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Simultaneous EEG-fMRI Reveals Temporal Evolution of
Coupling between Supramodal Cortical Attention Networks
and the Brainstem
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Cortical and subcortical networks have been identified that are commonly associated with attention and task engagement, along with
theories regarding their functional interaction. However, a link between these systems has not yet been demonstrated in healthy humans,
primarily because of data acquisition and analysis limitations. We recorded simultaneous EEG-fMRI while subjects performed auditory
and visual oddball tasks and used these data to investigate the BOLD correlates of single-trial EEG variability at latencies spanning the
trial. We focused on variability along task-relevant dimensions in the EEG for identical stimuli and then combined auditory and visual
data at the subject level to spatially and temporally localize brain regions involved in endogenous attentional modulations. Specifically,
we found that anterior cingulate cortex (ACC) correlates strongly with both early and late EEG components, whereas brainstem, right
middle frontal gyrus (rMFG), and right orbitofrontal cortex (rOFC) correlate significantly only with late components. By orthogonalizing
with respect to event-related activity, we found that variability in insula and temporoparietal junction is reflected in reaction time
variability, rOFC and brainstem correlate with residual EEG variability, and ACC and rMFG are significantly correlated with both. To
investigate interactions between these correlates of temporally specific EEG variability, we performed dynamic causal modeling (DCM)
on the fMRI data. We found strong evidence for reciprocal effective connections between the brainstem and cortical regions. Our results
support the adaptive gain theory of locus ceruleus-norepinephrine (LC-NE) function and the proposed functional relationship between

the LC-NE system, right-hemisphere ventral attention network, and P300 EEG response.

Introduction

Neural and behavioral responses to external sensory input vary,
even for identical stimuli and environmental conditions. Much
of this variability is attributable to natural fluctuations in internal
attentional state. Some of this internal variation is reflected in
behavioral response time (RT), but residual variability remains
that cannot be explained by externally observable events. Thus,
purely event-related analyses that focus on mean responses to a
set of identical stimuli are unable to fully explain the natural
waxing and waning of attention.

Evoked responses to sensory stimuli have been studied exten-
sively using EEG. Amplitudes of such event-related potentials
(ERPs) modulate with a number of exogenous and endogenous
factors, and different components are associated with particular
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tasks and stimulus types (Key et al., 2005). One well known ERP
component, the P300 (Donchin and Coles, 1988; Picton, 1992;
Makeig et al., 1999; Hopfinger and West, 2006), appears for both
auditory and visual target stimuli, and its amplitude is known to
modulate with attention to the task (Luck et al., 2000; Nieuwen-
huis et al., 2005; Polich, 2007). Despite extensive study, the mech-
anism of P300 generation is still not completely understood,
although invasive animal studies suggest that it is deeply rooted in
the brainstem (BS), involving the locus ceruleus (LC), a tiny nu-
cleus of cells that projects widely and has been found to play a role
in target detection, focused attention, and behavioral responses
to sensory stimuli (Aston-Jones and Cohen, 2005; Nieuwenhuis
et al., 2005; Sara and Bouret, 2012). Based on results of EEG—
fMRI studies using auditory or visual tasks (Eichele et al., 2005;
Bénar etal., 2007; Walzetal., 2013), the P300 has also been shown
to couple with activity in cortical regions, including anterior cin-
gulate cortex (ACC), insula, and the right-lateralized frontal and
temporoparietal regions of the ventral attention network (VAN).
The common brain regions found using independent auditory
and visual studies suggest that their modulatory roles are supra-
modal. However, to the best of our knowledge, such commonal-
ities across sensory input modalities have not been investigated
directly. A strong functional link has been proposed between the
LC—-norepinephrine (NE) system, the P300 response, and the
VAN (Corbetta et al., 2008), but this hypothesis requires valida-
tion in healthy humans.



Walz et al. @ Coupling between Supramodal Attention Networks

In this study, we use simultaneous EEG-fMRI to investigate
non-invasively in healthy humans the BOLD correlates of natural
fluctuations of attention that generalize across auditory and
visual sensory domains. We use auditory and visual target-
detection tasks and apply linear classifiers that discriminate target
from standard stimuli. We use the classifier output to index at-
tention to the task on a single-trial basis, correlating this variabil-
ity with the BOLD data via the general linear model (GLM). We
use the results as priors in a dynamic causal model analysis
(Friston et al., 2003; Stephan et al., 2010). Our findings pro-
vide evidence for the role of the LC-NE system in supramodal
attention-related modulation of evoked responses and sup-
port the hypothesized functional link between the LC-NE sys-
tem, P300, and VAN.

Materials and Methods

The majority of these methods have been applied and described previ-
ously (Goldman et al., 2009; Sajda et al., 2010; Walz et al., 2013) and are
reproduced here for the sake of completeness and ease of reading.

Behavioral paradigm. Seventeen subjects (six females; mean of 27.7
years; range, 20—40 years) participated in three runs each of analogous
visual and auditory oddball paradigms. The 375 (125 per run) total stim-
uli per task were presented for 200 ms each with a 2-3 s uniformly
distributed variable intertrial interval and target probability 0.2. The first
two stimuli of each run were constrained to be standards. For the visual
task, the target and standard stimuli were, respectively, a large red circle
and a small green circle on isoluminant gray backgrounds (3.45° and
1.15° visual angles). For the auditory task, the standard stimulus was a
390 Hz pure tone, which was selected to lie within a trough of the scanner
sound frequency spectrum, and the target sound was broadband. This
broadband “laser gun” sound was chosen such that EEG discriminator
performance matched that of the visual task. Because our study focused
on task-related attentional states, subjects were asked to respond to target
stimuli, using a button press with the right index finger on an MR-
compatible button response pad. Stimuli were presented to subjects us-
ing E-Prime software (Psychology Software Tools) and a VisuaStim
Digital System (Resonance Technology), comprising headphones and
600 X 800 goggle display. All subjects gave informed consent following
the protocol of the Columbia University Institutional Review Board.

Simultaneous EEG and fMRI data acquisition. A 3 T Philips Achieva
MRI scanner (Philips Medical Systems) was used to collect functional
echo-planar image (EPI) data with 3 mm in-plane resolution and 4 mm
slice thickness. We covered the entire brain by obtaining 32 slices of 64 X
64 voxels using a 2000 ms repetition time and 25 ms echo time. We also
acquired a single-volume high-resolution (2 X 2 X 2 mm) EPIimage and
a1l X 1 X 1 mm spoiled gradient recalled image for each subject for
purposes of registration.

We simultaneously and continuously recorded EEG using a custom-
built MR-compatible EEG system (Goldman et al., 2009; Sajda et al.,
2010; Walz et al., 2013), with differential amplifier and bipolar EEG cap.
The caps were configured with 36 Ag/AgCl electrodes including left and
right mastoids, arranged as 43 bipolar pairs. Bipolar pair leads were
twisted to minimize inductive pickup from the magnetic gradient pulses
and subject head motion in the main magnetic field. This oversampling
of electrodes ensured data from a complete set of electrodes even in
instances when discarding noisy channels was necessary. To enable re-
moval of gradient artifacts in our offline preprocessing, we synchronized
the 1-kHz-sampled EEG with the scanner clock by sending a transistor—
transistor logic pulse to a field-programmable gate array card (National
Instruments) at the start of each of 170 functional image acquisitions. All
electrode impedances were kept below 20 k{2, including 10 k{2 resistors
built into each electrode for subject safety. A comprehensive description
of the hardware, along with the preprocessing and analysis methods de-
scribed throughout the remainder of Materials and Methods, can be
found in the book chapter by Sajda et al. (2010).

EEG data preprocessing. We performed standard EEG preprocessing
offline using MATLAB (MathWorks) with the following digital Butter-
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worth filters: 1 Hz high pass to remove direct current drift, 60 and 120 Hz
notches to remove electrical line noise and its first harmonic, and 100 Hz
low pass to remove high-frequency artifacts not associated with neuro-
physiological processes. These filters were applied together in the form of
a linear-phase finite impulse response filter to avoid distortions caused
by phase delays.

Ballistocardiogram (BCG) artifacts are more challenging to remove,
because they share frequency content with EEG activity. Existing BCG
removal algorithms cause loss of signal power in the underlying EEG, so
we performed single-trial classification (described in Materials and
Methods, Single-trial analysis of EEG) on the data before BCG artifact
removal. This is a justified practice because our classifier identifies dis-
criminating components that are likely to be orthogonal to BCG. To
compute scalp topographies of these discriminating components, BCG
artifacts were removed from the continuous gradient-free data using a
principal components analysis method (Goldman etal., 2009; Sajda etal.,
2010). First, the data were low passed at 4 Hz to extract the signal within
the frequency range in which BCG artifacts are observed and then the
first two principal components were determined. The channel weightings
corresponding to those components were projected onto the broadband
data and subtracted out. These BCG-free data were then re-referenced from
the 43 bipolar channels to the 34-electrode space to calculate scalp topogra-
phies of EEG discriminating components (described in Materials and
Methods, Single-trial analysis of EEG).

We extracted 1000 ms stimulus-locked epochs, with baseline removal
on the 200 ms before stimulus, from both the 43-channel datasets and the
34-electrode re-referenced dataset. By visual inspection, we discarded
trials containing motion or blink artifacts, evidenced by sudden high-
amplitude deflections, and also those with incorrect responses, identi-
cally for both datasets. This left ~95% of the target trials remaining.

Single-trial analysis of EEG. Independently for the auditory and visual
data, we applied a linear classifier to the 43-channel EEG signal ampli-
tude using the sliding window method of Parra et al. (2005). Specifically,
we found a projection of the multidimensional EEG signal, x,(), where
i = {l... T} and T is the total number of trials, within a short time
window that achieves maximal discrimination between target and stan-
dard trials. All time windows had a width of N = 50 ms, and the window
center, T, was shifted from 0 to 1000 ms relative to stimulus onset, in 25
ms increments. We used logistic regression to learn the 43-channel spa-
tial weighting, w(7), that maximally discriminated conditions, arriving at
the projection, y;(7), for each trial i and a given window 7.

N
IR '
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+

Note that we use the average projection in each temporal window, 7,
which tends to be less sensitive to noise (Parra et al., 2005). The result is
a hyperplane, for each 7, that maximally discriminates the target versus
standard trials given the EEG amplitudes for each trial (Fig. 1A).

The classifier output, y,(7), represents the confidence of the classifier in
its prediction based on the training data and the model. We assessed
classifier performance with the area under the receiver operating charac-
teristic curve (Green and Swets, 1966), denoted AUC, using leave-one-
out (LOO) cross-validation (Duda et al., 2000). AUC was calculated for
multiple temporal windows, enabling observation of the temporal pro-
gression of task-relevant components and localization of the event-
locked time with maximal discrimination between conditions. To obtain
asignificance threshold for the AUC values, we used a permutation testin
which we randomly permuted the trial labels and ran the classifier using
the LOO approach. We repeated this procedure 1000 times for each
subject to generate a distribution of AUC values from which we com-
puted the null hypothesis distribution for AUC values and the corre-
sponding AUC threshold for p = 0.01. For each window 7, we also
generated the forward model a(7),

x(7)y(7)

a(r) = y(7)" y(7)
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where y,(7) is now organized as a vector y(7),
where each row is from trial 7, and x,(¢) is orga-
nized as a matrix, X(7), where rows are chan-
nels and columns are trials, all for time window A
7. These forward models can be viewed as scalp
plots and interpreted as the coupling between
the discriminating components and the ob-
served EEG (Parra et al., 2005; Goldman et al.,
2009; Sajda et al., 2010; Walz et al., 2013). Be-
cause we estimate a linear weighting for tem- P
poral windows spanning the trial, we are able to
track the progression of the spatial compo-
nents across time.
fMRI data preprocessing. Using FSL (FMRIB
Software Library; Smith et al., 2004), we per-
formed bias-field correction on all images to
adjust for field distortion artifacts caused by
the EEG wires. We then performed slice- C
timing correction, motion correction, 0.01 Hz
high-pass filtering, and 5 mm full-width half-
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EEG Variability fMRI Model

ya: 7@ s

maximum spatial smoothing on the functional
data. Motion correction provided motion pa- Yi
rameters, which were later included as con-

founds in the GLM. Functional and structural

images were registered to a standard Montreal
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after brain extraction, and each subject’s image
registration was checked manually to ensure

proper alignment.
Traditional fMRI analysis. We first ran a tra- E

time

ditional fMRI analysis, using event-related and
RT variability regressors in our GLM. The event-
related regressors comprised boxcar functions
with unit amplitude and onset and offset match- F

A 4

time
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ing that of the stimuli. RT variability was modeled
using unit amplitude boxcars with onset at stim- -
ulus time and offset at RT, and these were or- Y
thogonalized to the event-related regressors.
Orthogonalization was implemented using FSL,
which uses the Gram-Schmidt procedure
(Strang, 2003) to decorrelate the RT regressor
from all other event-related regressors. All regres-
sors were convolved with the canonical hemody-
namic response function (HRF), and temporal
derivatives were included as confounds of no in-
terest. An event-related targets versus standards
contrast was also constructed. A fixed-effects
model was used to model activations across runs,
and a mixed-effects approach was used to com-
pute the contrasts across subjects.

We combined individual runs of the experi-
ment at the subject level in three ways: (1) including only auditory runs;
(2) including only visual runs; and (3) including all six auditory and
visual runs together. Each of these three analyses was carried through to
the group level. Statistical image results for these traditional analyses
were thresholded at z > 2.3, and clusters were multiple-comparison
corrected at p < 0.05 (Worsley, 2002). Because it is possible for signifi-
cant correlations to be driven much more strongly by a subset of the data
(in this case by one task), we used the subject-level auditory-only and
visual-only results to compute paired ¢ tests and thus identify any brain
regions with BOLD correlates that differed significantly across auditory and
visual runs. We discarded any voxels that achieved an uncorrected voxelwise
P <0.01 from the statistical maps of the combined analysis to ensure that our
reported findings are common to both auditory and visual tasks.

Because pulsation artifacts in the ventricles have been attributed to
false activations near the BS (Astafiev et al., 2010), we similarly excluded
any voxels that were correlated with the BCG pulsation artifact present in
the EEG. These voxels were determined with a p < 0.01 uncorrected
threshold, after incorporating the pulse timing into a GLM and carrying

Figure 1.
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time
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Model design. The entire method was applied independently for multiple temporal windows, 7, of EEG data spanning
the trial. Shown is an example for a given 7. A, We first estimate w, which is a linear weighting on the EEG sensors that maximally
discriminates stimulus conditions: targets (red) vs standards (green). This determines a task-relevant projection of the data, in
which the distance to the decision boundary reflects the decision certainty of the classifier. B, From w, we compute §, which is the
demeaned classifier output, 7, = w’x; — Ymean fOF €ach target trial, i. We treat j;as an index of attentional state on each target
trial. Note that j; contains no discriminating information about target versus standard trials and instead represents the STV of the
task-relevant EEG projection around the mean of all targets. €, Given the ; values and their corresponding stimulus-onset time
points, we build regressors for an fMRI GLM, including event-related average BOLD response to targets (D), RT variability (), and
residual EEG variability (F). Similar regressors were included for the standard stimuli, along with motion parameters and temporal
derivatives. All were convolved with the canonical HRF.

through to group level. The pulse timing was obtained using a peak
detection algorithm on the EEG signals at temporal electrodes (T7, T8,
CP5, CP6), which are the sites most strongly affected by such artifacts.
EEG-based fMRI analysis. For the single-trial variability (STV) fMRI
analysis, we modeled the variability of the neural response using an ad-
ditional two regressors: one each for targets and standards. These EEG-
based regressors were designed with 100 ms duration, centered on the
classifier training window. The STV regressor height was modulated us-
ing the de-meaned output, ; = ¥; — ¥,ean> Of the EEG discriminator for
each trial, 7 (Fig. 1). These regressors were convolved with the HRF and
orthogonalized with respect to all traditional regressors, with temporal
derivatives included as confounds. It was especially important to regress
out the RT variability, because RT is known to be negatively correlated
with attention and our aim was to study variability in task-related atten-
tion that cannot be detected using an external measure. This entire anal-
ysis was run independently for all EEG training windows exceeding a
mean AUC value of 0.75 for both tasks, which is a common psychophys-
ical threshold used in signal detection theory and highly conservative
with regard to EEG discrimination. We focused on within-class variabil-
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ity, using only the task-relevant (target) stimuli STV statistical maps in
our results interpretation.

We used the following randomization method to generate a null dis-
tribution and correct for multiple comparisons. We ran the full STV
fMRI analysis described above after permuting the y, = 450 ms values
randomly within each class. One hundred such permutations were done
for each subject, from which we generated 10,000 group-level statistical
maps via random samplings from the subject-level results. Stelzer et al.
(2013) demonstrated the validity of this oversampling method. This null
distribution was used to generate familywise error (FWE)-corrected pos-
itive and negative activation p value maps within the BS (one map for
each of the EEG windows).

Cluster-size thresholding is commonly used to correct for multiple
comparisons in cortical regions, because true activations are assumed to
be widespread and FWE correction is often too strict for such a large
number of voxels. To avoid an arbitrarily selected cluster-size threshold
in our cortical analysis, we applied threshold-free cluster enhancement
(TFCE) to account for variable z-score magnitude within each cluster
(Smith and Nichols, 2009). After also applying TFCE to all maps com-
prising the null distribution, we used FWE correction within a gray mat-
ter mask. All corrected maps were thresholded at p = 0.05.

As in the traditional analysis, we ran the EEG STV fMRI analysis sep-
arately three ways: (1) only auditory runs; (2) only visual runs; and (3)
with auditory and visual combined at the subject level. The latter method
was of primary interest, because it was used to investigate BOLD corre-
lates that generalize across both sensory modalities. As described for the
traditional fMRI analysis (see below, Traditional fMRI analysis), we used
the auditory-only and visual-only results to determine voxels with acti-
vation that significantly differed between the two tasks. These were then
excluded from the statistical maps of the combined analysis, as were any
voxels that correlated with BCG pulse timing. No more than 5% of the
initial voxels were eliminated. This ensured that our reported findings
generalize across the auditory and visual domains.

Dynamic causal modeling of fMRI data. The EEG-based fMRI analysis
described above provided timing information about the BOLD correlates
of endogenous attentional modulations, but it did not allow inference of
directed relationships between these regional activations. We investi-
gated interactions between our temporally specific EEG variability cor-
relates by performing an effective connectivity fMRI analysis. In
particular, we implemented single-state linear dynamic causal modeling
(DCM,; Friston et al., 2003; Stephan et al., 2010) using DCM10 in SPM8.

We used the results of our EEG-based fMRI analysis (see Fig. 6) to
select five regions of interest (ROIs); these were chosen based on suprath-
reshold significance and particular interest in relation to previous studies
of attentional networks: (1) BS; (2) ACGC; (3) right ACC (rACC); (4) right
middle frontal gyrus (rMFG); and (5) right orbitofrontal cortex (rOFC).

The activations were spread across four different EEG time windows
(i.e., correlated with variability in temporally specific EEG discriminat-
ing components), and some differed in sign of correlation so their time
series were not necessarily intrinsically correlated. Each ROI was a sphere
with 4 mm radius, centered on the peak voxel of the group-level EEG-
based GLM results. Time series were extracted from individual subjects’
preprocessed functional data in MNIT space (downsampled to 3 X 3 X 3
mm for computational efficiency) by estimation of the first principal
component within each ROI Auditory and visual runs of the experiment
were combined because the focus of our study was task-related atten-
tional modulations common across sensory input modalities.

We designed 12 related models (see Fig. 8) to investigate intrinsic
directed connectivity among the five ROIs, focusing on cortical projec-
tions to and from the BS. In Models 1-9, we varied the direction of the
ACC-BS connection (including one-way and bidirectional connections)
and the stimulus input region (BS, ACC, or both). Directionality of the
other connections was based on known structural projections in pri-
mates (Aston-Jones and Cohen, 2005), including a directed connection
from the BS to rMFG and bidirectional connections between BS and
rACC, as well as BS and rOFC. Models 10—12 used timing information
from the EEG-based analysis in specification of all the connections, only
allowing connections to be directed forward in time. Input region was
varied similarly to the other models.
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Traditional ERP
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Figure 2.  Traditional stimulus-locked ERPs. Target and standard EEG responses at the Fz

(top) and Pz (bottom) electrode sites for both the auditory (left) and visual (right) oddball tasks.
Time is in milliseconds relative to stimulus onset.

We used fixed-effects Bayesian model selection (BMS) to compare
these 12 models both on a single-subject level and at the group level. BMS
balances model fit and complexity, thereby selecting the most generaliz-
able model. It estimates the relative model evidence and provides a dis-
tribution of posterior probabilities for all of the models considered. We
used fixed effects because focused attention to a simple task involves basic
physiological processes that are expected to be common to a healthy
subject population (Stephan et al., 2009, 2010). We also compared fam-
ilies of similar models (Penny et al., 2010); the model space was divided
into three families based on the direction of connectivity between the BS
and ACC. Finally, we used Bayesian parameter averaging (BPA) to pro-
vide group-mean intrinsic connection strengths and their probabilities
for the winning model.

Results

All subjects responded with high accuracy and speed. For the
auditory task, 98.3 = 2.0% of targets were correctly detected, with
404.1 = 58.3 ms RT. The visual targets were detected with 98.4 =
3.1% accuracy and 397.2 * 38.9 ms RT.

EEG analyses

Traditional ERPs after target stimuli displayed strong widespread
P300 responses for both the auditory and visual tasks. These were
most prominent and discriminative relative to the ERP response
to standard stimuli at the Pz electrode site (Fig. 2). N200 re-
sponses were also strongest and most discriminative at parietal
sites for both tasks. The N100 and P200 components were largest
at medial frontal electrodes for the auditory task. Both of these
earlier ERP components could also be seen for the visual task but
were stronger at parietal sites. The latencies and scalp topogra-
phies were consistent with previous ERP literature (Makeig et al.,
1999; Key et al., 2005; Hopfinger and West, 2006), notably that
the auditory N100—P200 complex presents over frontal regions,
whereas the visual N100—P200 presents more strongly over pari-
etal regions.

For both the auditory and visual tasks and for all subjects, we
were able to discriminate target versus standard EEG trials with
highly significant accuracy for multiple EEG windows (Fig. 3).
Our permutation method (see Materials and Methods, Single-
trial analysis of EEG) determined that the p = 0.01 significance
corresponded to AUC = 0.66. The auditory stimulus discrimina-
tion resulted in a peak group-mean AUC = 0.84 at 225 ms, with
a later discrimination peak of AUC = 0.81 at 375 ms. The visual
stimulus discrimination curve displayed a broad peak with max-
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EEG Discrimination
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Figure 3.
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Single-trial EEG discrimination results. Group mean discriminator performance for the auditory (left) and visual (right) oddball tasks. Standard error is indicated with shading. Because

we are interested in the BOLD correlates of single-trial EEG variability, we only consider EEG components with discrimination that is both significant (AUC > 0.66, p << 0.01) and substantial (AUC >
0.75, p << 0.01). Corresponding EEG discriminant component scalp projections (forward models) are shown for a subset of the windows with significant classifier performance.

imum AUC = 0.86 at 325 ms. Discrimi-
nator performance exceeded the more
conservative AUC > 0.75 threshold for
the 175—-475 ms windows for the auditory
task and 175—-600 ms windows for the vi-
sual task. Thus, all windows from 175 to
475 ms were included in the fMRI analy-
sis. Importantly, the high discrimination
accuracy with similar temporal profiles
showed the auditory and visual tasks to be
well matched.

The grand mean forward models,
which show the scalp distribution of dis-
criminating components as they progress
across time, are displayed below the dis-
criminator performance curves in Figure
3 for a subset of windows with significant
performance. Both auditory and visual
EEG data were most discriminative at me-
dial frontal sites very early in the trial and
then at medial central sites slightly later,
and finally the P300 range data were most
discriminative at medial posterior sites.
These topographies were consistent with
previous reports for auditory (Goldman
et al.,, 2009) and visual (Gerson et al.,
2005) target discrimination. Discrimina-
tor output was significantly (p < 0.01) negatively correlated with
RT for multiple EEG windows. This result demonstrated the need
to orthogonalize our STV fMRI regressors to RT-variability re-
gressors given our aim to study residual variance unobservable
with behavioral response.

Figure4.

Traditional fMRI analysis

The traditional event-related target versus standard contrast re-
sulted in extensive activations throughout multiple cortical and
subcortical structures. Bilateral activations were observed in cer-
ebellum, thalamus, insula, ACC, and supramarginal gyri. Left
(i.e., contralateral) motor areas and rMFG were also strongly
activated. These were consistent with previous oddball paradigm
results (Stevens et al., 2000; Laurens et al., 2005). RT-variability
statistical maps showed strong correlates in ACC, posterior cin-
gulate cortex, left motor areas, rMFG, right lateral occipital cor-
tex, right angular gyrus, and bilateral insula (Fig. 4).

Z-score

fMRIBOLD correlates of RT variability. Group-level positive activations thresholded atz > 2.3 and cluster corrected at
p < 0.05. Allvoxels correlating significantly (p << 0.01 uncorrected) with the BCG pulse timing are excluded. Also excluded are all
voxels with significantly different activation strength for the auditory versus visual tasks (paired ¢ test, p << 0.01 uncorrected).

Single-trial EEG variability fMRI analysis

The EEG-derived regressors resulted in significant group-level
activations for multiple stimulus-locked EEG training windows,
including positive correlates for the 200 ms window and negative
correlates for the 425-475 ms windows. The early (200 ms) pos-
itive activations were observed in ACC and left caudate. EEG
variability within all windows from 425 to 475 ms correlated
negatively with BOLD activity across rMFG/right inferior frontal
gyrus (rIFG). Negative correlates were also found in right precentral
and postcentral gyri for the 425 and 475 ms windows. Right-
lateralized negative activations were also detected in paracingulate/
ACC at 425 ms and temporal and frontal poles, including rOFC at
475 ms. A negative 21-voxel activation in the BS was observed for the
450 ms window (Fig. 5); this cluster had a minimum corrected p
value of 0.0018 at MNI coordinates (0, —28, —20). Table 1 contains
a complete list of activations exceeding multiple-comparison-
corrected p = 0.01 with their corresponding EEG windows. Figure 6
shows axial slices through the peak voxel of each of these clusters.
Despite the high EEG discrimination accuracy in the middle window
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EEG Variability
450 ms

corrected
p-value

0.05 m— 0.001

Figure5. BOLD fMRI correlate of EEG STV detected in the BS. EEG discriminating component
variability in the 450 ms window correlated negatively with a 21-voxel cluster in the midbrain.
Minimum FWE-corrected p value of 0.0018 was located at MNI coordinates (0, —28, —20).

range, we did not detect significant activations at those latencies
(225-400 ms) in this supramodal analysis, which used a paired # test
to exclude areas that were more strongly correlated with EEG during
one task (either auditory or visual).

In addition to the stimulus-locked analysis, we investigated
response-locked activity, because some cognitive processes and
subcomponents of the P300 are more tightly time locked to be-
havioral responses than stimulus presentation (Makeig et al.,
2004; Gerson et al., 2005; O’Connell et al., 2012). Although dis-
crimination performance for response-locked EEG windows ex-
ceeded that of the stimulus-locked analysis, we were unable to
detect significant BOLD correlates of response-locked discrimi-
nating activity common to both auditory and visual tasks.

Separating BOLD correlates of RT variability and latent

EEG variability

We separated variance in the BOLD data explainable purely by
RT variability from that explainable by single-trial EEG variabil-
ity. Figure 7 summarizes these results. Specifically, we find strong
bilateral insula correlates of RT variability but no significant cor-
relates of the EEG variability in these regions. We also found that
right angular gyrus/temporoparietal junction correlated with RT
variability but not with single-trial EEG variability. Conversely,
other regions that have been associated with P300 correlated sig-
nificantly with EEG variability but not RT. This included right
precentral and postcentral gyri and left caudate. Last, we find that
the ACC and rMFG/rIFG regions correlate significantly with
both RT variability and the residual EEG discriminating compo-
nent variability, suggesting that some but not all of ACC and
rMFG/rIFG BOLD response variation is observable in the RT
variation.

Dynamic causal model selection and parameter estimation

Across the 17 individual subjects and models examined (Fig. 8),
Model 4 (Fig. 9) was the dynamic causal model chosen most
frequently by the BMS method (five wins), with Model 5 in sec-
ond place (three wins). Both of these models were members of the
bidirectional model family, which was defined based on the pres-
ence of a bidirectional connection between the ACC and BS. All
other connectivity was specified identically for these two models
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(with drives from BS to all other ROIs and connections directed
toward the BS from ACC, rACC, and rOFC). The only difference
was the input region for the stimulus events, which was the BS for
Model 4 and the ACC for Model 5.

On the group level, BMS chose Model 4 as an overwhelming
winner, with relative posterior probability of 0.9997. Model 5
placed a distant second with relative probability of 0.0003. When
BMS was applied to the partitioned model space, the bidirec-
tional family won with a relative posterior probability of 1.0000
on the group level. (The other two partitions, which were defined
by unidirectional ACC-BS connections, were each estimated to
have relative probabilities <10 ~°.)

All group-mean coupling and input parameters estimated by
BPA of Model 4 (Fig. 9) achieved a relative posterior probability
>0.9975. Connectivity internal to each of the four cortical ROIs
was negative (representative of self-inhibition), whereas BS self-
connectivity had a low-magnitude positive coupling parameter
estimate. Connectivity parameters from the BS directed to all
ROIs were positive (excitatory), ranging from 0.56 to 1.04 Hz.
Strongest coupling strength was estimated for the “earliest” ROI
(i.e., derived from correlates of early EEG variability) and mono-
tonically decreased to the lowest strength for the “latest” ROL
The ACC and rOFC connections directed toward the BS had
negative (inhibitory) coupling parameters (—0.94 and —0.43 Hz,
respectively), and the rACC showed a positive value (0.69 Hz).

Discussion
fMRI correlate of EEG variability in BS supports LC adaptive
gain theory
The LC-NE system is commonly associated with optimization of
task performance by engaging and refocusing attention (Aston-
Jones and Cohen, 2005; Bouret and Sara, 2005; Dayan and Yu,
2006; Sara and Bouret, 2012). Current theories of its specific
functional role rely heavily on animal studies, with confirmation
in humans needed. BS imaging using fMRI poses a number of
challenges, notably close proximity to pulsatile vessels, proper
image alignment, and the small size of BS nuclei relative to BOLD
spatial resolution. Nevertheless, fMRI activations in midbrain
nuclei have been reported previously (Sterpenich et al., 20065
D’Ardenne et al., 2008; Eichele et al., 2008; Payzan-LeNestour et
al., 2013), including EEG-fMRI evidence for an effective rela-
tionship between ACC and BS during a simple auditory target-
detection task (Crottaz-Herbette and Menon, 2006). In the
auditory oddball EEG—fMRI study of Eichele et al. (2008), a tem-
porally independent component of the EEG had single-trial am-
plitude that covaried negatively with a cluster in the midbrain and
positively with an ACC cluster; this particular component had
central scalp topography, contained a strong P3a response, and
modulated with arousal and target salience. Our BS correlate of
the 450 ms EEG variability lies between and in close proximity to
LC (Keren etal., 2009; Astafiev et al., 2010) and ventral tegmental
area (VTA; Carter et al., 2009). Because the LC strongly inner-
vates other nearby neuromodulatory midbrain nuclei and re-
ceives their projections to a lesser extent (Sara and Bouret, 2012),
our cluster of activation likely arises from LC activity. The LC also
projects to multiple subcortical structures and broadly across the
cortex (Loughlin et al., 1986), but its only cortical inputs come
from the ACC and OFC, which receive information from sensory
cortices. These prefrontal regions are thought to regulate LC ac-
tivity both by directly driving its phasic responses and via changes
to baseline excitatory drive (Aston-Jones and Cohen, 2005).
Our methods revealed BOLD correlates of EEG variability in
ACC for the 200 and 425 ms windows, consistent with multiple
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Table 1. BOLD correlates of EEG variability common to auditory and visual tasks
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Nvox +/= Minimum p MNIx MNLy MNIz Hemisphere Region
200 ms
273 + 0.0217 2 8 34 Left/right Anterior cingulate gyrus
23 + 0.0217 —14 2 24 Left Caudate
4 + 0.0482 —60 4 14 Left Precentral gyrus
2 + 0.0491 —64 —14 -12 Left Middle temporal gyrus (posterior, anterior, superior)
425 ms
578 - 0.0242 52 26 26 Right MFG, IFG
21 - 0.0377 4 -2 58 Right Precentral gyrus, MFG
49 - 0.0340 12 22 34 Right Paracingulate gyrus, anterior cingulate gyrus
M - 0.0449 48 —18 44 Right Postcentral gyrus
8 - 0.0487 32 26 46 Right MFG, superior frontal gyrus
450 ms
59 - 0.0402 52 26 26 Right MFG, IFG
21 - 0.0018 0 —28 —20 Left/right BS
475 ms
758 - 0.0161 44 36 26 Right MFG, precentral gyrus, frontal pole
213 - 0.0381 44 40 0 Right Frontal pole, IFG, frontal operculum cortex
207 - 0.0260 50 —20 34 Right Postcentral gyrus, precentral gyrus, anterior supramarginal gyrus
72 - 0.0367 40 4 —16 Right Frontal pole, OFC
43 - 0.0418 56 10 —26 Right Temporal pole

Shown for each cluster are center of stimulus-locked EEG training window, number of voxels in cluster, sign of correlation, minimum FWE-corrected p value within cluster and its coordinates in MNI template space, hemisphere, and

anatomical brain region. FWE correction was performed independently within a gray matter mask after TFCE and within the BS.
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Figure 6.  BOLD fMRI correlates of EEG STV spanning the trial. Timing diagram showing axial slice through peak voxel of each significant cluster. Time is in milliseconds relative to stimulus onset.
Red-yellow denotes positive correlation with the single-trial EEG classifier output (attentional index), and blue— cyan denotes negative correlation. MNI z-coordinate is specified to lower right of

each slice.
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Figure7.  Reflection of neural activity in RTis region specific. By regressing out RT variability
from EEG variability in our fMRI model, we find that single-trial BOLD activity in a subset of
attention- or P300-linked regions is reflected in the behavioral response. Listed are regions in
which BOLD signal significantly (p << 0.05 corrected) correlates with RT STV, latent early-
window EEG STV, the late-window EEG variability, or their intersections. Common associations
within the literature are indicated. LOC, Lateral occipital cortex; PCC, posterior cingulate cortex;
preCnt, precentral; postCnt, postcentral; TPJ, temporoparietal junction.

reports of ACC coupling with various components of the evoked
EEG response. In previous EEG-fMRI studies, the ACC was
shown to couple with the N100 component during auditory tasks
(Mulert et al., 2008; Esposito et al., 2009), and fMRI-constrained
ERP source modeling suggested that it is the major generator of
the N2b and P3a components during both auditory and visual
tasks (Crottaz-Herbette and Menon, 2006). Note that our early
ACC cluster is not representative of sensory-evoked activity that
differs between targets and standards; we do not investigate the
discriminating projection of the EEG data itself but instead the
BOLD correlates of STV along that projection. We also only in-
terpret results within the target class to avoid stimulus-type
confounds.

As part of the adaptive gain theory, modulatory drive from the
ACC and OFC to the LC is proposed to result from outcome of
decision processes (Aston-Jones and Cohen, 2005), an idea that
stems from known latency of the LC and P300 responses and
evidence to suggest that LC activity is more tightly locked to RT
than stimulus presentation (Clayton et al., 2004). Therefore, we
might expect to find significant correlates of response-locked
EEG variability (which we did not detect here common to audi-
tory and visual tasks). However, because variability in response-
locked EEG components is highly correlated with RT variability
(O’Connell et al., 2012), orthogonalization of the EEG-based re-
gressors to RT regressors likely left too little residual variance for
response-locked EEG correlates to achieve significance.

Our late correlates in rACC, BS, and rOFC all occur in the
range of the P300 (respectively at 425,450, and 475 ms) and are all
coupled with modulations of discriminating components closely
related to the P300 ERP component (see scalp distribution of
discriminating components in Fig. 3). Their latency supports the
decision outcome hypothesis of the adaptive gain theory and
provides support for the role of ACC and OFC in direct modula-
tion of the LC phasic response. Furthermore, they show that
modulatory activity in ACC occurs before that in rOFC. The late
ACC activation is also consistent with previous reports that link it
to P300 modulations (Bledowski et al., 2004b; Linden, 2005;
Crottaz-Herbette and Menon, 2006; Bénar et al., 2007); OFC is
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not commonly associated with ERP variability. Note, however,
that our early ACC correlate suggests that it also has a role in tonic
(i.e., baseline) modulation, which occurs before the decision.
Our inability to detect correlates for middle EEG windows sug-
gests that, in the middle time range, EEG and BOLD are coupled
only in regions specific to the sensory input modality. Although
we can only speculate about the lack of detected correlates for
middle EEG windows, spatial and temporal variability across
subjects is a likely contributing factor. Additionally, in the middle
time range, EEG and BOLD may be coupled only in regions spe-
cific to the sensory input modality.

According to the adaptive gain theory of LC-NE function,
behavioral performance is optimal during states of intermediate
tonic activity, which result in a maximal phasic response to sen-
sory stimuli. Changes in tonic activity drive transitions between
high and low attentional states, in which very low or high activity
results in inattentive or distractible states, respectively. The pha-
sic LC response only occurs for task-relevant stimuli but is not
specific to sensory modality (Aston-Jones et al., 1994).

Because pupil diameter is closely tracked by tonic LC activity
(Aston-Jones and Cohen, 2005) and pupil size to single-trial EEG
variability (Murphy et al., 2011), we hypothesize that our mid-
brain correlates of EEG variability reflect underlying LC tonic
activity and subsequent LC phasic response and the P300. The
concurrent EEG—pupillometry study of Murphy et al. (2011)
found a relationship between baseline pupil diameter and vari-
ability of the P300 EEG response to auditory targets; that finding
was also interpreted as support for the adaptive gain theory. Sim-
ilar studies using simultaneous EEG, pupillometry, and fMRI
would be of great benefit to this field.

There are limited reports of caudate coupling with P300 in
both auditory (Crottaz-Herbette and Menon, 2006) and visual
(Warbrick et al., 2009) tasks. Because the caudate is highly
innervated by dopaminergic neurons (mainly from the VTA
and substantia nigra within the midbrain), this cluster pro-
vides additional support for the adaptive gain theory, which
proposes that the LC-NE system interacts with many other
brain circuits and works in synergy with the dopaminergic
system (Aston-Jones and Cohen, 2005).

Right-hemisphere cortical activations provide a link between
the LC-NE system, VAN, and P300
The LC phasic response has also been theorized to drive transi-
tions that refocus attention in a more complex way, by facilitating
aninterruption (Dayan and Yu, 2006) and reset (Bouret and Sara,
2005) of the current endogenously driven target network and the
LC tonic activity, thus reorienting attention to an updated task.
This switch is facilitated by the right-lateralized VAN, which is
activated by salient behaviorally relevant stimuli (Corbetta and
Shulman, 2002; Bouret and Sara, 2005; Fox et al., 2006; Corbetta
et al., 2008). Because the VAN, P300 potentials, and LC phasic
responses all similarly show enhanced responses to behaviorally
relevant stimuli in multiple sensory modalities, a functional link
between them has been proposed, in relation to both tonic tran-
sitions of attention and phasic responses (Corbetta et al., 2008).
We found correlates of P300-range EEG variability in the
rMFG/rIFG, a main node in the VAN. This region has been im-
plicated previously in P300 modulations (Bledowski et al.,
20044a,b; Eichele et al., 2005; Bénar et al., 2007), as were the acti-
vations we detected in right precentral gyrus (Bledowski et al.,
2004b; Eichele et al., 2005; Crottaz-Herbette and Menon, 2006)
and postcentral gyrus (Eichele et al., 2005; Crottaz-Herbette and
Menon, 2006) for the same windows. Nearly all our significant
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dynamic causal models, applied to ACC, BS, or both. Model space was partitioned for family analysis based on ACC—BS connectivity. ACC to BS: Models 1, 2,7, 10, 11, and 12; BS to ACC: Models 3, 6,

and 8; bidirectional connectivity: Models 4, 5, and 9. The optimal model is noted with a gray box.
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Figure9.  Group average DCM for the optimal model. Results of BPM for Model 4 (see Fig. 7),
which won the BMS on the group level (posterior probability of 0.9997) and had more wins than
any other model on the individual subject level. Intrinsic connection strengths are displayed
next to their corresponding connectivity arrows; all values had posterior probability exceeding
0.9975. Time axis and circle color relate the model to the EEG-based fMRI results (see Fig. 6),
from which these ROIs were derived.

correlates of EEG STV were right lateralized, consistent with the
VAN and other reports showing that the majority of regions cou-
pling with EEG responses are in the right hemisphere (Eichele et
al., 2005). Bilateral precentral gyrus is commonly associated with
a more goal-driven and dorsal attention network, but the right
precentral gyrus has also been linked to exogenous processing
(Kincade et al., 2005; Corbetta et al., 2008).

Our concurrent BS, ACC, rOFC, and rMFG/rIFG activations,
which all occur in the P300 range, provide evidence for a strong

link between the LC-NE neuromodulatory system, VAN, and the
P300. They support the hypothesis that VAN suppression during
focused attention is partly attributable to decreased tonic activity
of the LC-NE system (Corbetta et al., 2008).

Recurrent interactions underlie task-related attentional
modulations

ROIs for fMRI DCM analyses are commonly selected based on
peaks within traditional event-related GLM statistical maps. One
obvious approach to incorporate single-trial EEG variability into
a DCM analysis is to build a bilinear model that includes single-
trial EEG measurements as modulators to connectivity strength.
However, two issues arise with this approach. First, voxels se-
lected by a traditional GLM contrast are not necessarily affected
by the trial-to-trial variability of interest and may instead have
variability dominated by noise (Smith et al., 2012). Second, the
trial-to-trial variability of the EEG response differs across the
temporally specific components of the response. One EEG com-
ponent may be of particular interest for certain task-specific stud-
ies (e.g., the face perception study by Nguyen et al., 2013), but
selection of a single component is insufficient to study modula-
tions of attention that generalize across simple tasks in multiple
sensory domains. To circumvent these issues, we used the results
of our EEG-based fMRI analysis to define ROIs for our DCM
analysis. We selected a subset of our suprathreshold clusters that
were of particular interest based on previous literature. These
included the ACC correlate of early (200 ms) EEG variability, a
non-spatially overlapping rACC P300-range correlate, other cor-
tical P300-range correlates in rMFG and rOFC, and the BS clus-
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ter. STV within these ROIs was thus meaningful for the effective
connectivity we aimed to study.

Our DCM analysis of 12 competing models resulted in sub-
stantially greater relative evidence (0.9997 posterior) for a model
with multiple reciprocal (bidirectional) intrinsic connections.
Furthermore, the only two models within the group tested (Fig.
8) that showed consistently large model evidence on the individ-
ual subject level both belonged to the model family with bidirec-
tional connection between the BS and early ACC clusters.
Although interpretation requires caution (Lohmann etal., 2012),
these results provide support for the idea that coupling between
attentional systems plays a role in modulations of task-related
attention during simple tasks. Other DCM studies have reported
interactions of attention systems, but these focused on linking the
VAN with the dorsal attention network during tasks related to
spatial attention (Vossel et al., 2012) and attentional reorienting
(DiQuattro et al., 2013), and these studies did not incorporate
EEG-derived information.

Connectivity parameter magnitudes and signs (determined by
BPA) suggest that the role of the BS in these modulations is ex-
citatory across the duration of the trial and multiple cortical re-
gions, whereas the rOFC plays an inhibitory role late in the trial.
The integral role of the ACC in attentional modulations is likely
more complex, with dependencies in both space (bilateral ACC vs
right paracingulate/ ACC region) and time (early 200 ms vs later
425 ms poststimulus). Specifically, activity within bilateral ACC
may act to inhibit evoked BS activations early in the trial, but then
rACC may drive this activity later in the trial. Studies specifically
designed to investigate causality will be required to validate such
claims. Our DCM results further support the adaptive gain the-
ory of the LC-NE system, and together with the EEG-based GLM
results they expand on it by providing additional information
regarding the timing of involvement of these regions.

References

Astafiev SV, Snyder AZ, Shulman GL, Corbetta M (2010) Comment on
“Modafinil shifts human locus coeruleus to low-tonic, high-phasic activ-
ity during functional MRI” and “Homeostatic sleep pressure and re-
sponses to sustained attention in the suprachiasmatic area.” Science 328:
309. CrossRef

Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu
Rev Neurosci 28:403—450. CrossRef Medline

Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus coeruleus
neurons in monkey attended cues in a vigilance task activated by attended
cues in a vigilance task. ] Neurosci 14:4467—4480. Medline

Bénar CG, Schon D, Grimault S, Nazarian B, Burle B, Roth M, Badier JM,
Marquis P, Liegeois-Chauvel C, Anton JL (2007) Single-trial analysis of
oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain
Mapp 28:602—613. CrossRef Medline

Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DEJ (2004a) Atten-
tional systems in target and distractor processing: a combined ERP and
fMRI study. Neuroimage 22:530-540. CrossRef Medline

Bledowski C, Prvulovic D, Hoechstetter K, Scherg M, Wibral M, Goebel R,
Linden DE] (2004b) Localizing P300 generators in visual target and dis-
tractor processing: a combined event-related potential and functional
magnetic resonance imaging study. ] Neurosci 24:9353-9360. CrossRef
Medline

Bouret S, Sara S] (2005) Network reset: a simplified overarching theory of
locus coeruleus noradrenaline function. Trends Neurosci 28:574-582.
CrossRef Medline

Carter RM, Macinnes JJ, Huettel SA, Adcock RA (2009) Activation in the
VTA and nucleus accumbens increases in anticipation of both gains and
losses. Front Behav Neurosci 3:21. CrossRef Medline

Clayton EC, Rajkowski J, Cohen JD, Aston-Jones G (2004) Phasic activation
of monkey locus ceruleus neurons by simple decisions in a forced-choice
task. ] Neurosci 24:9914-9920. CrossRef Medline

J. Neurosci., December 4, 2013 - 33(49):19212-19222 » 19221

Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-
driven attention in the brain. Nat Rev Neurosci 3:201-215. CrossRef
Medline

Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the
human brain: from environment to theory of mind. Neuron 58:306-324.
CrossRef Medline

Crottaz-Herbette S, Menon V' (2006) Where and when the anterior cingu-
late cortex modulates attentional response: combined fMRI and ERP ev-
idence. ] Cogn Neurosci 18:766—780. CrossRef Medline

D’Ardenne K, McClure SM, Nystrom LE, Cohen JD (2008) BOLD re-
sponses reflecting dopaminergic signals in the human ventral tegmental
area. Science 319:1264—-1267. CrossRef Medline

Dayan P, Yu A] (2006) Phasic norepinephrine: a neural interrupt signal for
unexpected events. Network 17:335-350. CrossRef Medline

DiQuattro NE, Sawaki R, Geng JJ (2013) Effective connectivity during
feature-based attentional capture: evidence against the attentional reori-
enting hypothesis of TP]. Cereb Cortex. Advance online publication. Re-
trieved November 3, 2013. d0i:10.1093/cercor/bht172. CrossRef Medline

Donchin E, Coles M (1988) Is the P300 component a manifestation of con-
text updating? Behav Brain Sci 11:357-374. CrossRef

Duda RO, Hart PE, Stork DG (2000) Pattern classification. New York:
Wiley.

Eichele T, Specht K, Moosmann M, Jongsma MLA, Quiroga RQ, Nordby H,
Hugdahl K (2005) Assessing the spatiotemporal evolution of neuronal
activation with single-trial event-related potentials and functional MRI.
Proc Natl Acad Sci U S A 102:17798-17803. CrossRef Medline

Eichele T, Calhoun VD, Moosmann M, Specht K, Jongsma MLA, Quiroga
RQ, Nordby H, Hugdahl K (2008) Unmixing concurrent EEG-fMRI
with parallel independent component analysis. Int J Psychophysiol 67:
222-234. CrossRef Medline

Esposito F, Mulert C, Goebel R (2009) Combined distributed source and
single-trial EEG-fMRI modeling: application to effortful decision making
processes. Neuroimage 47:112-121. CrossRef Medline

Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontane-
ous neuronal activity distinguishes human dorsal and ventral attention
systems. Proc Natl Acad Sci U S A 103:10046-10051. CrossRef Medline

Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuro-
image 19:1273-1302. CrossRef Medline

Gerson AD, Parra LC, Sajda P (2005) Cortical origins of response time vari-
ability during rapid discrimination of visual objects. Neuroimage 28:342—
353. CrossRef Medline

Goldman RI, Wei CY, Philiastides MG, Gerson AD, Friedman D, Brown TR,
Sajda P (2009) Single-trial discrimination for integrating simultaneous
EEG and fMRI: identifying cortical areas contributing to trial-to-trial
variability in the auditory oddball task. Neuroimage 47:136—147.
CrossRef Medline

Green DM, Swets JA (1966) Signal detection and psychophysics. New York:
Wiley.

Hopfinger JB, West VM (2006) Interactions between endogenous and ex-
ogenous attention on cortical visual processing. Neuroimage 31:774-789.
CrossRef Medline

Keren NI, Lozar CT, Harris KC, Morgan PS, Eckert MA (2009) In vivo
mapping of the human locus coeruleus. Neuroimage 47:1261-1267.
CrossRef Medline

Key APF, Dove GO, Maguire MJ (2005) Linking brainwaves to the brain: an
ERP primer. Dev Neuropsychol 27:183-215. CrossRef Medline

Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M (2005) An
event-related functional magnetic resonance imaging study of voluntary
and stimulus-driven orienting of attention. ] Neurosci 25:4593—4604.
CrossRef Medline

Laurens KR, Kiehl KA, Liddle PF (2005) A supramodal limbic-paralimbic-
neocortical network supports goal-directed stimulus processing. Hum
Brain Mapp 24:35-49. CrossRef Medline

Linden DEJ (2005) The p300: where in the brain is it produced and what
does it tell us? Neuroscientist 11:563—-576. CrossRef Medline

Lohmann G, Erfurth K, Miiller K, Turner R (2012) Critical comments on
dynamic causal modeling. Neuroimage 59:2322-2329. CrossRef Medline

Loughlin SE, Foote SL, Bloom FE (1986) Efferent projections of nucleus
locus coeruleus: topographic organization of cells of origin demonstrated
by three-dimensional reconstruction. Neuroscience 18:291-306.
CrossRef Medline


http://dx.doi.org/10.1126/science.1177200
http://dx.doi.org/10.1146/annurev.neuro.28.061604.135709
http://www.ncbi.nlm.nih.gov/pubmed/16022602
http://www.ncbi.nlm.nih.gov/pubmed/8027789
http://dx.doi.org/10.1002/hbm.20289
http://www.ncbi.nlm.nih.gov/pubmed/17295312
http://dx.doi.org/10.1016/j.neuroimage.2003.12.034
http://www.ncbi.nlm.nih.gov/pubmed/15193581
http://dx.doi.org/10.1523/JNEUROSCI.1897-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15496671
http://dx.doi.org/10.1016/j.tins.2005.09.002
http://www.ncbi.nlm.nih.gov/pubmed/16165227
http://dx.doi.org/10.3389/neuro.08.021.2009
http://www.ncbi.nlm.nih.gov/pubmed/19753142
http://dx.doi.org/10.1523/JNEUROSCI.2446-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15525776
http://dx.doi.org/10.1038/nrn755
http://www.ncbi.nlm.nih.gov/pubmed/11994752
http://dx.doi.org/10.1016/j.neuron.2008.04.017
http://www.ncbi.nlm.nih.gov/pubmed/18466742
http://dx.doi.org/10.1162/jocn.2006.18.5.766
http://www.ncbi.nlm.nih.gov/pubmed/16768376
http://dx.doi.org/10.1126/science.1150605
http://www.ncbi.nlm.nih.gov/pubmed/18309087
http://dx.doi.org/10.1080/09548980601004024
http://www.ncbi.nlm.nih.gov/pubmed/17162459
http://dx.doi.org/10.1093/cercor/bht172
http://www.ncbi.nlm.nih.gov/pubmed/23825319
http://dx.doi.org/10.1017/S0140525X00058027
http://dx.doi.org/10.1073/pnas.0505508102
http://www.ncbi.nlm.nih.gov/pubmed/16314575
http://dx.doi.org/10.1016/j.ijpsycho.2007.04.010
http://www.ncbi.nlm.nih.gov/pubmed/17688963
http://dx.doi.org/10.1016/j.neuroimage.2009.03.074
http://www.ncbi.nlm.nih.gov/pubmed/19361566
http://dx.doi.org/10.1073/pnas.0604187103
http://www.ncbi.nlm.nih.gov/pubmed/16788060
http://dx.doi.org/10.1016/S1053-8119(03)00202-7
http://www.ncbi.nlm.nih.gov/pubmed/12948688
http://dx.doi.org/10.1016/j.neuroimage.2005.06.026
http://www.ncbi.nlm.nih.gov/pubmed/16169748
http://dx.doi.org/10.1016/j.neuroimage.2009.03.062
http://www.ncbi.nlm.nih.gov/pubmed/19345734
http://dx.doi.org/10.1016/j.neuroimage.2005.12.049
http://www.ncbi.nlm.nih.gov/pubmed/16490366
http://dx.doi.org/10.1016/j.neuroimage.2009.06.012
http://www.ncbi.nlm.nih.gov/pubmed/19524044
http://dx.doi.org/10.1207/s15326942dn2702_1
http://www.ncbi.nlm.nih.gov/pubmed/15753046
http://dx.doi.org/10.1523/JNEUROSCI.0236-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/15872107
http://dx.doi.org/10.1002/hbm.20062
http://www.ncbi.nlm.nih.gov/pubmed/15593271
http://dx.doi.org/10.1177/1073858405280524
http://www.ncbi.nlm.nih.gov/pubmed/16282597
http://dx.doi.org/10.1016/j.neuroimage.2011.09.025
http://www.ncbi.nlm.nih.gov/pubmed/22001162
http://dx.doi.org/10.1016/0306-4522(86)90155-7
http://www.ncbi.nlm.nih.gov/pubmed/3736860

19222 - J. Neurosci., December 4, 2013 - 33(49):19212-19222

Luck SJ, Woodman GF, Vogel EK (2000) Event-related potential studies of
attention. Trends Cogn Sci 4:432—440. CrossRef Medline

Makeig S, Westerfield M, Jung TP, Covington J, Townsend J, Sejnowski TJ,
Courchesne E (1999) Functionally independent components of the late
positive event-related potential during visual spatial attention. ] Neurosci
19:2665-2680. Medline

Makeig S, Delorme A, Westerfield M, Jung TP, Townsend ], Courchesne E,
Sejnowski T] (2004) Electroencephalographic brain dynamics following
manually responded visual targets. PLoS Biol 2:e176. CrossRef Medline

Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz
J, Moller HJ, Hegerl U, Pogarell O, Jager L (2008) Single-trial coupling
of EEG and fMRI reveals the involvement of early anterior cingulate
cortex activation in effortful decision making. Neuroimage 42:158-168.
CrossRef Medline

Murphy PR, Robertson IH, Balsters JH, O’Connell RG (2011) Pupillometry
and P3 index the locus coeruleus-noradrenergic arousal function in hu-
mans. Psychophysiology 48:1532—1543. CrossRef Medline

Nguyen VT, Breakspear M, Cunnington R (2013) Fusing concurrent EEG—
fMRI with dynamic causal modeling: application to effective connectivity
during face perception. Neuroimage. Advance online publication. Retrieved
November 3, 2013. doi:10.1016/j.neuroimage.2013.06.083. CrossRef
Medline

Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3,
and the locus coeruleus-norepinephrine system. Psychol Bull 131:510—
532. CrossRef Medline

O’Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-
to-bound signal that determines perceptual decisions in humans. Nat
Neurosci 15:1729—-1735. CrossRef Medline

Parra LC, Spence CD, Gerson AD, Sajda P (2005) Recipes for the linear
analysis of EEG. Neuroimage 28:326-341. CrossRef Medline

Payzan-LeNestour E, Dunne S, Bossaerts P, O’Doherty JP (2013) The neural
representation of unexpected uncertainty during value-based decision
making. Neuron 79:191-201. CrossRef Medline

Penny WD, Stephan KE, Daunizeau J, Rosa MJ, Friston KJ, Schofield TM, Leff
AP (2010) Comparing families of dynamic causal models. PLoS Comp
Biol 6:¢1000709. CrossRef Medline

Picton TW (1992) The P300 wave of the human event-related potential.
J Clin Neurophysiol 9:456—479. CrossRef Medline

PolichJ (2007) Updating P300: an integrative theory of P3a and P3b. Neu-
rophysiol Clin 118:2128-2148. CrossRef Medline

Sajda P, Goldman RI, Dyrholm M, Brown TR (2010) Signal processing and
machine learning for single-trial analysis of simultaneously acquired EEG
and fMRI. In: Statistical signal processing for neuroscience and neuro-
technology, Chap 9 (Oweiss KG, ed). San Diego: Academic.

Sara SJ, Bouret S (2012) Orienting and reorienting: the locus coeruleus me-
diates cognition through arousal. Neuron 76:130-141. CrossRef Medline

Smith JF, Pillai A, Chen K, Horwitz B (2012) Effective connectivity model-

Walz et al. @ Coupling between Supramodal Attention Networks

ing for fMRI: six issues and possible solutions using linear dynamic sys-
tems. Front Sys Neurosci 5:104. CrossRef Medline

Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: ad-
dressing problems of smoothing, threshold dependence and localisation
in cluster inference. Neuroimage 44:83-98. CrossRef Medline

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,
Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE,
Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Mat-
thews PM (2004) Advances in functional and structural MR image anal-
ysis and implementation as FSL. Neuroimage 23:5208-5219. CrossRef
Medline

Stelzer J, Chen Y, Turner R (2013) Statistical inference and multiple testing
correction in classification-based multi-voxel pattern analysis (MVPA):
random permutations and cluster size control. Neuroimage 65:69—82.
CrossRef Medline

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian
model selection for group studies. Neuroimage 46:1004—1017. CrossRef
Medline

Stephan KE, Penny WD, Moran R], den Ouden HEM, Daunizeau J, Friston KJ
(2010) Ten simple rules for dynamic causal modeling. Neuroimage 49:
3099-3109. CrossRef Medline

Sterpenich V, D’Argembeau A, Desseilles M, Balteau E, Albouy G, Vande-
walle G, Degueldre C, Luxen A, Collette F, Maquet P (2006) The locus
ceruleus is involved in the successful retrieval of emotional memories in
humans. ] Neurosci 26:7416—-7423. CrossRef Medline

Stevens AA, Skudlarski P, Gatenby JC, Gore JC (2000) Event-related fMRI
of auditory and visual oddball tasks. Magn Reson Imaging 18:495-502.
CrossRef Medline

Strang G (2003) Orthogonality. In: Introduction to linear algebra, Ed 3,
Chap 4. Wellesley, MA: Wellesley-Cambridge.

Vossel S, Weidner R, Driver J, Friston KJ, Fink GR (2012) Deconstructing
the architecture of dorsal and ventral attention systems with dynamic
causal modeling. ] Neurosci 32:10637—-10648. CrossRef Medline

Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P (2013)
Simultaneous EEG-fMRI reveals a temporal cascade of task-related and
default-mode activations during a simple target detection task. Neuroim-
age. Available online publication. Retrieved November 3, 2013. doi:
10.1016/j.Neuroimage.2013.08.014. CrossRef Medline

Warbrick T, Mobascher A, Brinkmeyer J, Musso F, Richter N, Stoecker T,
Fink GR, Shah NJ, Winterer G (2009) Single-trial P3 amplitude and
latency informed event-related fMRI models yield different BOLD re-
sponse patterns to a target detection task. Neuroimage 47:1532—1544.
CrossRef Medline

Worsley K (2002) Statistical analysis of activation images. In: Functional
MRI: an introduction to methods, Ed 1 (Jezzard P, Matthews PM, Smith
S, eds). Oxford, UK: Oxford UP.


http://dx.doi.org/10.1016/S1364-6613(00)01545-X
http://www.ncbi.nlm.nih.gov/pubmed/11058821
http://www.ncbi.nlm.nih.gov/pubmed/10087080
http://dx.doi.org/10.1371/journal.pbio.0020176
http://www.ncbi.nlm.nih.gov/pubmed/15208723
http://dx.doi.org/10.1016/j.neuroimage.2008.04.236
http://www.ncbi.nlm.nih.gov/pubmed/18547820
http://dx.doi.org/10.1111/j.1469-8986.2011.01226.x
http://www.ncbi.nlm.nih.gov/pubmed/21762458
http://dx.doi.org/10.1016/j.neuroimage.2013.06.083
http://www.ncbi.nlm.nih.gov/pubmed/23850464
http://dx.doi.org/10.1037/0033-2909.131.4.510
http://www.ncbi.nlm.nih.gov/pubmed/16060800
http://dx.doi.org/10.1038/nn.3248
http://www.ncbi.nlm.nih.gov/pubmed/23103963
http://dx.doi.org/10.1016/j.neuroimage.2005.05.032
http://www.ncbi.nlm.nih.gov/pubmed/16084117
http://dx.doi.org/10.1016/j.neuron.2013.04.037
http://www.ncbi.nlm.nih.gov/pubmed/23849203
http://dx.doi.org/10.1371/journal.pcbi.1000709
http://www.ncbi.nlm.nih.gov/pubmed/20300649
http://dx.doi.org/10.1097/00004691-199210000-00002
http://www.ncbi.nlm.nih.gov/pubmed/1464675
http://dx.doi.org/10.1016/j.clinph.2007.04.019
http://www.ncbi.nlm.nih.gov/pubmed/17573239
http://dx.doi.org/10.1016/j.neuron.2012.09.011
http://www.ncbi.nlm.nih.gov/pubmed/23040811
http://dx.doi.org/10.3389/fnsys.2011.00104
http://www.ncbi.nlm.nih.gov/pubmed/22279430
http://dx.doi.org/10.1016/j.neuroimage.2008.03.061
http://www.ncbi.nlm.nih.gov/pubmed/18501637
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
http://www.ncbi.nlm.nih.gov/pubmed/15501092
http://dx.doi.org/10.1016/j.neuroimage.2012.09.063
http://www.ncbi.nlm.nih.gov/pubmed/23041526
http://dx.doi.org/10.1016/j.neuroimage.2009.03.025
http://www.ncbi.nlm.nih.gov/pubmed/19306932
http://dx.doi.org/10.1016/j.neuroimage.2009.11.015
http://www.ncbi.nlm.nih.gov/pubmed/19914382
http://dx.doi.org/10.1523/JNEUROSCI.1001-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16837589
http://dx.doi.org/10.1016/S0730-725X(00)00128-4
http://www.ncbi.nlm.nih.gov/pubmed/10913710
http://dx.doi.org/10.1523/JNEUROSCI.0414-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22855813
http://dx.doi.org/10.1016/j.Neuroimage.2013.08.014
http://www.ncbi.nlm.nih.gov/pubmed/23962956
http://dx.doi.org/10.1016/j.neuroimage.2009.05.082
http://www.ncbi.nlm.nih.gov/pubmed/19505583

	Simultaneous EEG-fMRI Reveals Temporal Evolution of Coupling between Supramodal Cortical Attention Networks and the Brainstem
	Introduction
	Materials and Methods
	Results
	EEG analyses
	Traditional fMRI analysis
	Single-trial EEG variability fMRI analysis
	Dynamic causal model selection and parameter estimation
	Discussion

	References

