
are in play for both types of stimuli, additional explanations are
necessary to account for the stronger pattern-motion selectivity
for random dot stimuli.

Analyses of models of MT neurons (Simoncelli and Heeger,
1998) suggest that the basic framework of MT computation in
which weighted linear summation of V1 outputs is followed by
normalization can partly account for our results (Fig. 6C, orange
line). We further found that, by reducing the strength of inhibi-
tory weights from V1 afferents, the trajectory of simulated pat-
tern indices shifted leftward (Fig. 6C, from orange to green). This
suggests that the variation in the balance between excitation and
inhibition of V1 inputs additionally accounts for our results. This
is also important because inhibition from opposing directions is
important for plaid tuning to appear pattern-like (Rust et al.,
2006). Our results suggest that opponent inhibition does not
contribute in the same way for stimuli with multiple orientations
as it does for plaids. The trajectory of simulated pattern indices
did not pass through a population of neurons in which the pat-
tern index for random dots was large and that for plaids was small
(Fig. 6C, neurons above green line). Additional nonlinearities,
such as end-stopping at V1 (Hubel and Wiesel, 1965), presum-
ably function for these neurons. Indeed, by combining the mo-
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tion energy detector (Adelson and Bergen, 1985) with end-
stopping, the true motion of tilted bar stimulus can be signaled by
component direction-selective neurons (Tsui et al., 2010). Be-
cause our plaids comprised two Gabor patches, not gratings with
sharp edges, end-stopping might have been less effective for our
plaids compared with random dot motion, leading to the discrep-
ancy between pattern selectivity of random dot motion and plaid
motion.

Our results show that the majority of MT neurons had a nar-
rower integration bandwidth across orientation and a weaker
inhibitory weight than the standard model of pattern cell. This is
consistent with a recent study by Nishimoto and Gallant (2011),
who reported that the spectral RFs of MT neurons tend to lie on
a single plane in 3D spatiotemporal frequency space, corre-
sponding to optimal velocity coding (Simoncelli and Heeger,
1998), although the spectral RFs of typical MT neurons
showed a partial ring-like structure and did not span the whole
velocity plane. This RF structure ensures that tuning for stim-
uli that contain multiple orientations and spatiotemporal fre-
quencies appears pattern-like.
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