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At the nerve terminal, neurotransmitter release is triggered by Ca>”" influx through voltage-gated Ca>* channels (VGCCs). During
postnatal development, VGCC subtypes in the nerve terminal switch at many synapses. In immature rodent cerebella, N-type and
P/Q-type VGCCs mediate GABAergic neurotransmission from Purkinje cells (PCs) to deep nuclear cells, but as animals mature, neu-
rotransmission becomes entirely P/Q-type dependent. We reproduced this developmental switch in rat cerebellar slice culture to address
the underlying mechanism. Chronic block of cerebellar neuronal activity with tetrodotoxin (TTX) in slice culture, or in vivo, reversed the
switch, leaving neurotransmission predominantly N-type channel-dependent. Brain-derived neurotrophic factor or neurotrophin-4
rescued this TTX effect, whereas pharmacological blockade of neurotrophin receptors mimicked the TTX effect. In PC somata, unlike in
presynaptic terminals, TTX had no effect on the proportion of Ca>" channel subtype currents. We conclude that neuronal activity
activates the neurotrophin-TrkB signaling pathway, thereby causing the N-to-P/Q channel switch in presynaptic terminals.

Introduction

At nerve terminals, Ca®" entering through voltage-gated Ca2+
channels (VGCCs) triggers neurotransmitter release (Katz,
1969). Multiple VGCC subtypes including P/Q- (Ca,2.1), N-
(Cay2.2), and R- (Cay2.3) types mediate neurotransmitter re-
lease at immature synapses (Luebke et al., 1993; Takahashi and
Momiyama, 1993; Wheeler et al., 1994; Wu et al., 1998). How-
ever, contributions of N- and R-type VGCCs to transmitter re-
lease decline during development at various types of synapses
(Scholz and Miller, 1995; Rosato Siri and Uchitel, 1999; Iwasaki et
al., 2000; Momiyama, 2003). In new born rodents, both at the
cerebellar inhibitory synapse between Purkinje cells (PCs) and
deep cerebellar nuclei (DCN) cells, and at the calyx of Held syn-
apse in the brainstem, both N-type and P/Q-type VGCCs medi-
ate transmitter release, but after 2 weeks, neurotransmission
becomes entirely P/Q-type channel-dependent (Iwasaki et al.,
2000). At the calyx of Held in Cay2.1 al subunit-ablated mice,
N-type VGCCs are overexpressed and fully compensate for the
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lost P/Q-type channel currents (Inchauspe et al., 2004; Ishikawa
et al., 2005). Nevertheless, these mice develop severe cerebellar
dysfunction after the second postnatal week (Jun et al., 1999),
implying that the N-to-P/Q-type channel switch may be essential
for the functional maturation of cerebellum.

Presynaptic N-type and P/Q-type VGCCs have some distinct
properties. During repetitive stimulation, P/Q-type Ca*" cur-
rents undergo facilitation followed by inactivation (Cuttle et al.,
1998; Forsythe et al., 1998; Tsujimoto et al., 2002), whereas
N-type Ca*" currents show monotonic inactivation (Inchauspe
et al., 2004; Ishikawa et al., 2005). This P/Q-type Ca?" current
facilitation accounts for 40—-50% of paired-pulse synaptic facili-
tation (Miiller et al., 2008; Hori and Takahashi, 2009). In the
cerebellum, firing frequency of PCs often exceeds 100 Hz (Llinds
and Sugimori, 1980; Hiusser and Clark, 1997; Womack and
Khodakhah, 2002). The main inhibitory output from PCs is pro-
jected to DCN neurons, where excitatory inputs from mossy and
climbing fibers converge to execute signal computations for mo-
tor control (Aizenman et al., 2003). In this neuronal circuit, the
developmental N-P/Q switch in PC axon terminals may facilitate
release of inhibitory transmitter in response to high-frequency
inputs, thereby strengthening the inhibitory influence of PCs
onto DCN neurons.

The developmental N-P/Q switch occurs widely at both excit-
atory and inhibitory synapses, but little is known as to the under-
lying mechanism. To address this issue, we have established a
cerebellar slice culture preparation, where the developmental N-
P/Q switch can be reproduced at the PC-DCN synapse. First,
we determined whether the developmental switch is prepro-
grammed or induced secondarily by neuronal activity. Blockade



18756 - ). Neurosci., November 27, 2013 - 33(48):18755-18763

of neuronal activity by TTX treatment A
reversed the N-P/Q switch and made
neurotransmission predominantly N-type
channel-dependent. The neurotrophin re-
ceptor (Trk) antagonist K252a mimicked
this TTX effect, whereas coapplication with
TTX of the TrkB ligands brain-derived neu-
rotrophic factor (BDNF) or neurotrophin-4
(NT-4) rescued the TTX effect. As in slice
culture, in vivo administration of TTX or
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K252a into pup cerebella reversed the
N-P/Q switch and made PC-DCN trans-
mission predominantly N-type channel-
dependent. Thus, neuronal activity and
ensuing activation of Trk receptors by
neurotrophins likely underlie the devel-
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opmental N-P/Q switch at presynaptic
terminals.

Materials and Methods

All experiments were performed in accordance
with the guidelines of the Physiological Society
of Japan.

Viral vector construct. Lentiviral vectors were
designed to express EGFP under the control of
a PC-specific promoter, L7-4N. The L7-4N
promoter is a fusion promoter consisting of a
minimal CMV sequence and a truncated (1 kb)
PC-specific L7 promoter (Sawada et al., 2010).
It exhibits much greater transcriptional activity
than the original L7 promoter without com-
promising PC specificity (H. H., unpublished
observation).

Viral vector production. The viral vector was
produced by cotransfection of HEK293T cells
(2.5 X 10° per dish) with a mixture of four
plasmids (6 ug of pCAGKGPIR, 2 ug of
pCAG4RTR2, 2 ug of pCAG-VSV-G, and 10
ug of vector plasmid pCL20c L7-4N-EGFP)
using a calcium phosphate precipitation
method as reported previously (Torashima et
al., 2006). Briefly, cells were cultured in DMEM
(Wako) supplemented with 10% fetal bovine
serum. Sixteen hours after transfection, the
culture medium was exchanged with fresh medium containing forskolin
(10 wMm). The medium containing vector particles were harvested once
64 h after transfection. Medium samples were filtered through mem-
brane filters (0.45 wm), mixed with PEG-it Virus Concentration Solution
(System Biosciences), and left overnight at 4°C. Viruses were collected
from precipitates after centrifugation at 1500 X g the next day, and
resuspended with PBS (—).

Preparation of cerebellar slice culture and solutions. Cerebellar slices
were prepared according to the protocol of Gahwiler (1981) and Stoppini
etal. (1991). Inbrief, PO Wistar/ST rat pups of either sex were decapitated
and brains were aseptically removed. Cerebella were dissected and me-
ninges were carefully removed in cold Gey’s balanced salt solution con-
taining 5 mg/ml glucose and 1 mm kynurenic acid. Sagittal slices 350 um
thick were cut using a Mcllwain tissue chopper, separated with fine for-
ceps, and transferred onto transparent membranes (Millicell CM,
Millipore). Slices were then cultured on a liquid layer of BME-based
serum-free medium and maintained at 37°C in humidified 95% O, and
5% CO,. Half of the medium was exchanged every 4 d. To inhibit glial
proliferation, cytosine-B-p-arabinofuranoside (1 um), uridine (1 um),
and 5-fluoro-2’-deoxyuridine (1 um) were added to the medium after 4 d
in culture. To visualize PCs, slice cultures at 1 DIV were infected with
lentivirus-containing EGFP under control of a PC-specific promoter,
L7-4N. The following drugs were applied to culture medium at 1 DIV
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In vitro developmental decline in the w-CgTx sensitivity of GABAergic synaptic transmission from PCs to DCN cells in
slice culture. A, EGFP-labeled PCs and their axons at 14 DIV in cerebellar slice culture infected with Lentivirus vector encoding EGFP
that can be expressed under the control of a PC-specific promoter. IPSCs were evoked by stimulating PC axons and recorded from
a DCN cell using glass electrodes. Scale bar, 300 wm. B, IPSCs evoked in DCN cells by stimulating PC axons. Bath-application of
bicuculline (BIC, 10 wm) abolished the IPSCs (superimposed). €, Graded increase in the IPSC amplitude in response to stimulus
intensity, with a maximal level reached at 0.8 — 0.9 mA. D, Left, At 8 DIV, cw-CgTx (3 pum) reduced the amplitude of IPSCs by 37%.
Subsequent application of w-AgaTx (200 nu) abolished the remaining IPSCs. Right, At 14 DIV, w-CgTx reduced the amplitude of
IPSCs by 11%. Subsequent application of w-AgaTx blocked the remaining IPSCs. Superimposed sample records are representative
IPSCs ata holding potential of —60 mV before w-CgTx application (1), after w-CgTxapplication (2), and after w-AgaTx application
(3). Inthis figure, and Figures 2, 3, and 6, each data point represents the amplitude of an individual synaptic current. E, The fraction
of IPSCs blocked by w-CgTx applications at 8 —10 DIV and 12—14 DIV. The mean == SEM derived from 7 to 10 cells are shown in bar

until the day of recording: BIC (10 pum), TTX (1 um), CNQX (10 um),
K252a (100 nm), and NGF family (NGF, BDNF, NT-3, and NT-4; 100
ng/ml, respectively). Before recording IPSCs, slices were moved from
culture media to a recording chamber and washed for at least 30 min by
superfusion with artificial CSF (aCSF) containing the following (in mm):
117.5 NaCl, 2.5 KCI, 6 MgCl,, 2 CaCl,, 10 glucose, 3 myo-inositol, 2
sodium pyruvate, 0.5 ascorbic acid, 1.25 NaH,PO,, and 26 NaHCO, (pH
7.4, when saturated with 95% O,/5% CO,). For recording GABAergic
IPSCs, the aCSF contained CNQX (10 uM) and strychnine (0.5 uM) to
block EPSCs and glycinergic IPSCs. Patch pipettes were filled with an
internal solution containing the following (in mm): 157.5 CsCl, 9 NaCl,
10 HEPES, 1 EGTA, 2 Mg-ATP, and 5 QX314 Cl (adjusted to pH 7.3 with
CsOH). Ca?" currents were recorded in an external solution that con-
tained (mm): 105 NaCl, 20 tetraethylammonium chloride (TEA-CI), 2
CaCl,, 6 MgCl,, 2.5 KCl, 26 NaHCOs, 10 glucose, 3 myo-inositol, 2
sodium pyruvate, 0.5 ascorbic acid, 1.25 NaH,PO,, and 0.0005 TTX (pH
7.4, when saturated with 95% O,/5% CO,). The pipette solution con-
tained (mm): 80 Cs-gluconate, 30 CsCl, 40 HEPES, 10 TEA-CI, 5 EGTA,
12 Na, phosphocreatine, 1 MgCl,, 2 Mg-ATP, and 0.5 Na-GTP (adjusted
to pH 7.3 with CsOH).

Immunostaining. At 12-15 DIV, cerebellar slice cultures were fixed in
0.1 M phosphate buffer containing 2% paraformaldehyde, 10% metha-
nol, and 0.1% picric acid for 1 h (or 4% paraformaldehyde for 15 min).
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Drug infusion into immature rat cerebella in
vivo. For implantation of a brain infusion can-
nula (Alzet brain infusion kit 1) connected to a
mini osmotic pump (Model 1007D, Alzet) viaa
catheter tube (14 mm in length), Wistar/ST
rats of either sex at P6 were anesthetized with
isoflurane, skin over the cerebellum was cut,
and using a 25 gauge needle, a hole was made in
the skull over the cerebellum. A brain infusion
cannula (0.36 mm in outer diameter, 1.5 mm
inlength) was inserted into the hole in the skull
and fixed to the skull with dental cement. An
osmotic pump was inserted into a subcutane-
ous pocket on the back of the rat. Before sur-
gery, osmotic pumps were filled with TTX
(159.6 ng) or K252a (93.5 ng) diluted in 100 ul
of 0.9% saline at the final concentrations of 5
M for TTX and 2 um for K252a, respectively.
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Figure 2.

Fixed cultures were processed for immunostaining as follows: (1) block-
ing in PBS(—) containing 4% skimmed milk and 0.2% Triton X-100 for
1 h, (2) application of primary antibodies in PBS(—) containing 0.1%
bovine serum albumin and 0.05% Triton X-100 for 2 or 3 d at 4°C, (3)
application of secondary antibodies in PBS(—) containing 20% goat
serum and 0.05% Triton X-100 for 1.5 h, and (4) mounting with
ProLong Gold antifade reagent (Invitrogen). We used primary anti-
bodies to BDNF (rabbit polyclonal, Santa Cruz Biotechnology; di-
luted 1:50), calbindin D-28k (mouse monoclonal clone CB-955,
Sigma-Aldrich, diluted 1:1000; rabbit polyclonal, Millipore; diluted
1:1000), VGLUT1 (guinea pig polyclonal, Millipore; diluted 1:500),
GFAP (mouse monoclonal, Sigma-Aldrich; diluted 1:350), and TrkB
(rabbit polyclonal, Santa Cruz Biotechnology; 1:50), along with goat
secondary antibodies conjugated with Alexa Fluor 488 or Alexa Fluor
555 (Invitrogen; diluted 1:500). In the primary antibody absorbing
tests for evaluating the specificity of the BDNF, NT-4, or TrkB immu-
noreactivity, BDNF blocking peptide (Santa Cruz Biotechnology; fi-
nal concentration 4 ug/ml), recombinant human NT-4 (Wako; final
concentration 4 wg/ml), or recombinant human TrkB Fc chimera
(R&D Systems; final concentration 28.6 ug/ml) was preincubated
with primary antibodies overnight at 4°C. Confocal images were ac-
quired using a Leica SP5 confocal microscope with a 20X objective
lens. Excitation wavelengths were 488 nm (argon laser) and 543 nm
(helium-neon laser). Emission wavelengths were 500-535 nm (for
green) or >555 nm (for red). All immunostaining procedures were
performed at room temperature (22-27°C), unless noted otherwise.

Activity-dependent regulation in the w-CgTx sensitivity of GABAergic transmission in cerebellar slice culture. From 1
DIV to 12-14 DIV, slices were cultured in standard media containing bicuculline (BIG; 10 zum), TTX (T am), or CNQX (10 um), or in
lowCa2™* (0.8mm) highMg 2+ (2.6 mm) media. IPSCs were recorded at 12— 14 DIV after washing slices with standard aCSF for >30
min. 4, Top left, In a BlC-treated culture, w-CgTx (3 wum) had no effect, but w-AgaTx (200 nm) abolished IPSCs. Top right, In a
TTX-treated culture, w-CgTx attenuated IPSC amplitude by 89%. Subsequent application of w-AgaTx abolished the remaining
IPSCs. Bottom left, Ina CNQX-treated culture, w-CgTx attenuated the IPSCamplitude by 46%. Subsequent application of w-AgaTx
abolished the remaining IPSCs. Bottom right, In a cerebellar slice cultured in low Ca®* (0.8 mu) high Mg ™ (2.6 mm) medium,
w-(gTx attenuated the IPSC amplitude by 95%. Subsequent application of w-AgaTx abolished the remaining IPSCs. Sample
records of representative IPSCs before w-CgTx application (1), after w-CgTx application (2), and after w-AgaTx application (3)
were superimposed. The holding potential was — 60 mV. B, The fraction of IPSCs blocked by w-CgTx applicationin different culture
conditions. Bar graphs show the mean == SEM derived from 4 to 10 cells. Control data are the same as Figure 1£ (gray bar).

The pumping rate of this osmotic pump was
0.423 = 0.004 wl/h in isotonic saline at 37°C.
TTX (16.2 ng/d) or K252a (9.5 ng/d) was in-
fused into the cerebellar cortex for a maximum
duration of 7 d. Control animals received os-
motic pump infusion of 0.9% saline alone into
the cerebellar cortex. To prevent pups from be-
ing killed by mother rats after surgery, pups
were milk-fed four times per day.

Acute slice preparation. Sagittal slices of cer-
ebellum (200 wm in thickness) were prepared
from P12-P14 Wistar/ST rats of either sex
killed by decapitation under isoflurane anes-
thesia. Before recording, slices were incubated
for 1 hat 37°C in oxygenated aCSF. Neurons in
slices were visually identified with a 20 X water-
immersion objective attached to an upright
microscope (DM6000 CFS; Leica).

Recordings, drug application, and data analy-
sis. Patch pipettes (2-3 M()) had a series resis-
tance of 4—10 M{), which was compensated by
up to 70% for a final value of 2-3 M(). Record-
ing of IPSCs was made under voltage-clamp at
a holding potential of —60 mV using a patch-
clamp amplifier (Multiclamp 700B). Stimula-
tion of synaptic input was made with a glass
pipette filled with aCSF. The pipette was positioned in the vicinity of
Purkinje cell axons to evoke GABAergic IPSCs every 10 s in DCN cells.
Ca®" currents in Purkinje cell somata were evoked every 20 s by a 20 ms
depolarizing pulse from —80 mV holding potential to 0 mV under
voltage-clamp. Synthetic w-AgaTx (200 or 400 nm; Peptide Institute) and
w-CgTx (3 um; Peptide Institute) were dissolved in oxygenated aCSF
containing cytochrome ¢ (0.25 mg/ml; Sigma-Aldrich) just before bath
application. All records were low-pass filtered at 10 kHz and digitized at
20 kHz by Digidata 1320A with pClamp 9 software (Axon Instruments).
Leak subtraction of Ca** currents was made by a P/N protocol (Taka-
hashi et al., 1998). All values are given as mean = SEM and significant
difference was evaluated by Student’s ¢ test or ANOVA followed by Tur-
key—Kramer test. All experiments were performed at room temperature
(18-23°C).

Results

Reproduction of the developmental N-P/Q channel switch in
cerebellar slice culture

To investigate mechanisms underlying the developmental N-P/Q
channel switch in presynaptic terminals (Iwasaki et al., 2000), we
have established a cerebellar slice-culture preparation in which
PCs and their axons are visually identified with EGFP labeling
linked to the PC-specific L7-4N promotor (Fig. 1A). In cerebellar
slices, cut from new born rats (postnatal day; PO) and maintained
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for 8-15 DIV, bicuculline-sensitive,
GABAergic IPSCs (IPSCs) were evoked in _K252a  o-CgTx  o-Agalx TTX+B‘Sﬁgm -CgTx  -AgaTx
DCN neurons by stimulating PC axons L 20, < 5. = ,
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mediated by N-type channels (N-IPSC) at TTX+NT-4 o-CgTx  ©-AgaTx ggﬁa+BDNFm -CaTx a- AgaTx
8—10 DIV is similar in magnitude to that in < — /= < o
acute cerebellar slices from P8 rats (Iwasaki b4 D . 2 2 2 1w
et al, 2000). Later, at 12-14 DIV, the 3 2 :..-..—.,gs,;-,: 5P . ‘% E ,‘.f ‘ ;
N-IPSC fraction declined to 14 * 3% (n = g ) -ﬂ'-"‘;- ﬁg&% 1 10J,,?s'5 "oy '1 i -é ] 13],,?55 B
10, p <0.05; Fig. 1 D, E) to a similar extent as 8 1 '. 3 8 “ ,‘
in acute slices of P11-P14 rats (Iwasaki et al., 2 0 : L0
2000). Thus, the developmental N-P/Q - 0 10 20 30 40 30 - 0 10 Ti2m0e (n:iion) 40 50
channel switch for transmitter release B
was reproduced in this cerebellar slice
culture preparation. 5 (e

go08
Neuronal activity regulates presynaptic =
N-type channels involved -% 0.6
in neurotransmission 504
Using the cerebellar slice culture prepara- 3
tion, we investigated whether neuronal ('5;0-2
activity is essential for the developmental 2 )
N-P/Q switch. We first tested the effect of s § X L 3L r_.' % "'_’ S 8%
bicuculline, as it increases firing rate of s ¢ " 8832 % =z 3383
PCs by blocking tonic inhibition of PCs © ‘ TTTX ! *
by ambient GABA (Hiusser and Clark,
1997). When bicuculline (10 um) was Figure3. Involvementof TrkBin the activity-dependent decline of the co-CgTx sensitivity of GABAergic transmission. Cerebellar

included in culture media from 1 DIV,
IPSCs at 12—14 DIV became totally resis-
tant to w-CgTx, with the N-IPSC fraction
being only 1.4 = 0.9% (n = 4, p < 0.05;
Fig. 2), as in acute slices from rats older
than P16 (Iwasaki et al., 2000). Con-
versely, to completely block neuronal fir-
ing, we next tested TTX. When TTX was
included in culture media (from 1 DIV),
N-IPSCs accounted for 87 * 4% (n = 9,
p < 0.001) of total IPSCs at 12-14 DIV.
Likewise, blockade of excitatory synaptic
transmission by CNQX (10 um) from 1
DIV increased the N-IPSC fraction to 50 = 3%, (n = 6, p <
0.001). Thus, neuronal activity strongly reduces the contribu-
tion of N-type channels to transmitter release. Because neuro-
nal activity induces Ca®" influx via VGCCs into cell somata
and neurites, we examined whether Ca®™" influx is essential for
the N-P/Q switch, by reducing the Ca?* concentration in cul-
ture media from 1.8 to 0.8 mm and increasing the Mg>* con-
centration from 0.8 to 2.6 mM (from 1 DIV). This treatment
also increased the N-IPSC fraction to 76 = 13% (n = 5, p <
0.001; Fig. 2), suggesting that neuronal activity-dependent

slices were cultured with K252a (100 nm), TTX + neurotrophins (BDNF, NT-4, NGF, or NT-3; 100 ng/ml), or TTX (1 M) + inactive
(boiled) BDNF (100 ng/ml) in standard culture media from 1 DIV to 12—14 DIV, or cultured with BDNF (100 ng/ml) in culture media
containing low Ca* (0.8 mu) and high Mg ®* (1.8 mu) from 1 DIV to 12-14 DIV. IPSCs were recorded at 1214 DIV after washing
slices with standard aCSF for >30 min. 4, Top left, After culture with K252a, w-CgTx attenuated IPSC amplitude by 36% (cf.
control). Middle left, After culture with TTX and BDNF, w-CgTx attenuated IPSCamplitude by only 16% (cf. TTX alone). Bottom left,
After culture with TTX and NT-4, w-CqTx attenuated IPSC amplitude by only 23% (cf. TTX alone). Top right, In a TTX+boiled
BDNF-treated culture, w-CgTx reduced the amplitude of IPSCs by 92% (cf. TTX alone). Middle right, In a TTX+NGF-treated culture,
w-CgTxreduced the amplitude of IPSCs by 74% (cf. TTX alone). Bottom right, In alow Ca ™ (0.8 mm) high Mg (2.6 mw) culture
media treated with BDNF, «-CgTx attenuated the IPSC amplitude by only 26% (cf. 0.8Ca). Sample records are IPSCs at —60 mV
before (1), after w-CgTx application (2), and after w-AgaTx application (3). B, The w-CgTx-sensitive fraction of IPSCs in different
culture conditions. The mean == SEM derived from 4 to 12 cells are shown in bar graphs. Control, TTX, and 0.8Ca bars (gray) derived
from Figures 1£and 2B. n.s.,Not significant; **p << 0.01. ***p << 0.001.

Ca’" influx into cerebellar neurons reduces the contribution
of N-type channels to transmitter release.

Neurotrophins and Trk activity regulate N-type channels
involved in neurotransmission

Ca** influx induced by neuronal activity triggers release of neu-
rotrophins (Balkowiec and Katz, 2000; Tao et al., 2002), thereby
activating the neurotrophin receptor Trks (Du et al., 2003). We
investigated whether the neurotrophin signaling pathway might
be involved in regulation of N-type channels mediating transmit-
ter release in PC axon terminals, by introducing the Trk tyrosine
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antibodies with BDNF, NT-4, or TrkB peptides. Scale bars, 50 m.

kinase inhibitor, K252a (100 nM), into culture media from 1 DIV.
At 12-14 DIV, the N-IPSC fraction after K252a application was
40 = 7% (n = 12; Fig. 3). That was significantly higher than
control values (14 * 3%, p < 0.01), suggesting that neurotrophin
receptor activity contributes to downregulation of N-type chan-
nels in PC axon terminals. Neurotrophin receptors are classified
as TrkA, TrkB, TrkC, and p75 NTR (Bothwell, 1995). To assess the
type of receptor involved, we included different neurotrophins in
culture media together with TTX. The TrkB ligand BDNF (100
ng/ml) plus TTX in culture media from 1 DIV, counteracted the
effect of TTX, reducing the N-IPSC fraction from 87% (TTX
alone) t0 28 = 6% (n = 11, p < 0.001), whereas boiled BDNF had
no effect (89 = 5%, n = 4, p > 0.9; Fig. 3). Likewise another TrkB
ligand, NT-4 (100 ng/ml), when included in culture media with
TTX from 1 DIV, counteracted the effect of TTX, with the
N-IPSC fraction at 12-14 DIV being 31 * 4% (n = 4, p < 0.01;
Fig. 3). In contrast, the TrkA ligand NGF (100 ng/ml) or the TrkC
ligand NT-3 (100 ng/ml), included in culture media with TTX,
had no effect on N-IPSC fraction (NGF, 83 £ 9%, n = 4,p > 0.9;
NT-3, 60 = 16%, n = 6, p = 0.16; Fig. 3). As both of the TrkB
ligands BDNF and NT-4, but neither the TrkA ligand NGF nor
the TrkC ligand NT-3, counteracted the effect of TTX on the

Calbindin D-28k

T-4 Calbindin D-28k

TrkB Calbindin D-28k

VGLUT1

T-4 Calbindin D-28k

Calbindin D-28k

BDNF, NT-4, and TrkB immunoreactivities in cerebellar slice cultures. A, Double-immunofluorescence labeling of
BDNF (green, left column) with calbindin D-28k, VGLUT1, or GFAP (red, middle column). Merged fluorescence pictures are shown
in the right column. Immunofluorescence signal of BDNF overlapped partially with that of calbindin D-28k in P, and almost
entirely with that of VGLUT1. BDNF immunofluorescence did not overlap with astrocytic GFAP immunofluorescence in the PC
region. B, NT-4 immunoreactivity (green, left) overlapped with calbindin D-28k immunoreactivity (red, middle) in the PC region.
€, Calbindin D-28k immunoreactivity (green, middle) overlapped with TrkB immunoreactivity (red, left) in the PCregion. D, In the
DCN region immunofluorescence signals for BDNF, NT-4, and TrkB (green or red, left) were all weak, showing no overlap with
calbindin D-28k immunofluorescence (red or green, middle). E, Background signals in the PC region after absorbing primary
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N-IPSC fraction, TrkB is most likely in-
volved in downregulation of N-type chan-
nels mediating transmitter release. The
upregulatory effect of low Ca** high Mg>*
media on N-IPSC fraction (Fig. 2) was also
counteracted by BDNF (N-IPSC fraction,
26 = 5%, n =5, p < 0.01; Fig. 3), suggesting
that TrkB signaling for N-type channel
downregulation resides in downstream of
Ca*" influx into cerebellar neurons.

To further assess possible sites of
neurotrophin action, we examined immu-
nocytochemical localization of neurotro-
phins and TrkB in cerebellar slice cultures
(Fig. 4). The BDNF immunofluorescence
signal was prominent on PC where it over-
lapped partially with calbindin D-28k signal
(Fig. 4A, top row) and almost completely
with VGLUT1 signals (Fig. 44, middle row),
suggesting that it is likely localized in the
glutamatergic terminals, such as those of
parallel fibers (PFs). It showed little overlap
with the GFAP signal in astrocytes (Fig. 44,
bottom row). Unlike BDNF, NT-4 and
TrkB signals overlapped extensively with the
calbindin D-28k signal (Fig. 4 B, C), suggest-
ing that they are expressed in PC somata. In
the DCN region, BDNF, NT-4, and TrkB
signals were all weak (Fig. 4D). These results
are consistent with previous reports that
BDNF is expressed in cerebellar granule cells
(Das et al., 2001), and that NT-4 and TrkB
are expressed in PC somata (Yan etal., 1997;
Friedman etal., 1998). Thus, during postna-
tal development, BDNF released from PF
terminals (Sadakata et al., 2004) together
with NT-4 released from PCs may activate
TrkB in PC somata, thereby facilitating the
replacement of N-type with P/Q-type chan-
nels at cerebellar inhibitory presynaptic
terminals.

Merge

Merge

Merge

Merge

Neuronal activity has no effect on the expression of VGCC
subtypes in PC somata

If neuronal activity directly regulates de novo synthesis of N-type
channels in PC nuclei, blockade of neuronal activity with TTX
will increase N-type channel currents in PC somata. We exam-
ined this possibility by recording Ca** currents evoked in PC
somata in cerebellar slices at 13—15 DIV pretreated with TTX (1
uM) from 1 DIV. Omega-CgTx (3 uM) and w-AgaTx (400 nm)
attenuated Ca*™ currents by 17 * 4% (n = 4) and 69 * 4% (n =
4), respectively (Fig. 5). Approximately 14% of Ca** currents
remaining after w-CgTx and w-AgaTx applications were blocked
by Cd*" (100 uas; Fig. 5). This VGCC subtype current profile in
PC somata after TTX treatment was essentially the same as that of
controls (p > 0.3). Thus, chronic blockade of neuronal activity
had no effect on VGCC subtype compositions in PC somata.

Neuronal activity and Trk activity are required for in vivo
developmental downregulation of N-type channels that
mediate transmitter release

Finally, we asked whether cerebellar neuronal activity, or neu-
rotrophin/Trk signaling in vivo downregulates N-type channels
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mediating PC-DCN IPSCs. To address
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Discussion

Neuronal activity triggers
developmental N-P/Q channel switch
In the early stage of animal development,
N-type channels play essential roles in
synaptogenesis (Jones et al., 1997), neu-
ronal migration (Komuro and Rakic,
1992), and synaptic transmission (Lu-
ebke et al., 1993; Takahashi and Mo-
miyama, 1993). However, at many types of synapses, the
contribution of N-type channels to synaptic transmission de-
creases with time, both in culture (Scholz and Miller, 1995)
and in situ (Rosato Siri and Uchitel, 1999; Iwasaki et al., 2000;
Momiyama, 2003). At the PC-DCN synapse in acute cerebel-
lar slices, the N-type-dependent fraction of IPSCs comprises
30—-40% of total IPSCs at P8, butis reduced to 10% at P14, and
becomes undetectable after P16 (Iwasaki et al., 2000). Like-
wise, at PC-DCN synapses in slice culture, the N-type-
dependent fraction was 30% at 8—10 DIV, but was reduced to
10% at 12—14 DIV (Fig. 1), recapitulating postnatal develop-
ment. When neuronal activity was chronically blocked with
TTX, the developmental shift was apparently reversed in di-
rection toward predominantly N-type channel neurotrans-
mission, both in slice culture (Fig. 2) and in vivo (Fig. 6).
Chronic blockade of excitatory transmission with CNQX like-
wise increased the N-type-dependent fraction of IPSCs,
whereas a blockade of inhibitory transmission with bicucull-
ine decreased it (Fig. 2). These results suggest an indispensable
role of neuronal excitability for the developmental N-P/Q
channel switch in presynaptic terminals.

Figure 5.

are shown in bar graphs.

Involvement of neurotrophins and Trk signaling in N-P/Q
channel switch

Like TTX or CNQX, the Trk inhibitor, K252a, increased the
N-type-dependent IPSC fraction, both in culture (Fig. 3) and in
vivo (Fig. 6). The TrkB ligands BDNF or NT-4, when applied
together with TTX, rescued the effect of TTX, whereas the TrkA
ligand NGF or the TrkC ligand NT-3 had no such effect (Fig. 3).
Neuronal activity triggers release of neurotrophins from neu-
rons (Balkowiec and Katz, 2000), upregulates their expression
(Tao et al., 2002), and translocates Trks between the cell sur-
face and intracellular stores (Du et al., 2003). Ca®" influx is
essential for secretion (Balkowiec and Katz, 2000) and expres-
sion (Tao et al., 2002) of BDNF and activation of TrkB (Du et

No effect of TTX treatment on composition of VGCC subtypes in Ca®™ currents recorded from PC somata in
cerebellar slice cultures. 4, Left, In control, w-CgTx (3 um) and w-AgaTx (400 nw) reduced the amplitude of Ca* currents
by 15% (2) and 73% (3), respectively. A small fraction remaining after application of both toxins (12%), was abolished by
Cd 2™ (100 juu; 4). Right, In a TTX-treated culture, the percentages of the Ca2™ current amplitude attenuated by w-CgTx
(149%, 2), or w-AgaTx (72%, 3) were similar to controls. Superimposed sample records are representative Ca>™ currents.
Fach data point represents the amplitude measured at the end of a voltage step. B, The fraction of Ca*™ currents
attenuated by w-CgTx or w-AgaTxin untreated control and TTX-treated cultures. The mean == SEM derived from four cells

al., 2003). In this regard, reduction of Ca®" influx by reducing
the Ca’*/Mg”" ratio in culture media increased N-type
channel-dependent neurotransmission (Fig. 2), consistent
with the idea that developmental decline of N-type channel
expression in the nerve terminal is mediated by BDNF and
TrkB. In the cerebellum, BDNF and NT-4 were localized on PF
terminals and PC somata, respectively, whereas TrkB was
found on somata and dendrites of PCs (Fig. 4). Thus, BDNF
may be released from PF terminals in response to GC firing
and NT-4 is released from PC somata in response to PC firing,
thereby making both neurotrophins to activate TrkB in PC
somata for developmental downregulation of the N-type
channel fraction in PC axon terminals.

Possible mechanisms of N-P/Q channel switch
It has been proposed that presynaptic Ca*>* channels compete
for channel type-preferring slots (Cao and Tsien, 2010). This
common slot model is consistent with the fact that P/Q-type
Ca’™" currents lost by Cay2.1 knock-out are fully compensated
by N-type VGCC overexpression (Inchauspe et al., 2004;
Ishikawa et al., 2005). Moreover, developmental replacement
of N-type Ca** currents by P/Q-type Ca®" currents occurs
without altering the total Ca*>* channel density (Iwasaki et al.,
2000) at the calyx of Held presynaptic terminal. In cultured
hippocampal neurons, overexpression of N-type channels dis-
places P/Q-type channels from the putative common slot,
whereas overexpression of P/Q-type channels does not dis-
place N-type channels (Cao and Tsien, 2010). If the presynap-
tic slot has such a preference, the developmental N-P/Q
channel switch is likely caused by developmental downregula-
tion of N-type channels, rather than upregulation of P/Q-type
channels, in the slot.

How is TrkB signaling linked to developmental N-P/Q chan-
nel replacement in the PC axon terminals? At the calyx of Held,
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Thus, so far, the downstream mechanism
of TrkB linked to presynaptic N-type
channel regulation remains unsolved.

Physiological significance of N-P/Q
channel switch
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< ok al., 2002), or VLIP-1 (Leal et al., 2012). At
Control TTX K252a

Figure 6.

N-type and R-type Ca** currents are completely replaced by
P/Q-type Ca®" currents after P13 (Iwasaki et al., 2000). In con-
trast, in the bushy cell body of the calyx of Held in the anterior
ventral cochlear nucleus, the proportion of VGCC subtype cur-
rents remains unchanged during development (Doughty et al.,
1998). Likewise, in PC somata, TTX treatment had no effect on
the proportion of VGCC subtype currents (Fig. 5). These results
suggest a presence of Ca>* channel type-specific sorting mecha-
nism operating for presynaptic VGCC subtype replacement.
Although little is known as to the subtype-specific sorting
mechanism for ion channel targeting, there are some hints. The
Cay2.2 «; subunit of N-type channels has two splice variants,
Cay2.2a and Ca,2.2b, in which only the former variant can inter-
act with the active zone scaffold proteins CAST and Mint1 (Maxi-
mov and Bezprozvanny, 2002). However, it is unknown whether
there is a regulatory mechanism for de novo synthesis of Cay2.2a.
The light chain of microtubule-associated protein MAP1A is ex-
pressed near the active zone and can bind to a C-terminal domain
of N-type channels, but not to P/Q-type channels (Leenders et al.,
2008). However, it remains open whether MAP1A light chain 2
can be negatively linked to Trk signaling for the developmental
downregulation of N-type channels in the nerve terminal. Col-
lapsin response mediator protein 2 (CRMP-2) interacts with the
C terminus of N-type channels with a high binding affinity and
promotes cell surface expression of N-type channels (Brittain et
al., 2009). Although its binding affinity to P/Q-type channels is
unknown, CRMP-2 might be a candidate for the presynaptic slot.

In vivo block of the developmental switch of VGCC subtypes mediating cerebellar GABAergic transmission.
GABAergic IPSCs were recorded from DCN cells in acute cerebellar slices from P12—P14 rats, pretreated from P6, with
vehicle (0.9% saline), TTX (16.2 ng/d), or K252a (9.5 ng/d) infused through a cannula into the cerebellum. A, Photograph
of a P13 ratimplanted at P6 with an infusion cannula that is connected to a subcutaneous osmotic pump. B, Top left, After
vehicle treatment, w-CgTx (3 wwm) attenuated IPSCamplitude by 25%. w-AgaTx (200 nm) blocked the remaining IPSCs. Top
right, After TTX treatment, w-CgTx attenuated IPSC amplitude by 46%. w-AgaTx blocked the remaining IPSCs. Bottom,
after K252a treatment, w-CgTx attenuated IPSCamplitude by 48%. w-AgaTx blocked the remaining IPSCs. Superimposed
sample records are representative IPSCs at a holding potential of —60 mV before w-CgTx application (1), after w-CgTx
application (2), and after w-AgaTx application (3). (, The w-CgTx-sensitive fraction of IPSCs treated with vehicle (control),
TTX, or K252a. The mean = SEM obtained from six to seven cells (from three to four rats) are shown in bar graphs.

immature rodent calyces of Held, VGCCs
show both activity-dependent facilitation
and inactivation (Xu and Wu, 2005; Na-
kamura et al., 2008), but after the second
postnatal week, facilitation becomes the
dominant mode of activity-dependent
VGCC modulation (Nakamura et al.,
2008; Hori and Takahashi, 2009). Al-
though the magnitude of the develop-
mental decline in the contribution of
N-type channels to synaptic transmission
varies among synapses, complete N-P/Q
replacement is observed at “detonator”
type excitatory synapses, such as the calyx of Held (Iwasaki and
Takahashi, 1998; Iwasaki et al., 2000) or neuromuscular junc-
tions (Rosato Siri and Uchitel, 1999), and also at the major strong
inhibitory synapses, such as PC-DCN or reticulothalamic syn-
apses (Iwasaki et al., 2000). N-P/Q replacement and the ensuing
increase in VGCC facilitation during postnatal development
strengthens the efficacy of synaptic transmission in response to
high-frequency inputs, thereby contributing to reliable neuronal
processing at mature excitatory and inhibitory synapses.

Developmental roles of neuronal activity and

neurotrophin signaling

During development neurotrophins promote neurogenesis,
synaptogenesis, and synaptic strength (Huang and Reichardt,
2001). In mouse visual cortex, during early postnatal develop-
ment, transgenic enhancement of BDNF release accelerates
maturation and stabilization of GABAergic inhibitory system,
causing precocious development of visual acuity and earlier
termination of the critical period for visual cortical plasticity
(Huang et al., 1999). In dark reared mice, BDNF overexpres-
sion sufficiently induces normal development of visual cortex
(Gianfranceschi et al., 2003). Likewise, in GABAergic nerve
terminals in cerebellar slice culture, BDNF treatment rescued
reversed developmental switch of VGCC subtypes caused by
neuronal inactivity. Thus, during postnatal development of
animals, BDNF released in response to neuronal activity pro-
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motes maturation of neuronal circuitries into strong, accu-
rate, and stable signaling systems.
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