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A crucial aspect of cognitive control and learning is the ability to integrate feedback, that is, to evaluate action outcomes and their
deviations from the intended goals and to adjust behavior accordingly. However, how high-learners differ from low-learners in relation
to feedback processing has not been characterized. Further, little is known about the underlying brain connectivity patterns during
feedback processing. This study aimed to fill these gaps by analyzing electrical brain responses from healthy adult human participants
while they performed a time estimation task with correct and incorrect feedback. As compared with low-learners, high-learners presented
larger mid-frontal theta (4 – 8 Hz) oscillations and lower sensorimotor beta (17–24 Hz) oscillations in response to incorrect feedback.
Further, high-learners showed larger theta connectivity from left central, associated with motor activity, to mid-frontal, associated with
performance monitoring, immediately after feedback (0 – 0.3 s), followed by (from 0.3 to 0.6 s after feedback) a flux from mid-frontal to
prefrontal, associated with executive functioning. We suggest that these results reflect two cognitive processes related to successful
feedback processing: first, the obtained feedback is compared with the expected one, and second, the feedback history is updated based
on this information. Our results also indicate that high- and low-learners differ not only on how they react to incorrect feedback, but also
in relation to how their distant brain areas interact while processing both correct and incorrect feedback. This study demonstrates the
neural underpinnings of individual differences in goal-directed adaptive behavior.

Introduction
The success of adaptive goal-directed behavior depends on con-
tinuous monitoring of our action outcomes and their deviations
from the intended goals, and incorporating this information for
adjustment of subsequent actions. For the last two decades, a
large body of research literature in neuroimaging has focused on
the neural correlates of such a performance monitoring system
(Nieuwenhuis et al., 2004; Cohen, 2008). Most studies have fo-
cused on the feedback-related negativity (FRN), a negative event-
related-potential (ERP), starting around 145 ms following the
presentation of incorrect feedback, with a mid-frontal topogra-
phy (Miltner et al., 1997). The anterior cingulate cortex (ACC),
especially dorsal ACC, is the most likely generator of the FRN

(Miltner et al., 1997; Luu et al., 2003; Potts et al., 2010), along
with other areas in the medial prefrontal and posterior cingulate
cortex (Müller et al., 2005; Nieuwenhuis et al., 2005; Cohen and
Ranganath, 2007).

Beyond the FRN, neuronal oscillations can provide comple-
mentary information on the various features of feedback-guided
learning (Cohen et al., 2007, 2011; Christie and Tata, 2009; van de
Vijver et al., 2011). Theta power (4 – 8 Hz) increases from 200 to
500 ms following negative feedback (Cohen et al., 2007;
Cavanagh et al., 2010, 2012a), while beta power (15–30 Hz) in-
creases from 200 to 500 ms following positive feedback (Cohen et
al., 2007; Marco-Pallares et al., 2008; van de Vijver et al., 2011).

Cohen et al. (2011) proposed a framework for understanding
feedback-guided learning based on a set of core predictions: (1)
learning is associated with increases in synchronization between
the stimulus and motor areas for which the associations are
formed, (2) these changes are driven by prefrontal cortical re-
gions at specific frequencies, and (3) these changes are reflected in
within-subjects and between-subjects differences. According to
this third prediction, participants that learn better have stronger
intersite synchronization that might reflect differences in synap-
tic plasticity.

We tested some of these predictions by investigating the elec-
troencephalogram (EEG) correlates of feedback processing in
high- and low-learners. We analyzed ERPs, oscillations, and
brain connectivity patterns. Note that the latter aspect has been
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addressed by only a few studies (Cavanagh et al., 2010; van de
Vijver et al., 2011) investigating feedback processing in humans,
and the directed connectivity, to the best of our knowledge, re-
mains uncharacterized. We used the phase slope index (PSI) to
measure directed connectivity (Nolte et al., 2008), which allowed
us to infer the direction of the synchronization. Special emphasis
was laid on revealing the dynamics of brain connectivity patterns
related to feedback processing.

The objectives of this study are threefold: (1) to analyze the
ERPs, the oscillations, and the directed connectivity following
correct and incorrect feedback; (2) to compare the ERPs, oscilla-
tions, and connectivity between high- and low-learners; and (3)
to correlate these brain responses with task performance. We
predicted that incorrect feedback will be associated with larger
FRN, increased theta power, higher beta desynchronization, and
stronger directed connectivity. We expected all of these effects to
be enhanced in the high-learners group.

Materials and Methods
Subjects
Thirty-six healthy human participants (all right-handed, mean age �
23.11 years, SD � 6.67, 11 males) with normal hearing (self-reported)
and normal or corrected-to-normal vision voluntarily participated in the
experiment. All participants were recruited by the university’s participa-
tions research scheme and all received course credits. The sample was
divided into two groups according to the task performance, as explained
later. Performance measures resulted in a high-learners group (n � 18,
mean age � 23.17 years, six males) and a low-learners group (n � 18,
mean age � 23.06 years, five males). The study was approved by the local
ethics committee of the Department of Psychology at Goldsmiths and
conducted in accordance with the Declaration of Helsinki. All partici-
pants provided written informed consent.

Experimental task
We used a modified version of a time-estimation task (Miltner et al.,
1997). In the original task, the participant is required to estimate the time
interval of 1 s after the presentation of a sound. In our study, the partic-
ipants were required to estimate the time interval of 1.7 s. This modifi-
cation from 1 s to 1.7 s was made for the following two reasons: (1) with
integer second durations, subjects tend to rely more on counting than on
feedback while trying to adjust their estimation and (2) brain mecha-
nisms for subsecond and suprasecond time estimations are different,
with the suprasecond durations being less automatic than the subsecond
ones (Lewis and Miall, 2003).

Each trial started with a fixation cross, whose duration varied ran-
domly between 300 and 900 ms, followed by an auditory beep (800 Hz, 50
ms), which indicated the beginning of the target time interval. The par-
ticipants pressed a button with their right thumb whenever they thought
1.7 s had elapsed. Six hundred milliseconds after the response, the par-
ticipants received a feedback indicating whether the estimation was “too
short,” “too long,” or “correct.” The cutoffs for these three feedback
categories were determined in an adaptive way based on the difference
between the participant’s estimation and the target; a response was ini-
tially considered correct if it fell in a time window 200 ms above or below
the target (1500 –1900 ms). After a correct response, the time window
was reduced by 20 ms each side. For example, if the time window for
correct was �/�200 ms around the target and the participant estimated
an interval of 1600 ms (100 ms � correct), than, the next cutoffs
would be 180 ms (1520 –1880 ms). Similarly, each time an incorrect
(too short or too long) response was given, the time window was
increased by 20 ms each side. This adaptive procedure resulted in a
similar number of trials belonging to three feedback categories. The
feedback was presented for 1 s.

To investigate the learning, we included six blocks of 20 trials each
without any valid feedback (instead of feedback, the word “OK” was
presented for 1 s). There were six feedback blocks with 80 trials each,
interspersed with six no-feedback blocks of 20 trials each. We were prin-

cipally interested in the nonfeedback blocks because the performance on
these trials is expected to represent the maintenance of the internal rep-
resentation of the time interval learned during the feedback trials, since
no external feedback was available to guide any subsequent adjustment.
Thus, there were in total 480 feedback trials and 120 nonfeedback trials.
The task started with a nonfeedback block and ended with a nonfeed-
back block. A small break was provided between the sixth and seventh
block (half way), both with feedback, i.e., the task restarted with a
feedback block. The experimental task lasted around 1 h.

The participants were divided into two groups based on their perfor-
mance in the last three nonfeedback blocks. We calculated two measures
for the evaluation of learning: (1) the error magnitude, measured as the
average of the absolute difference between the participant’s estimations
and the target time interval (1700 ms) and (2) the response variability,
measured as the SD of the error (difference between participant’s estima-
tion and the target) in each block. Response variability was used in the
criteria as performance consistency is an important marker of learning
(Wolpert et al., 2011). The error magnitude and variability were highly
correlated in both feedback (r � 0.951, p � 0.001) and nonfeedback
blocks (r � 0.893, p � 0.001). These two measures were normalized
between 0 and 1 (rescaled to minimum-maximum) and averaged to have
a single measure accounting for both error and variability. Using a me-
dian split, the top 50% of this combined measure was classified as the
low-learners group (larger error and high response variability) and the
bottom 50% as the high-learners group (lower error and low response
variability).

We further analyzed the performance in relation to how efficiently the
participants adjusted their estimations based on the feedback. The ad-
justment efficiency (AE) was calculated as follows:

AE � � e�i � 1� � e�i�

e�i � 1�
� � �e

e�i � 1�
(1)

where e is the absolute error in the current (i) or preceding (i � 1) trials.
This AE measure provided information on how well the adjustments
were made, on average, by each group (low- and high-learners) and
during feedback and nonfeedback blocks. The AE was calculated for each
individual trial and then averaged for each block.

EEG Recording and analysis
Continuous EEG signals were acquired using 64 active electrodes placed
according to the extended 10 –20 system of electrode placement, and
amplified by a BioSemi ActiveTwo amplifier. The vertical and horizontal
electro-oculograms were recorded using four additional electrodes to
monitor eye blinks and horizontal eye movements. The EEG signals were
recorded with a sampling frequency of 512 Hz, bandpass filtered between
0.16 Hz–100 Hz. The task was presented on a PC using the MATLAB-
based toolbox Cogent 2000 (http://www.vislab.ucl.ac.uk/cogent.php).
The EEG data were processed and analyzed by the MATLAB-based cus-
tom scripts and the following toolboxes: EEGLAB (Delorme and Makeig,
2004) for data preprocessing including Independent Component Anal-
ysis (ICA), and FieldTrip (Oostenveld et al., 2011) for data analysis and
statistical comparisons.

Preprocessing. The EEG data were re-referenced to the arithmetic av-
erage of the two earlobes, and highpass filtered at 0.5 Hz. The data were
epoched around feedback with an epoch length of 2.6 s (from 1.6 s before
the feedback to 1 s after the feedback stimulus). The artifacts were treated
in a semi-automated fashion: visual inspection was initially made to
remove large muscle artifacts, followed by an ICA to correct for eyeblink
artifacts. Afterward, any epochs containing amplitudes exceeding 80 �V
were discarded. The average number of trials used in the analysis was as
follows: 133 too short trials (SD � 34), 131 too long trials (SD � 32), and
139 correct trials (SD � 27). A 2 � 3 mixed ANOVA on the number of
trials with group (high- and low-learners) as a between-subjects factor
and feedback (too long, too short, correct) as a within-subjects factor
revealed no significant effect of feedback (F(1.6, 34) � 0.805, p � 0.451),
group (F(1,34) � 1.144, p � 0.292), nor interaction (F(1.6, 34) � 1.693, p �
0.198). In addition, there was no effect for group, indicating that the two
groups did not differ in the number of trials for each condition (F(1,34) �
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1.144, p � 0.292). For all subsequent analysis, responses to both too long
and too short feedback categories were merged into one “incorrect” cat-
egory, since there was no difference between these two feedback
categories.

ERP analysis. For the ERPs only, the data were lowpass filtered at 35 Hz
and averaged over trials and baseline corrected (baseline being 200 ms
before feedback). The FRN was measured as the mean ERP amplitude at
FCz between 200 and 300 ms after feedback, and the P300 was measured
as the mean ERP amplitude at Pz between 300 and 400 ms. In addition,
we measured the N2 peak as the most negative peak between 145 and 250
ms, and the P3 peak as the most positive peak between 250 and 400 ms,
both at FCz. This electrode and time windows were chosen based on the
visual inspection of the main FRN results. We calculated the N2–P3
peak-to-peak amplitude by subtracting the N2 peak from the P3 peak.

Time-frequency analysis. The time varying spectral content of the EEG
data was estimated by wavelet-based time-frequency representation
(TFR). The signal was first convolved with complex Morlet wavelet on a
single-trial basis and was later averaged across trials. We analyzed fre-
quencies from 2 to 35 Hz in steps of one, using four cycle wavelets. To
deal with filtering edge effects, we extended the data by half of the length
of each wavelet using zero padding. The TFR was normalized by dividing
the spectral power in each frequency by its baseline value, 200 ms before
feedback till its onset.

Connectivity analysis. The directed functional connectivity was esti-
mated by the recently introduced PSI (Nolte et al., 2008), which is based
on the concept that a nonvanishing imaginary part of the coherency
cannot be explained as a mixing artifact caused by volume conduction.
Therefore, the PSI can only detect noninstantaneous functional rela-
tions. Because volume conduction is an instantaneous effect, it cannot
lead to phase differences other than 0 or �, with the latter corresponding
to a sign switch, and for both cases the contribution to the imaginary part
of coherency vanishes (Nolte et al., 2004). The PSI measures connectivity
between two signals based on the slope of the phase of their cross-
spectrum. For signals y1 and y2, the cross-spectrum S12 is as follows:

S12(f) � 	ŷ1(f)conj(ŷ2(f))
 � exp(i2�f�) � exp(i�(f)) (2)

where ��� denotes the expectation operator. If the signals are just de-
layed versions of each other, i.e., y2(t) � y1(t � �), the phase-spectrum
�� f � � 2�f� is linear and proportional to the time delay �. For positive
(negative) slope of �� f �the causal direction is from y1 to (from) y2. Based on
this observation, the PSI is defined as an average phase slope as follows:

�ij � �� �
f�F

conj�C12� f �C12� f � �f ��� (3)

where f is the frequency, �f is the frequency resolution, �� � � denotes
taking the imaginary part, and F is a set of frequencies over which the
slope is summed. The C12 is the complex coherence (normalized cross-
spectra) as follows:

C12� f � �
S12� f �

�S11� f �S22� f �
(4)

As the PSI is based on the imaginary part of the coherence, it is insensitive
to artifacts of volume conduction (the imaginary part is shifted in time).
The PSI is then normalized by its SD, which is estimated using the jack-
knife method. The PSI is normalized to the estimate of its SD. For Gauss-
ian distributions with unit SDs, absolute values larger than 1.96 are
significant detections corresponding to the significance value 	 � 0.05,
which we adopted here. Choosing a slightly more conservative threshold
of 2 rather than 1.96 was done for simplicity and following the procedure
in Nolte et al. (2008). Therefore, absolute PSI values larger than 2 are
considered as significant (Nolte et al., 2008).

It should be noted here that the PSI does not show instantaneous
connectivity. If connectivity is present in both directions, PSI can be
interpreted as the net direction. More precisely, one direction can be
established while the question of additional information flow in the op-
posite direction is just left open. In fact, a nonvanishing PSI requires an

asymmetry between the respective time series. While not all causal effects
can be detected this way, the idea is that the measure does not confuse
mixing of independent sources (which results in symmetric cross-
spectra) with true causality. The PSI has been found to be sensitive and
robust in detecting true interactions (Nolte et al., 2008).

The 1500 ms epoch (600 ms before to 900 ms after feedback) was
divided into five nonoverlapping segments of 300 ms each, and the PSI
was calculated on each of these segments, from 3.33 to 40 Hz (frequency
resolution 3.33 Hz). First, we analyzed the PSI from FCz to all electrodes
for all frequencies (see Fig. 7b), and identified the frequency at which the
PSI value was maximum, which led us to choose the frequency in the
theta band (4 – 8 Hz) as the frequency of interest, seeing that it was
verified as a peak in connectivity at this range. Subsequently, the PSI at
that frequency was visualized using the “head-in-head” plot (Nolte et al.,
2004). The topographical distribution of the connectivity observed in
these plots guided the choice of the tested electrode pairs for each time
window. The PSI values for each pair in each time window were subse-
quently analyzed to identify the dynamics of the connections in each
stage of the feedback processing (pre-feedback and post-feedback). This
procedure resulted in three main statistical analysis for the patterns
found: (1) from mid-frontal (FCz) to left central (C3) immediately after
the response (�600 to �300 ms), (2) from left central (C3) to mid-
frontal (0 to 300 ms), and (3) from mid-frontal (FCz) to prefrontal (F5).
These specific electrode pairs were chosen based on the peak PSI values
for the observed topographies shown in the head-in-head plots.

Statistical analysis
Brain responses to correct and incorrect feedback were compared using a
2 � 2 mixed ANOVA with a between-subjects factor learning group
(high-learners vs low-learners) and feedback as the within-subjects fac-
tor (correct vs incorrect). When the dependent variables belonging to the
same analysis showed moderate correlations, a multivariate ANOVA
(MANOVA) was used instead. When interactions were observed, paired
t tests and independent t tests were used for the contrasts. The dependent
variables of each ANOVA/MANOVA used are described along with the
results. These statistical analyses were done using the Statistical Package
for the Social Sciences (Version 18.0; SPSS).

To test the correlations between ERPs and TFRs with task perfor-
mance, the nonparametric Spearman’s 
 was used. The correlations were
tested for the whole epoch, correlating amplitude (for ERP) or relative
spectral power (for TFR) with averaged error in the last three feedback
and nonfeedback blocks. A correlation was considered meaningful if it
remained significant for at least 50 ms.

Results
Behavioral results
The task performance differences between high- and low-
learners as measured by error magnitude, variability, and adjust-
ment efficiency are shown in Figure 1. We conducted a mixed 2 �
2 � 2 MANOVA with stage (first vs second half of the task),
feedback (feedback vs nonfeedback), and learning group (high-
vs low-learners) as independent variables and the three behav-
ioral measures (mean absolute error, variability, and adjustment
efficiency) as dependent variables. Even though differences be-
tween high- and low-learners in the last three nonfeedback blocks
were expected, because the groups were divided based on those
trials, this analysis was necessary to check whether both groups
improved from the first to the second half of the task, and to
check for any interaction between the way they performed in the
feedback and nonfeedback blocks. Assessing the interactions be-
tween learning and performing the feedback and nonfeedback
blocks answers questions such as the following: Did the high-
learners improve more than the low-learners? Did the high-
learners present a smaller decrement in performance when no
feedback was available?

There was a significant multivariate effect for learning group
(F(1,32) � 11.085, p � 0.001, � 2 � 0.510), since the high-learners
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showed lower absolute error (F(1,32) � 33.632, p � 0.001, � 2 �
0.497), variability (F(1,32) � 25.722, p � 0.001, � 2 � 0.431), and
higher adjustment efficiency (F(1,32) � 30.447, p � 0.001, � 2 �
0.472) than the low-learners. We also found multivariate within-
subjects effects for stage (F(1,32) � 6.791, p � 0.001, � 2 �
0.708), feedback (F(1,32) � 25.846, p � 0.001, � 2 � 0.708), and
interactions between feedback and learning group (F(1,32) �
4.318, p � 0.012, � 2 � 0.288) and stage and feedback (F(1,32) �
4.476, p � 0.010, � 2 � 0.296). The first interaction indicated
that the difference in performance between feedback and non-
feedback blocks was higher in the low-learners group. The
second interaction indicated that the differences between
feedback and nonfeedback reduced during the second half of
the task. Interestingly, in the univariate effects, the variable
with the largest effect size from the first to the second half of
the task was the adjustment efficiency (F(1,34) � 19.013, p �
0.001, � 2 � 0.359). In addition, there was a significant inter-
action between stage and learning group for this variable
(F(1,34) � 7.345, p � 0.010, � 2 � 0.178), indicating that only
the high-learners group increased the adjustment efficiency signifi-
cantly in the second half of the task. This interaction showed a trend
for the absolute error (F(1,34) � 3.846, p � 0.058, �2 � 0.102) and
error variability (F(1,34) � 3.260, p � 0.080, �2 � 0.080).

ERP results
We found a negative deflection on the ERPs resembling an FRN:
a negative going component starting around 145 ms with a mid-
frontal topography (Fig. 2c). This negative component was pres-
ent only in response to incorrect feedback for both high- and
low-learners (Fig. 2a). In addition, a positive component resem-
bling P300 was also found (Fig. 2b), with
larger amplitudes for positive feedback
(correct) with a P300-like topography
(Fig. 2d).

A mixed ANOVA on the mean FRN am-
plitude revealed a main effect of feedback
(F(1,34) � 71.259, p � 0.001, �2 � 0.504),
but not of learning group nor interaction
(F � 1, n.s.). Similar analysis on P300
revealed similar results: a main effect of
feedback (F(1,34) � 111.71, p � 0.001, �2 �
0.615), but no effects for learning group
(F(1,34) � 0.035, p � 0.853) nor interactions
(F(1,34) � 2.068, p � 0.142).

In addition, we tested these effects for
the N2-P3 peak-to-peak difference and
also for each peak (N2 and P3) at FCz,
individually. For N2–P3 peak-to-peak
amplitude, we found a significant interac-
tion between learning group and feedback
(F(1,34) � 5.70, p � 0.023, � 2 � 0.144),
but no main effects for feedback (F(1,34) �
1.22, p � 0.277) and learning group
(F(1,34) � 1.34, p � 0.255). Independent t
tests indicated that the groups only dif-
fered in the N2–P3 peak–peak difference
following incorrect feedback (t(34) �
�2.05, p � 0.048), but not following cor-
rect feedback presentation (t(34) � 0.722,
p � 0.475). For N2 peak amplitude, we found a main effect of
feedback (F(1,34) � 57.96, p � 0.001, � 2 � 0.630), but no effect of
learning group or interaction (F � 1, n.s.). For the P3 peak am-
plitude, we found a main effect of feedback (F(1,34) � 41.33, p �

0.001, � 2 � 0.549), but no effect of learning group (F � 1, n.s.);
however, we observed an interaction between feedback and learning
group (F(1,34) � 7.58, p � 0.001, �2 � 0.182; Fig. 2d), which was due
to the difference in the P3 peak between correct and incorrect feed-

Figure 1. Performance measures of both groups, high-learners (blue) and low-learners
(red), across blocks, feedback, and nonfeedback (gray shadows). Performance was measured by
absolute error magnitude (a), response variability (b), and adjustment efficiency (c).

Figure 2. ERPs for high-learners (solid) and low-learners (dashed) following correct (blue) and incorrect (red) feedback. a,
Waveforms in FCz for high- and low-learners following correct and incorrect feedback. b, Waveforms in Pz for high- and low-
learners following correct and incorrect feedback. c, Top, FRN topography for the differences between correct and incorrect
feedback for high-learners (left) and low-learners (right). Bottom, The same differences between correct and incorrect, but in the
P300 time window (300 – 400 ms). d, Mean and confidence intervals for the peak amplitude from 250 to 400 ms at FCz for low- and
high-learners.
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back being larger for the low-learners (t(17) � 6.18, p � 0.001) than
for the high-learners (t(17) �2.74, p�0.014). This interaction can be
visualized in Figure 2d.

Next we investigated correlations between ERPs at FCz//Pz
and task performance in the first and second half during feedback
and nonfeedback blocks. No correlation was found to be statisti-
cally significant (p 
 0.1).

Time-frequency decompositions
Compared with correct feedback, incorrect feedback was associ-
ated with larger theta band (4 – 8 Hz) power in both groups (Fig.
3a). However, this effect was more conspicuous in the high-
learners, with a mid-frontal scalp distribution (Fig. 3c). The effect
of feedback (correct vs incorrect) on theta relative power aver-
aged over FCz from 200 to 500 ms was statistically significant
(F(1,34) � 13.445, p � 0.001, � 2 � 0.283), as was the interaction
with learning group (F(1,34) � 8.688, p � 0.006, � 2 � 0.204), but
there was no effect of learning group alone (F(1,34) � 3.115, p �

0.077). Paired t tests indicated that only the
high-learners presented a significant in-
crease in theta power following incorrect
feedback in comparison with correct feed-
back (t(17) � 3.780, p � 0.001); this differ-
ence was not statistically significant (t(17) �
0.742, p � 0.468) in the low-learners. Fur-
ther, the two groups differed in their theta
power following incorrect feedback (t(34) �
�2.645, p � 0.012), but not following cor-
rect feedback (t(34) � 0.321, p � 0.750).

In the higher frequencies a general re-
duction of spectral power was observed.
Typically, beta band (17–24 Hz) power
showed larger desynchronization following
incorrect compared with correct feedback,
and this difference was mainly located over
the left central electrode regions (C3, CP3),
which are usually associated with sensori-
motor functioning (Fig. 4a). The differences
between incorrect and correct feedback
were larger from 200 to 400 ms (Fig. 4b),
and the differences between high- and low-
learners became evident from 400 ms with
the high-learners showing sustained lower
relative beta power.

Next we statistically analyzed the beta
power averaged over C3 and CP3 from
200 to 400 ms and from 600 to 800 ms
after feedback. For the first time window,
there was a main effect of feedback— beta
power was lower for incorrect feedback
(F(1,34) � 6.543, p � 0.015, � 2 � 0.161).
No interactions with learning group
(F(1,34) � 1.256, p � 0.270) nor between-
subject effects of learning group (F(1,34) �
1.479, p � 0.232) were observed. For the
second time window, we observed a main
effect of learning group (F(1,34) � 6.800,
p � 0.013, � 2 � 0.167), but no effect for
feedback (F(1,34) � 0.827, p � 0.370). In-
dependent t tests indicated that high- and
low-learners differed in beta power fol-
lowing incorrect feedback (t(34) � 2.656,
p � 0.012), but not following correct feed-

back (t(34) � 1.560, p � 0.128).
Next we investigated correlations between theta/beta at FCz/

C3–CP3 and task performance (averaged over the last three non-
feedback blocks), and found that only the beta power was
correlated with performance (Fig. 4c): the lower the beta power
over the left sensorimotor areas, the lower the estimation error in
the last nonfeedback blocks, i.e., participants who had larger beta
desynchronization in response to feedback performed better
when no feedback was available.

Connectivity
We analyzed the directed interactions as measured by the PSI
from �600 ms pre-feedback to 900 ms post-feedback period
equally divided into five nonoverlapping windows. In the first
(�600 to �300 ms), third (0 –300 ms), and fourth (300 – 600
ms) time windows, larger PSI values were observed between
FCz and other electrodes in the theta frequency range (for
frequencies see Fig. 7b). Importantly, the PSI values were

Figure 3. a, TFRs of EEG spectral power following correct (left) and incorrect feedback for high-learners (first row) and low-
learners (second row). b, On the left side the time course of theta power averaged over FCz and Fz for high-learners (solid) and
low-learners (dashed) following incorrect (red) and correct (blue) feedback. On the right side the mean and confidence intervals of
theta power averaged over electrodes for the shadowed time window on the left side. c, Topographical distribution of theta relative
power averaged from 200 to 500 ms following feedback.
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higher in the high-learners group, for
both incorrect and correct feedback.

Immediately following the response
(�600 to �300 ms), we found an increase
in connectivity from the mid-frontal to the
central and parietal electrode regions (Fig.
5a), maximal over C3. During the second
time window (from�300 to 0 ms), the theta
PSI topography remained the same, but the
PSI values decreased. In the time window
immediately after feedback (0–300 ms),
however, the direction of the connections
between mid-frontal and central regions re-
versed, showing that the mid-frontal was re-
ceiving inputs from left central regions, with
peak connectivity at electrode C3 (Fig. 5b).
In the subsequent time window (from 300
to 600 ms), the connectivity patterns in the
theta range indicated a flux from mid-
frontal to prefrontal regions, with peak
value at electrode F5 (Fig. 6a).

As we were particularly interested in
the connections with frontocentral re-
gions (FCz), which is often implicated in
performance monitoring (Cavanagh et
al., 2010; van de Vijver et al., 2011), we
analyzed the PSI values from and to FCz.
The time course of the connectivity with
this area for high- and low-learners is
shown in Figure 7a. The connectivity was
larger in the high-learners group, which
presented a distinct topography in re-
sponse to feedback. Figure 7b shows the
flux to (negative PSI) and from (positive
PSI) FCz in all analyzed frequencies in the
relevant time windows.

To compare the feedback conditions
and groups, we extracted the PSI for the FCz–C3/C5 (averaged)
pair for all comparisons. In Figure 7c, one can see that after cor-
rect and incorrect feedback, FCz started receiving inputs from
C3, but only in the high-learners group. The pair FCz–F5 was also
analyzed, because of the connections seen in the 300 – 600 and
600 –900 ms time windows. Considering that we found three
different connectivity patterns in the theta range, and that in the
second (�300 to 0 ms) and in the last time window (600 –900
ms), no interesting or distinct pattern was found, we conducted
statistical and correlation analysis using the following time win-
dows: (1) � 600 to �300 ms from feedback, (2) from 0 to 300 ms
after feedback, and (3) from 300 to 600 ms after feedback.

For the first time window, we found no significant effects for
feedback (F(1,34) � 2.217, p � 0.146), group (F(1,34) � 2.785, p �
0.104), and an interaction (F(1,34) � 2.836, p � 0.101). However,
there was a significant correlation between the PSI following the
response and adjustment efficiency on the feedback blocks, re-
gardless of the feedback category. The larger the PSI in the theta
band from FCz to C3/C5, the more efficient the adjustments were
made in the first (Spearman’s 
 � 0.421, p � 0.011) and in the
second (
 � 0.434, p � 0.008) half of the tasks on correct trials,
and also on incorrect ones (first half: 
 � 0.447, p � 0.006; second
half: 
 � 0.399, p � 0.016). It was also found that the larger the
PSI for this connection on correct trials, the lower the error (
 �
�0.393, p � 0.018) and variability (
 � �0.425, p � 0.010) in the
nonfeedback blocks of the second half of the task.

Following feedback, the direction of the connectivity between
FCz and C3/C5 reversed, yielding negative PSI values. The results
showed that PSI did not differ significantly between incorrect and
correct feedback (F(1,34) � 0.591, p � 0.591), and there was no
interaction between feedback and group (F(1,34) � 0.721, p �
0.591). There was, however, a significant effect of group (F(1,34) �
6.198, p � 0.018, � 2 � 0.154), indicating more negative PSI
values (i.e., a larger flux from C3/C5 to FCz) in the high-learners.
Independent sample t tests showed a significant difference in the
PSI between high- and low-learners following correct (t(34) � 2.567,
p � 0.015) and incorrect (t(34) � 2.109, p � 0.042) feedback. There
were significant correlations between PSI and adjustment efficiency
in the second half of the task, following incorrect (
 � �0.553, p �
0.001) and correct feedback (
 � �0.439, p � 0.007). In addition,
the more negative the PSI between FCz and C3/C5 following feed-
back, the lower the error on the second half of the feedback blocks,
following both incorrect (
 � �0.448, p � 0.006) and correct (
 �
0.398, p � 0.016) feedback.

To analyze whether the PSI for FCz–C3/C5 significantly
changed before and after feedback, we compared the simple ef-
fects between pre- and post-feedback by means of paired t tests
for low- and high-learners, separately. Only the high-learners
group presented significantly increased connectivity after feed-
back in relation to the baseline (�300 to 0 ms), for both feedback
categories: correct (t(17) � 3.551, p � 0.002) and incorrect (t(17) �
3.524, p � 0.003). No statistically significant difference was

Figure 4. a, Topographical distribution of differences (t values between incorrect and correct feedback) in the beta range
(17–24 Hz) averaged from 200 to 400 ms following feedback. b, Time course of the beta power averaged over C3 and CP3 for
high-learners (solid lines) and low-learners (dotted lines) for correct (blue line) and incorrect (red line) feedback. c, Time profile of
the correlations between beta relative power and average performance on the nonfeedback blocks from the second half of the task.
The top plot shows the correlation coefficients, whereas the bottom indicates the respective p values in which the dashed line
represents the 	 level (0.05). d, Scatterplot for the correlation between performance (mean absolute error) averaged over the
nonfeedback blocks of the second half of the task and beta relative power from 600 to 800 ms after feedback.
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found in the low-learners group for all feedback conditions
( p 
 0.4).

From 300 to 600 ms following feedback, the analysis was fo-
cused on the connection between FCz and F5. Statistical analysis
revealed a significant effect for feedback (F(1,34) � 6.160, p �
0.018, � 2 � 0.153) and an interaction between feedback and
group (F(1,34) � 5.831, p � 0.021, � 2 � 0.146). The main effect of
feedback was due to a higher connectivity following correct than
incorrect feedback (t(34) � �2.327, p � 0.026). The interaction
was due to the fact that only the low-learners group showed sig-
nificantly higher connectivity following correct compared with
incorrect feedback (t(17) � 3.595, p � 0.002), whereas the high-
learners group demonstrated increased connectivity in all feed-
back conditions, with no significant difference between correct
and incorrect feedback (p 
 0.3). It is important to notice, how-
ever, that the high-learners showed larger PSI values for this pair
in response to both correct and incorrect feedback. The low-
learners, on the other hand, only showed increased PSI values for
this connection following correct feedback only.

Discussion
In this study we investigated the individual differences in feedback
processing during a time-estimation task. The behavioral results in-

dicated that the high-learners not only ex-
ceeded the low-learners at performing the
task, but they were also more efficient at
making performance adjustments. Further-
more, the worse performance in the non-
feedback blocks indicates that the execution
of this task is highly dependent on feedback.
Interestingly, the interaction effect showed
that low-learners suffered larger decrements
in performance for nonfeedback blocks, in-
dicating that high-learners developed and
maintained a better internal representation
of the learned skill.

Our ERP results demonstrating a
larger FRN following incorrect feedback
is consistent with previous findings
demonstrating that the FRN is primarily
triggered by negative or error feedback
(Miltner et al., 1997; Bellebaum and
Daum, 2008; Heldmann et al., 2008;
Chase et al., 2011). We also found a larger
P300 following correct feedback, which is
in agreement with other studies showing
an increase in P300 following positive
feedback (Hajcak et al., 2007; Bellebaum
and Daum, 2008; Sailer et al., 2010; van
der Helden et al., 2010). One possibility is
that a correct feedback triggers a P300
component that enhances attention to
promote memory operations in temporo-
parietal areas (Polich, 2007). The N2-P3
complex did not differ between correct
and incorrect feedback conditions but in-
teracted with learning, since low-learners
demonstrated a larger difference in the P3
peak (larger following correct feedback)
between correct and incorrect feedback.
Considering that the P3 or the P3a (more
frontocentral than the P3b), is related to
the novelty and significance of stimulus
(Friedman et al., 2001; Polich, 2007), we

suggest that low-learners were expecting less correct than incor-
rect feedback, even though they did not receive significantly dif-
ferent feedback compared with the high-learners.

The TFR analysis showed an increase in theta power following
incorrect feedback, and more so in high-learners. Negative feed-
back was found to be associated with larger theta power over the
mid-frontal areas (Cohen et al., 2007, 2009; Christie and Tata,
2009; Cavanagh et al., 2010, Cavanagh et al., 2012a,Cavanagh et
al., 2012b; van de Vijver et al., 2011). Since theta oscillations are
supposed to reflect the activity of the performance monitoring
system (Cavanagh et al., 2012a), we suggest that the individual
differences on the mid-frontal reactivity to negative feedback
distinguished high- and low-learners. However, the theta
power did not correlate with the task performance, indicating
that this oscillation might serve more for performance moni-
toring purposes than for developing internal representations
of an implicit skill.

The TFR analysis also showed that the beta power was larger
following correct than incorrect feedback. Larger beta power was
earlier associated with correct feedback (van de Vijver et al., 2011)
and wins in gambling tasks (Cohen et al., 2007; Marco-Pallares et
al., 2008, 2009), and it has been suggested to serve as a neural

Figure 5. PSI for the high-learners group (a) from �600 to �300 ms (0 –300 ms after the response) and (b) from 0 to 300 ms
following correct feedback. In these plots, each mini topoplot represents a channel with the colors inside representing the con-
nections with that channel. Blue colors indicate that this channel is driven by those areas, whereas red colors indicate that the given
channel drives those areas.
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marker of reward originating in the ven-
tromedial orbitofrontal cortex (Marco-
Pallares et al., 2008). In our study, rather
than synchronization (i.e., an increase in
spectral power) following the correct
feedback, desynchronization (i.e., de-
crease) was observed following the incor-
rect feedback in the lower beta band
(17–24 Hz) over the contralateral sensori-
motor regions. Therefore, our beta effects
were possibly related to a cognitive pro-
cess that is different from the one investi-
gated in the gambling studies mentioned
previously (Cohen et al., 2007; Marco-
Pallares et al., 2008, 2009).

Considering that the beta desynchro-
nization over the left central electrode re-
gions is associated with sensorimotor
activation for purposes like motor
imagery, planning, and preparation
(Pfurtscheller et al., 1994; Pfurtscheller
and Neuper, 1997; Wheaton et al., 2005;
Velasques et al., 2007; Tombini et al.,
2009; Yuan et al., 2010), our participants
might have activated sensorimotor areas
in response to feedback. A recent study
(Galea et al., 2011) using transcranial di-
rect current stimulation provided evi-
dence that the motor cortex is important
for consolidating learning; specifically, it
was shown that while the cerebellum is
involved in fast adaptation, the motor
cortex has a major role in consolidating
what is learned during the task. Therefore,
it is possible that the feedback-elicited
learning processes are related to motor
consolidation. Another possibility is that
the beta band desynchronization reflected
a signal from the motor cortex indicating
its status quo. In a recent review article,
Engel and Fries (2010) suggested that beta
oscillations over the motor cortex reflect a
status quo signal indicating whether its
status should be maintained or changed. According to this prop-
osition, beta desynchronization reflects a signal indicating the
need for a change, which could explain why beta power was lower
following incorrect trials in our study. These two possibilities,
activation of the motor cortex related to learning consolidation
and the motor cortex signals indicating whether to change or
keep the current status quo, could explain why the larger the
desynchronization the better the learning consolidation and why
a larger desynchronization was observed following incorrect
compared with correct feedback.

Directed connectivity pattern and its time profiles have not been
reported in any study on feedback processing in humans. Using a
recently introduced index of measuring directed connectivity, we
found three main patterns in three time periods: (1) immediately
following the response (�600 to �300 ms), (2) immediately after
feedback (0–300 ms), and (3) from 300 to 600 ms following feed-
back. Following the response, there was a flux from mid-frontal to
sensorimotor regions, and this connectivity was correlated with task
performance, indicating that the higher this flux the more efficiently
the interval was corrected in the immediate trial. Considering that

intersite synchronization can reflect communication between dis-
tinct brain areas (Fries, 2005), that the ACC is extensively connected
to the motor cortex (Rushworth et al., 2007a), and that synaptic
plasticity can result in increased synchronization (Cohen et al.,
2011), we suggest there is a communication from the ACC to motor
cortex after the response that could reflect a “check” of the status quo
of the motor system for performance monitoring purposes. There is
evidence indicating that learning elicits an error-related negativity
(locked to the response), while it attenuates the FRN, which means
that the system can check the performance without the need for
external feedback information (Heldmann et al., 2008). What we
suggest is that the increased connectivity between the mid-frontal
and the motor-related electrodes could reflect this “internal” check
of performance. Following feedback, we found that the left motor
areas influenced the mid-frontal, only in the high-learners. This pat-
tern was also correlated with task performance, since the participants
with larger PSI values performed better even when no feedback was
available. Our results are in agreement with a further study (van de
Vijver et al., 2011), which found increased theta synchronization
between mid-frontal and sensorimotor regions, suggesting that the

Figure 6. PSI for the high-learners group (a) 300 – 600 ms following incorrect feedback presentation (too long and too short
merged) and (b) PSI in the same time window but following correct feedback. Note that the connections are from mid-central to
prefrontal areas, especially left prefrontal areas.
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medial prefrontal cortex shapes motor plans to improve the action
selection for the next trial. Considering the previously mentioned
connections between ACC and motor cortex, and our discussion
about performance monitoring by means of internal and external
information, we suggest that the mid-frontal and the sensorimotor
areas interact when there is a need to assess performance, which
involves the comparison between expected and actual action out-
comes. It is difficult to know whether the increased synchronization
between those areas facilitates learning or whether it increases as a
consequence of learning; that remains a question to be investigated.

In the third time window (300–600 ms following feedback),
there was an increase in the connectivity from mid-frontal to pre-

frontal areas. We suggest that this synchro-
nization could reflect the update of the
feedback history based on the mid-frontal
assessment of the mismatch between ex-
pected and obtained feedback. This inter-
pretation is based on the known role of the
dorsolateral prefrontal cortex (DLPFC) in
building up expectations (Rahnev et al.,
2011) and the role of the ACC in learning
response/stimulus-outcome associations,
not only in the presence of error feedback or
punishment, but also in case of positive re-
wards or correct responses (Rushworth et
al., 2004, 2007b). Although we did not have
enough spatial resolution to define the spe-
cific brain region behind our findings, a re-
cent study demonstrates that the DLPFC is
best targeted with transcranial magnetic
stimulation by placing the coil over the F5
electrode (Rusjan et al., 2010). This connec-
tivity pair (FCz–F5/F6) was also investigated
by others (Cavanagh et al., 2009, 2010; van
de Vijver et al., 2011) who suggested that the
connection between the mid-frontal and the
DLPFC reflects the need for increasing cog-
nitive control. According to this view, the
ACC communicates with the DLPFC to
implement necessary adjustments in
performance (Ridderinkhof et al., 2004).
However, if this was the case, the increase
would be higher after incorrect feedback,
which was not found in the present study.
Hence, we propose that the increased syn-
chronization between FCz and F5 reflects
the update of the feedback history, which
should be independent of the feedback va-
lence. However, more studies are needed to
address this issue.

Conclusion
In this study, we demonstrated that
oscillatory activity in the theta and
the beta frequency range is sensitive to
individual differences (high-learners vs
low-learners) related to learning of a
time-estimation task, while the ERP com-
ponents, FRN and P300, were only sensi-
tive to feedback valence (correct vs
incorrect), but unrelated to task perfor-
mance and insensitive to group differ-
ences. We suggest that while mid-frontal

theta oscillations have an important role in monitoring errors,
beta oscillations over the sensorimotor areas are more closely
related to acquiring an internal representation of the skill being
learned. We also demonstrated distinct patterns of directed in-
tersite connectivity that may reflect the dynamics of feedback
processing, unspecific to its valence. High-learners presented not
only larger oscillatory responses to error feedback in the theta
band, but also higher increases in intersite connectivity in re-
sponse to feedback. We conclude that the ERPs, the oscillatory
responses to incorrect feedback, and the connectivity between
mid-frontal and task-related areas, can reveal different aspects of
learning from feedback information.

Figure 7. a, Topographical distribution of the PSI referenced to FCz for high-learners (first row) and low-learners (second row).
Areas colored red are driven by FCz, whereas areas colored blue are the drivers of FCz. b, PSI values in each analyzed frequency for
the connection between FCz and all central and posterior channels in the specified time windows: positive peaks indicate a flux
from FCz to other channels for each frequency in the x-axis, while negative peaks indicate a flux from other channels to FCz. It is
evidenced in these plots that the peak connectivity happens in the theta frequency band, which is highlighted in gray. c, Error
graphs for the mean PSI in all time windows analyzed following correct (left) and incorrect feedback for high-learners (blue lines)
and low-learners (red lines). The solid gray line in both plots indicates the zero value for PSI.
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