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Isolated focal dystonia is a neurological disorder that manifests as repetitive involuntary spasms and/or aberrant postures of the affected
body part. Craniocervical dystonia involves muscles of the eye, jaw, larynx, or neck. The pathophysiology is unclear, and effective
therapies are limited. One mechanism for increased muscle activity in craniocervical dystonia is loss of inhibition involving the trigem-
inal sensory nuclear complex (TSNC). The TSNC is tightly integrated into functionally connected regions subserving sensorimotor
control of the neck and face. It mediates both excitatory and inhibitory reflexes of the jaw, face, and neck. These reflexes are often aberrant
in craniocervical dystonia, leading to our hypothesis that the TSNC may play a central role in these particular focal dystonias. In this
review, we present a hypothetical extended brain network model that includes the TSNC in describing the pathophysiology of craniocer-
vical dystonia. Our model suggests the TSNC may become hyperexcitable due to loss of tonic inhibition by functionally connected motor
nuclei such as the motor cortex, basal ganglia, and cerebellum. Disordered sensory input from trigeminal nerve afferents, such as
aberrant feedback from dystonic muscles, may continue to potentiate brainstem circuits subserving craniocervical muscle control. We
suggest that potentiation of the TSNC may also contribute to disordered sensorimotor control of face and neck muscles via ascending and
cortical descending projections. Better understanding of the role of the TSNC within the extended neural network contributing to the

pathophysiology of craniocervical dystonia may facilitate the development of new therapies such as noninvasive brain stimulation.

Introduction

Primary focal dystonia is a poorly under-
stood neurological disorder presenting
as involuntary sustained or intermittent
muscle contractions, which cause twisting
and abnormal postures of a body part
(Fahn, 1984; Albanese et al., 2013). Com-
mon forms of focal dystonia affecting
muscles of the head and neck are blepha-
rospasm (eyelid blinking or eye closure);
and oromandibular, laryngeal, lingual,
cranial, and cervical dystonia (Jinnah et
al., 2013). Onset is usually at ~40-60
years of age, and as yet no one particular
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causative gene has been identified (Phu-
kan et al., 2011; Lohmann and Klein,
2013). Primary focal dystonia affects ~20
persons per 100,000 population and is the
third most common movement disorder
worldwide (Steeves et al., 2012), although
it is likely that this figure is under-
representative as diagnosis is a recognized
problem (Albanese et al., 2011). Dystonia
is characterized by pain and disability that
persists for life, limiting daily activities
like driving and working. Psychiatric co-
morbidities such as compulsive behaviors
and depression are common (Zurowski et
al., 2013). There is good evidence that
dystonia reduces quality of life both for
people with the disorder and for their
caregivers (Battaglia et al., 2006; Lim,
2007; Slawek et al., 2007; Pekmezovic et
al., 2009; Zetterberg et al., 2009). Despite
the high incidence, dystonia remains poorly
understood, and treatment options are lim-

ited. For craniocervical dystonia, injections
of botulinum toxin are the most common
treatment at present but are not effective or
tolerated by all patients (Snaith and Wade,
2011; Batla et al., 2012). In this article, we
review the evidence for a role of the trigem-
inal sensory nuclear complex (TSNC)
within the wider distributed network of
brain regions contributing to the patho-
physiology of craniocervical dystonia. Weil-
lustrate the putative neural circuitry using
hypothetical models. Finally, we suggest
novel treatment interventions for cranio-
cervical dystonia that indirectly target the
TSNC.

Does the trigeminal sensory nuclear
complex play a role in

craniocervical dystonia?
Neurophysiological studies in people with
dystonia have identified reduced inhibi-
tion in the CNS, in particular the sensori-
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motor cortex, basal ganglia, brainstem,
spinal cord, and the cerebellum (Jinnah
and Hess, 2006; Quartarone et al., 2009;
Hallett, 2011; Neychev et al,, 2011). Ana-
tomical, neurophysiological, and clinical
data also point to involvement of the
TSNC in certain presentations of dysto-
nia that affect facial and neck muscles.
Neurons of the TSNC receive extensive
convergent input from afferents supply-
ing diverse structures of the head and
neck involved in nociceptive and non-
nociceptive signaling, and project in turn
to the somatosensory cortex (Abrahams et
al., 1979; Sessle et al., 1986; Bartsch and
Goadsby, 2002, 2003; Morch et al., 2007;
Takeda et al., 2012). Moreover, the TSNC
has extensive connections to primary mo-
tor cortex (M1) and brainstem motor re-
gions, enabling it to indirectly modulate
spinal motoneuron excitability via multi-
ple descending pathways. Support for a
role of the TSNC comes from clinical
studies whereby trigeminal reflexes im-
pacting on the control of cranial, facial
and cervical muscles are aberrant in
dystonia (Nakashima et al., 1989; Di Laz-
zaro et al.,, 1995), consistent with de-
creased inhibitory modulation (Akalin et
al., 2013). Interestingly, inadvertent or de-
liberate stimulation of trigeminal affer-
ents in the form of sensory tricks, facial or
tongue piercings, or dental devices ame-
liorates dystonia symptoms for some
people (Gomez-Wong et al., 1998; de En-
trambasaguas et al., 2007; Sims et al.,
2012). Interest in the brainstem and
TSNC in the pathophysiology of dystonia
peaked in the 1980s and 1990s, but the
advent of techniques such as transcranial
magnetic stimulation (TMS) was accom-
panied by a shift in research focus to the
cortex (Quartarone et al., 2009). The cur-
rent understanding is that the basal gan-
glia and cerebellum together contribute to
the dystonia phenotype via a functionally
integrated motor network (Jinnah and
Hess, 2006; Neychev et al., 2008; Neychev
et al.,, 2011). We propose that this model
should also include the TSNC when con-
sidering the pathophysiology underling
craniocervical dystonia.

Organization and function of the
trigeminal nerve

The organization of the trigeminal nerve
and its central components is summarized
in Figure 1. The small motor component
innervates the muscles of mastication.
The large sensory component involves all
three divisions of the trigeminal nerve and
conveys afferent input from the skin and
muscles of the face and jaw, temperoman-
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Figure1. Schematic of the trigeminal nerve and the TSNC.

Sensory inputs from the ophthalmic (V,), maxillary (V,), and
mandibular (V;) divisions are conveyed via their cell bodies in
the trigeminal ganglion (TG) to the principal sensory trigem-
inal nucleus (PSTN) and/or the spinal trigeminal nucleus
(STN), which has three parts: the nucleus oralis (NO), nucleus
interpolaris (NI), and nucleus caudalis (NC). The mesen-
cephalic trigeminal nucleus (MTN) contains the cell bodies of
primary afferent neurons with proprioceptive functions re-
lated to the teeth and muscles of mastication, and has direct
projections to motor neurons of the trigeminal motor nucleus
(TMN), enabling a rapid, monosynaptic reflex.

dibular joint (TM]), cranial blood vessels,
and dura to the CNS. The motor and sen-
sory roots emerge adjacent to each other
from the pons. The cell bodies of most
trigeminal sensory fibers reside in trigem-
inal ganglia that are located in the floor of
the middle cranial fossa.

The trigeminal sensory

nuclear complex

The TSNC is elongated and extends from
the midbrain to the upper cervical spinal
cord (Fig. 1). It primarily receives input
from trigeminal nerve afferents but also
receives sensory input from structures not
supplied by the trigeminal nerve, in par-
ticular the neck muscles (Sessle, 2000).
The most superior part, the mesencephalic
trigeminal nucleus, contains proprioceptive
neurons with peripheral projections to peri-
odontal receptors and muscle spindles in
masticatory muscles. The principal sensory
trigeminal nucleus receives input mainly
from large-diameter fibers regarding
discriminative sensation in the face and
intraoral structures, along with proprio-
ceptive input from the TM]J. The spinal tri-
geminal nucleus processes mechanical,
thermal, and nociceptive input from the
TM]J, facial, and cervical skin; oral and la-
ryngeal mucosa; muscles of the neck, jaw,
and tongue; the posterior dura, and cerebral
arteries (Abrahams et al., 1979; Matsushita
et al., 1981; Sessle et al., 1986; Sessle, 2000,
2002; Bartsch and Goadsby, 2002, 2003; Ed-
vinsson, 2011). Collateral projections of tri-
geminal ganglion neurons have been traced
to both the principal sensory nucleus and
the spinal trigeminal nucleus (Li et al,
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1992). Sensory inputs to the spinal trigemi-
nal nucleus and the upper spinal cord seg-
ments overlap (Kerr, 1963), and wide
dynamic range (WDR) neurons of the spi-
nal trigeminal nucleus receive inputs from
superficial and deep tissues, and from noci-
ceptive and non-nociceptive afferents of tri-
geminal and upper cervical spinal nerves
(Morch et al., 2007; Takeda et al., 2012).
This organization allows for afferent input
from a wide range of head and neck struc-
tures to influence excitability of TSNC neu-
rons, and for TSNC neurons to modulate
activity in cranial and cervical muscles.

Central projections of the TSNC

The TSNC has extensive projections to
other areas of the TSNC (Fig. 2), to mo-
toneurons in the spinal cord and brains-
tem, to the cerebellum and basal ganglia,
and via the thalamus to the motor cortex
(Luo and Li, 1991; Sessle, 2000). Muscles
of the face, eye, jaw, and neck are inner-
vated by projections from the TSNC to
motoneurons in the facial and trigeminal
motor nuclei, to motoneurons located in
the upper cervical spinal cord and to the
superior colliculus (Sessle et al., 1986).
From the mesencephalic nucleus proprio-
ceptive neurons project to the trigeminal
motor nucleus (Szentagothai, 1948), the
reticular nuclei, the cerebellum (Billig et
al., 1995) and as far caudally as the upper
cervical cord (Matsushita et al., 1981;
Wang and May, 2008). Neurons of the
principal sensory nucleus ascend to the
thalamus (Smith, 1975; Matsushita et al.,
1981; Ro and Capra, 1994), the superior
colliculus (Smith, 1975; Matsushita et al.,
1981; Huerta et al., 1983; Ro and Capra,
1994; Pellegrini and Evinger, 1995), cere-
bellum (Somana et al., 1980), and the tri-
geminal (Smith, 1975) and facial motor
nuclei (Erzurumlu and Killackey, 1979).
Principal sensory nucleus neurons also
project to the inferior olive (Xue et al.,
2008) and the hypoglossal nucleus (Aldes
and Boone, 1985). Neurons of the spinal
trigeminal nucleus project caudally to
mid and lower cervical motor neurons in-
nervating neck muscles (Devoize et al.,
2010), and, in cats, projections have been
traced caudally as far as the T6 segment
(Matsushita et al., 1981). Rostrally, the
spinal trigeminal nucleus projects to the
thalamus (Guy et al., 2005), the superior
colliculus, and the cerebellum via the in-
ferior olive (Huerta et al., 1983; Xue et al.,
2008). This organization supports the
TSNC as a key structure in a large neural
network modulating activity in motoneu-
rons supplying muscles of the neck and
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Schematic of an integrated network model including the TSNCin the pathophysiology of dystonia. The TSNC has direct projections (red) to motoneurons in the facial motor neurons

(FMN), trigeminal motor neurons (TMN), and upper cervical motor neurons. Projections to muscles most commonly affected by dystonia are indicated by the hatched arrows. Ascending projections
from the TSNC to the motor cortex via the thalamus, and to the superior colliculus (SC) and the reticular nuclei also modulate excitability via descending tracts to motor nuclei (blue). Excitatory inputs
to the cerebellum and inhibitory inputs via the inferior olive (I0; green) contribute to cortical and bulbar descending modulation of motoneurons innervating muscles affected by dystonia via
cerebellar outputs to the red nucleus, reticular nuclei, basal ganglia, and motor cortex via the thalamus. TSNC projections to the basal ganglia (yellow) modulate excitability of descending projections
to motoneurons by outputs to the motor cortex (via the thalamus), the superior colliculus, red nucleus, and the pedunculopontine nucleus (PPN). Connections from pedunculopontine nucleus to

spinal cord are not shown in the simplified figure.

face, and, therefore, should be considered
in network models for dystonia.

Trigeminal reflexes

Normal trigeminal nerve reflexes include
the corneal and blink reflexes, jaw open-
ing, jaw closing, and head retraction re-
sponses, and may be either excitatory or
inhibitory in nature (Godaux and Des-
medt, 1975; Ertekin et al., 1996, 2001).
Trigeminal afferents contribute to rela-
tively simple neural circuits in which the
trigeminal nerve provides both the sen-
sory and motor components of the reflex
arc, for example, the jaw-closing reflex
(Szentagothai, 1948; Nordstrom, 2007).
Trigeminal afferents are also involved in
more complex reflexes, such as the blink
reflex, which relies on activation of the
facial nerve (Valls-Sole, 2012), and
trigemino-cervical reflexes, in which tri-

geminal afferents modulate neck muscle
activity via the spinal accessory nerve (Na-
kashima et al., 1989, 1992; Di Lazzaro et
al., 1995, 2006).

The afferent limb of trigeminal reflexes
can involve sensory A-f3 fibers and low-
threshold non-noxious inputs (Cruccu et
al., 1989; Komiyama et al., 2010) or nox-
ious stimulation (Romaniello et al., 2000,
2003). Most trigeminal reflexes are con-
sistently evoked at two latencies, indica-
tive of separate neural pathways within
the brainstem and upper cervical spinal
cord (Di Lazzaro et al.,, 1996). Short-
latency reflex inhibition involves afferent
fibers that terminate in the primary sen-
sory nucleus, and impulses are relayed by
interneurons to the ipsilateral and con-
tralateral trigeminal, facial, or cervical
motor nuclei (Milanov et al., 2001; Cru-
ccu et al,, 2005). Long-latency inhibition

indicates complex polysynaptic pathways
with fibers that project to the trigeminal
spinal nucleus and higher-order neurons
that ascend to the lateral reticular forma-
tion and terminate bilaterally on facial,
trigeminal, or cervical motor nuclei (Cru-
ccu et al., 2005).

Aberrant trigeminal reflexes are appar-
ent in people who experience blepharo-
spasm, and oromandibular, cranial, and
cervical dystonia (Berardelli et al., 1985;
Tolosa et al., 1988a, b; Nakashima et al.,
1989; Alfonsi et al., 1992), with loss of re-
flex inhibition and increased reflex facili-
tation. In people with blepharospasm, and
cranial and oromandibular dystonia, there
is an increase in amplitude of both the early
and late components of the blink reflex (Be-
rardelli et al., 1985; Tolosa et al., 1988a, b;
Schwingenschuh et al., 2011; Akalin et al.,
2013). Paired stimulation of trigeminal af-
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Figure 3. A simplified schematic showing disinhibition of the TSNC. Facilitatory projections are illustrated in green,

inhibitory projections are illustrated in blue. The affected pathway is illustrated by the hatched lines. 4, Basal ganglia
circuits can modulate the TSNC via projections from the subthalamic nucleus to globus pallidus (internus) that increase
inhibitory modulation by the GPI over the superior colliculus and pedunculopontine nucleus, and increase excitability of
the TSNC. The ascending pathways from basal ganglia to the motor cortex via the thalamus are shown. B, The cerebellum
projects to the TSNC via pontine nuclei and the superior colliculus, and via an ascending pathway to the motor cortex via
the thalamus. Connections between the basal ganglia and cerebellum provide a common pathway for dysfunctioniin either
or both to impact on TSNC excitability. From the cerebellar cortex, the deep cerebellar nuclei (DCN) project to striatum in
the basal ganglia via the thalamus. The striatum in turn, projects to the cerebellar cortex by outputs from the subthalamic

nucleus via the pons.

ferents in blepharospasm patients reveals
hyperexcitability of trigeminal interneurons
or blink reflex motoneurons (Tolosa et al.,
1988a; Pauletti et al., 1993; Carella et al.,
1994; Eekhof et al., 1996). Repetitive stimu-
lation of trigeminal afferents in the same pa-
tient group enhances LTP-like blink reflex
plasticity (Quartarone et al., 2006; Kranz et
al.,2013). People with cervical dystonia have
altered blink reflex recovery curves and ab-
errant masseter muscle reflexes (Tolosa et
al., 1988a; Pauletti et al., 1993; Carella et al.,
1994; Eekhof et al., 1996). There is also re-
duced reflex inhibition in the sternocleido-
mastoid muscle on trigeminal nerve
stimulation in cervical dystonia patients

compared with healthy controls (Na-
kashimaetal., 1989; Carella etal., 1994). To-
gether, these studies indicate dysfunction of
trigeminal reflexes in people with dystonia,
which may contribute to aberrant craniofa-
cial and cervical muscle contractions.

Adding the TSNC to an integrated
network modal of dystonia

It is now generally accepted that the
pathophysiology underlying dystonia is
described as an integrated network (Jin-
nah and Hess, 2006; Neychev et al., 2008,
2011). As the TSNC is a key part of the
functional network subserving motor
control of the head and neck, we propose
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that network models should be expanded
to include the TSNC for craniocervical
dystonia (Fig. 2). As we have outlined pre-
viously, the TSNC may contribute to the
dystonia phenotype by direct activation of
motoneurons innervating facial and neck
muscles, and via indirect effects on inter-
connected motor regions, including the
cerebellum, basal ganglia, reticular sys-
tem, and motor cortex. Putative effects of
TSNC disinhibition on motor output are
summarized using four circuits in the
schematic diagram in Figure 2. The most
direct (red) involves short connections
between the TSNC and motoneuron
pools innervating dystonic muscles. The
second (blue) involves projections from
the TSNC to M1 via the thalamus to re-
ticular neurons, giving rise to the reticu-
lospinal descending pathway (Panneton
etal.,2011), and to the superior collicu-
lus, giving rise to the tectospinal path-
way. The third (green) is the inferior
olive—cerebellar loop. The TSNC proj-
ects to both inferior olive (Christian and
Thompson, 2003; Gerwig et al., 2007)
and cerebellum (Billig et al., 1995; Pel-
legrini and Evinger, 1997), and can
modify the excitability of cerebellar pro-
jections to the thalamus and brainstem.
In turn, output via corticospinal and
corticobulbar projections, and tectospinal,
rubrospinal, and reticulospinal pathways
influence motoneuron pools innervating
craniocervical muscles. Finally, TSNC
outputs affect basal ganglia excitability
(yellow). Basal ganglia project to M1 via
the thalamus, to the cerebellum (Bostan
and Strick, 2010; Bostan et al., 2010,
2013), pedunculopontine nucleus, supe-
rior colliculus, and red nucleus (Blood et
al., 2012). The model proposes a potential
role of the TSNC in an integrated func-
tional neural network that may contrib-
ute to the underlying pathophysiology of
craniocervical dystonia.

A model of craniocervical dystonia
involving loss of TSNC inhibition

A critical question arising from the pro-
posed model is what might lead to poten-
tiation of the TSNC in people with
craniocervical dystonia? Evidence indi-
cates that the cerebellum and basal ganglia
impose a level of tonic inhibition over
neurons mediating trigeminal reflexes,
and, if tonic inhibition is compromised,
hyperexcitability in TSNC circuits may re-
sult (Fig. 3). This model may explain why
people with blepharospasm demonstrate
abnormal trigeminal nerve reflexes in cir-
cuits controlling unaffected as well as af-
fected muscles (Quartarone et al., 2008).
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For example, people with spasmodic dys-
phonia and without dystonic symptoms
affecting eye muscles exhibit enhanced
blink reflex excitability (Cohen et al,
1989). Furthermore, blink reflexes, jaw
closing, and trigemino-cervical reflexes
are aberrant in people with either blepha-
rospasm or cervical dystonia (Pauletti et
al., 1993; Carella et al., 1994), consistent
with a nonspecific reduction in inhibition
over trigeminal reflex circuitry.

Dysfunctional plasticity in the basal
ganglia may be critical in dystonia. Ab-
normal synaptic plasticity within the
striatum has been observed in patients
(Peterson et al., 2010), and rat models of
dystonia also indicate striatal dysfunction
(Song et al., 2013). The basal ganglia may
contribute to dystonia via thalamocortical
outputs that modulate descending control
of affected muscles. However, magnetic
resonance imaging in people with cervical
dystonia demonstrates altered connec-
tions between the brainstem and basal
ganglia (Blood etal., 2012). The basal gan-
glia may modulate the excitability of the
brainstem TSNC via a pathway involving
the superior colliculus or the pedunculo-
pontine nucleus (Fig. 3A). Reduced dopa-
mine in the substantia nigra causes an
abnormally enhanced inhibitory output
from the globus pallidus internus (GPI),
supressing the superior colliculus and
nucleus raphe magnus, and in turn dis-
inhibiting the TSNC to potentiate tri-
geminal reflexes (Basso and Evinger,
1996; Basso et al., 1996). Alternately, re-
duction in substantia nigra and globus
pallidus inhibitory modulation over the
pedunculopontine nucleus may disinhibit
the TSNC via cholinergic projections (Mor-
cuende et al,, 2002). Evidence supporting
this model includes aberrant blink reflexes
demonstrated by patients with Parkinson’s
disease, a known basal ganglia disorder
(Penders and Delwaide, 1971; Kimura,
1973). Treatment with dopaminergic drugs
normalizes blink reflexes in these patients
(Battaglia et al., 2006). Inhibitory trigeminal
reflexes in muscles of mastication are also
reduced in people with Parkinson’s disease
(Nakashima et al., 1990), further linking the
basal ganglia to altered trigeminal reflex ac-
tivity. However, these latter findings do not
elucidate whether the pathway is mediated
by brainstem or cortical loops.

The cerebellum may also contribute to
the pathophysiology underlying dystonia
(Sadnicka et al., 2012). There is evidence
that dysfunction of Purkinje cell firing in-
duces dystonic motor behavior in rats
(Raike et al., 2012; Todorov et al., 2012),
and morphological degeneration of Pur-
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kinje neurons has been found postmor-
tem in brains of people who suffered
dystonia (Prudente et al., 2013). Pilot
studies in our laboratory indicate that
noninvasive stimulation to increase excit-
ability of the cerebellum may transiently
improve handwriting in people with focal
hand and cervical dystonia (Bradnam et
al., 2013). The cerebellum is likely to play
a role in dystonia independent of the
TSNC by indirect modulation of descend-
ing projections to cervical spinal cord
motoneurons.

However, diminished inhibitory out-
put from the cerebellum could also con-
tribute to craniocervical dystonia by
influencing excitability of the TSNC via
indirect pontine projections or via modu-
lation of the superior colliculus (Kawa-
mura et al., 1982; Fig. 3B), and several
studies demonstrating functional connec-
tions between the TSNC and cerebellum
support this hypothesis. Projections aris-
ing from the mescencephalic nucleus to
the cerebellum (Billig et al., 1995) are
likely to enable processing of propriocep-
tive errors relayed from the temperoman-
dibular joint and jaw-closing muscles.
Trigeminal—cerebellar pathways would
also enable adaptive modulation of the
blink reflex in response to corneal stimu-
lation and repeated orbicularis oculi mus-
cle contractions, which do not occur
following cerebellectomy (Pellegrini and
Evinger, 1997). The latter findings are
reinforced by a study in humans where
proprioceptive error signaling following
eyelid restraint was found to potentiate the
blink reflex (Schicatano et al., 2002). Finally,
a link between the cerebellum and the
TSNC is strongly indicated by the finding
that suppression of the cerebellum in
healthy adults using noninvasive stimula-
tion abolishes eye blink classical condition-
ing, which is known to rely on activity in the
trigeminal-inferior ~olive—cerebellar loop
(Hoffland et al., 2012). People with cervical
dystonia develop the conditioned eye blink
response less readily (Teo et al., 2009), but
conditioned learning is enhanced following
suppressive noninvasive cerebellar stimula-
tion (Hoffland et al., 2013). Together, this
evidence indicates that dysfunction
between TSCN and cerebellum may con-
tribute to the pathophysiology underlying
craniocervical dystonia. Examination of
the role of the cerebellum in modulating
trigemino-cervical reflexes in both healthy
adults and people with cervical dystonia is
currently underway in our laboratory.

The basal ganglia and cerebellum are
interconnected and influence each other’s
activity (Neychev et al., 2008; Bostan and

Strick, 2010; Bostan et al., 2010,2013;
Neychev et al.,, 2011; Kranz et al., 2013),
meaning that altered activity in both
pathways could potentially disinhibit
the TSNC. A primary dysfunction within
the striatum (Song et al., 2013) could sup-
press cerebellar cortex output via projec-
tions from the subthalamic nucleus to
brainstem pontine nuclei and the superior
colliculus (Fig. 3A). Alternatively, a pri-
mary dysfunction in the cerebellar cortex
may reduce inhibitory output from deep
cerebellar nuclei and might result in exci-
tation of the striatum via thalamostriatal
projections. This in turn might enhance
inhibition of globus pallidus by the stria-
tum (Fig. 3B). Therefore, primary dys-
function in either region may impact
activity and outputs of both regions.

Like the cerebellum, the superior col-
liculus could have direct involvement in
cervical dystonia without influencing ex-
citability of the TSNC. The superior col-
liculus is under basal ganglia, cerebellar,
and descending cortical control, and
modulates activity in cervical muscles di-
rectly via the tectospinal pathway (Fig. 2),
as well innervating facial and neck mus-
cles via the TSNC (Fig. 3). The primary
motor cortex provides descending control
over muscles innervated by trigeminal
motor nuclei and direct projections to up-
per cervical motoneurons. A measure of
cortical inhibition, the cortical silent pe-
riod, is shortened in the orbicularis oculi
and perioral muscle representations in
people with cranial dystonia (Curra et al.,
2000), but lengthened in dystonic and
nondystonic sternocleidomastoid mus-
cles in people with cervical dystonia
(Odergren et al., 1997). These findings in-
dicate that there may be aberrant de-
scending control over trigeminal motor
nuclei in craniocervical dystonia (Fig. 3).
Another important consideration is that
brainstem vestibular nuclei may contrib-
ute to abnormal muscle control in cranio-
facial dystonia; however, findings that
vestibular reflexes are abnormal in cervi-
cal dystonia are mixed (Minchau and
Bronstein, 2001; Miinchau et al., 2001;
Rosengren and Colebatch, 2010). Altered
vestibular reflexes in cervical dystonia
may be due to dystonic postures of the head,
producing aberrant vestibular stimulation
(Colebatch et al., 1995; Rosengren and
Colebatch, 2010). Clearly, the underlying
circuitry of craniocervical dystonia is com-
plex and involves many cortical and subcor-
tical nuclei. Our putative model is intended
to highlight the importance of including the
TSNC in the pathophysiology of craniocer-
vical dystonia, while recognizing the impor-
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tance of the other neural components in the
circuitry.

Potentiation of the TSNC by

afferent input

If the TSNC plays a role in the pathogen-
esis of craniocervical dystonia, then main-
tenance of dystonia may result from the
abnormal proprioceptive and nociceptive
afferent feedback to the TSNC from
dystonic muscles. This is supported by the
many studies demonstrating altered tri-
geminal reflexes in chronic neck pain, and
migraine and cervicogenic headache in a
manner remarkably similar to dystonia
(Schoenen et al., 1987; Nakashima and
Takahashi, 1991; Béank et al., 1992; de
Tommaso et al., 2002; Milanov and Bog-
danova, 2003; Nardone and Tezzon,
2003a, b; Proietti Cecchini et al., 2003;
Nardone et al., 2008). In the rat, inflam-
matory arthritis of the TMJ leads to sensi-
tization of WDR neurons in the spinal
trigeminal nucleus and increases the re-
sponsiveness of these neurons to further
afferent input (Takeda et al., 2012). In hu-
mans, infusion of hypertonic saline into a
muscle of mastication reduces inhibitory
trigeminal reflexes involving masticatory
muscles (Wang et al., 1999) and neck
muscles (Ge et al., 2004). These findings
indicate that abnormal sensory inputs via
trigeminal afferents can influence trigem-
inal reflex activity, which we propose
could contribute to the maintenance of
dystonia.

It is well recognized that non-
nocioceptive and nocioceptive afferents
converge onto WDR neurons within the
TSNC and may contribute to WDR sensiti-
zation (Ellrich and Treede, 1998; Ellrich et
al., 1998; Romaniello et al., 2000; Blood et
al., 2012). In turn, sensitized WDR neurons
respond to innocuous inputs as if they were
nocioceptive (Takeda et al., 2012) further
increasing trigeminal reflex excitability
(Ertekin et al., 2001; Serrao et al., 2003;
Blood et al., 2012). Trigeminal input may
contribute to a self-perpetuating loop in
dystonia, whereby TSNC disinhibition
causes aberrant motor output, and the ab-
normal signaling by proprioceptors and no-
cioceptors promotes ongoing activation of
sensitized WDR neurons. In summary, we
propose that once the extended network
subserving dystonia is potentiated, afferent
feedback from dystonic muscles themselves
may contribute to hyperactivity in TSNC
neural circuits to maintain symptoms.

Is the TSNC a potential

therapeutic target?

If potentiation of the TSNC contributes
to the expression of cranio-cervcial
dystonia, the trigeminal nerve and sen-
sory nuclear complex may provide a
novel therapeutic target. Interventions
that have been used to target the brain in
cervical dystonia include deep brain stimu-
lation (DBS) and noninvasive brain stim-
ulation (NBS). Both approaches may
have the potential to indirectly modify
TSNC excitability by modulating brain
nuclei with functional connections to tri-
geminal nuclei.

Deep brain stimulation

The DBS target that has shown good long-
term efficacy in treatment cervical dysto-
nia is the GPI (Hung et al., 2007; Jeong et
al., 2009; Sadnicka et al., 2013; Witt et al.,
2013). The GPI can influence the excit-
ability of the TSNC via the pedunculo-
pontine nuclei and the superior colliculus
(Fig. 3). A recent study found that palla-
dial stimulation improved the motor as-
pects of cervical dystonia but did not
affect temporal sensory discrimination
thresholds (Sadnicka et al., 2013). How-
ever, in this study temporal thresholds
were only tested in the hand, and so it re-
mains unclear whether TSNC excitability
may have been impacted. Future studies
investigating temporal sensory thresholds
in the trigeminal nerve territory and tri-
geminal motor reflexes in patients under-
going DBS may elucidate the impact of
altered basal ganglia function of TSNC
excitability.

Noninvasive brain stimulation

Direct evidence that noninvasive stimula-
tion of functionally connected brain re-
gions can modulate the excitability of the
TSNC is still lacking. However, NBS has
been used as a trial treatment for focal
dystonia by targeting several brain re-
gions. These include M1 (Siebner et al.,
1999; De Vito et al., 2009), the premotor
cortex (Murase et al., 2005; Borich et al.,
2009; Huang et al., 2010, 2012; Kimberley
et al., 2013), and the cerebellum (Hoff-
land et al., 2013). An inhibitory repetitive
TMS protocol applied to M1 suppressed
the excitability of the blink reflex recovery
curve in healthy adults (De Vito et al,,
2009). This study has yet to be replicated
in people with dystonia; however, it does
indicate trigeminal reflexes may be mod-
ulated from supraspinal levels, possibly by
corticobulbar projections from M1 to the
TSNC. An inhibitory TMS protocol to M1
restored intracortical inhibition and pro-
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longed the cortical silent period, tran-
siently improving writing performance in
people with focal hand dystonia (Siebner
et al., 1999). However, several studies us-
ing direct current stimulation to suppress
M1 have shown little benefit for people
with focal hand dystonia (Buttkus et al.,
2010, 2011; Benninger et al., 2011). These
negative results may stem from the fact
that cathodal transcranial direct current
stimulation does not induce normal in-
hibitory effects on M1 excitability in peo-
ple with focal hand dystonia, possibly due
to an impairment of synaptic homeostatic
mechanisms (Quartarone et al., 2005).
The potential for stimulating M1 to indi-
rectly modulate TSNC excitability re-
mains unclear, and studies assessing
brainstem reflexes following M1 stimula-
tion in people with craniocervical dystonia
are needed.

Suppression of the premotor cortex
with inhibitory TMS protocols has been
found to normalize cortical silent periods
and intracortical inhibition within M1
and is associated with improved hand-
writing in people with focal hand dystonia
(Murase et al., 2005; Borich et al., 2009;
Huangetal., 2010; Kimberley et al., 2013).
In common with NBS to the motor cor-
tex, studies investigating the effects of pre-
motor cortex stimulation on brainstem
reflex excitability in people with cranio-
cervical dystonia are still lacking. Regard-
ing the cerebellum, there is preliminary
evidence that NBS to increase cerebellar
excitability may normalize short afferent
inhibition and cerebellar brain inhibition
in M1, and may improve handwriting ki-
nematics in people with focal hand and
cervical dystonia (Bradnam et al., 2013).
The most compelling evidence that NBS
to the cerebellum can modulate excitabil-
ity of the TSNC comes from a study
whereby theta-burst stimulation to sup-
press cerebellum restored associative
blink reflex conditioning in people with
cervical dystonia (Hoffland et al., 2013).
Studies investigating cerebellar modula-
tion of sensory discrimination thresholds
in the trigeminal afferent territory and
other brainstem reflexes such as the
trigemino-cervical reflex are needed. Ex-
periments in larger cohorts of patients
with craniocervical dystonia are war-
ranted to assess the impact of NBS to re-
gions of brain functionally connected to
the TSNC by measuring effects on trigem-
inal brainstem reflexes and temporal dis-
crimination thresholds assessed in the
trigeminal afferent territory. If such stud-
ies support the theory that hyperexcit-
ability of the TSNC contributes to the
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pathophysiology of craniocervical dysto-
nia, they will support the potential for
NBS to be an effective novel treatment
intervention.

Modulation of trigeminal

afferent input

Stimulation of trigeminal nerve afferents
may provide an alternative therapeutic
approach to NBS. The only treatment for
primary focal dystonia that has demon-
strated benefit in randomized clinical tri-
als to date is botulinum toxin (Snaith and
Wade, 2011; Batla et al., 2012). Botulinum
toxin is an acetylcholine release inhibitor
and so acts at the neuromuscular junction
to reduce aberrant muscle contraction. By
doing so, it also acts to normalize sensory
input to the TSNC via trigeminal affer-
ents. Whether normalization of afferent
feedback by trigeminal afferents contrib-
utes to the benefits of botulinum toxin on
dystonia is unclear. There is evidence for
reorganization of hand motor cortex fol-
lowing botulinum toxin injections to neck
muscles (Thickbroom et al., 2003; Kojovic
et al., 2011), and some studies report the
normalization of potentiated trigeminal
reflexes following injections of the toxin
into orbicularis occuli in blepharospasm
(Quartarone et al., 2006), but others do
not (Girlanda et al., 1996; Grandas et al.,
1998). Furthermore, exercise therapy
(with or without botulinum toxin) that
may normalize afferent feedback from
dystonic muscles also failed to demon-
strate long-term improvement in motor
control in people with cervical dystonia
(Tassorelli et al., 2006; Zetterberg et al.,
2008).

Trigeminal afferent input clearly con-
tributes to the ability of some people
to transiently suppress dystonia using
a “geste antagoniste” (sensory trick),
touching skin over the neck or face, and
this maneuver is known to suppress activ-
ity in brainstem reflexes in people with
blepharospasm (Gémez-Wong et al,
1998). Altered input from proprioceptive
jaw afferents may also explain the tran-
sient success of mouthguards that alter
jaw position in some people with cervical
dystonia (Sims et al., 2012). Stimulation
of afferent fibers with transcutaneous
electrical nerve stimulation has also dem-
onstrated benefit in patients with focal
dystonia (Toglia and Izzo, 1985; Foley-
Nolan et al., 1990; Tinazzi et al., 2005).
Afferent input provided by taping
dystonic muscles was found to reduce
pain, but not motor symptoms in cervical
dystonia (Pelosin et al., 2013). Low-
frequency trigeminal nerve stimulation to
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reduce TSNC potentiation did not pro-
duce objective improvements in blepha-
rospasm symptoms (Kranz et al., 2013).
Further studies are required to under-
stand whether modulating sensory inputs
via trigeminal afferents has potential as a
treatment intervention for craniocervical
dystonia.

Conclusion

Trigeminal-mediated reflexes are defi-
cient in craniocervical dystonia, indicat-
ing that the trigeminal sensory nuclear
complex may play an important role,
given its wide ranging projections to mo-
tor regions of the brain. Abundant ana-
tomical evidence indicates that motor
control of the head and neck relies on nor-
mal function of the TSNC reflex path-
ways, and therefore abnormal TSNC
function may impact this control. We
present an integrated network model that
includes the TSNC in the pathogenesis of
craniocervical dystonia. The proposed
model explains how TSNC disinhibition
can impact the excitability of motoneu-
rons innervating facial and cervical mus-
cles, both directly and indirectly via neural
connections with the motor cortex, basal
ganglia, and cerebellum. We propose a
network involving the cerebellum, basal
ganglia, superior colliculus, and motor
cortex that contributes to potentiation
within the TSNC via a reduction in inhi-
bition, which generates a nonspecific in-
crease in the excitability of trigeminal
reflex circuits. Trigeminal afferent input
from dystonic muscles may contribute to
the maintenance of craniocervical dystonia.
Noninvasive brain stimulation targeting
neural inputs to the TSNC may provide a
novel treatment option. Further research is
warranted to determine whether noninva-
sive brain stimulation may normalize tri-
geminal reflexes and improve symptoms of
craniocervical dystonia. Determining cost-
effective and efficacious treatments is ex-
tremely important as dystonia remains a
poorly understood and managed neurolog-
ical condition that severely impacts quality
of life and well being for people who experi-
ence the disorder.
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