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The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric
disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that
mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The
serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including
autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several
thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis
of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk.
Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6
in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin
in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and
suggests a novel paradigm for gaining information on the etiology of psychiatric disorders.

Introduction
The CNS has remarkable cellular diversity with hundreds of dis-
tinct cell types based on morphology alone (Ramon y Cajal et al.,
1899). Although nearly every one of these cell types has an iden-
tical genome, each cell only uses a subset of genes as required by

its particular functional role. Understanding this molecular ge-
netic diversity of cell types in the CNS may provide important
insight, both for the particular roles of a given cell type as well as
for the potential consequences of genetic polymorphisms to neu-
ral circuits implicated in human disease.

We have developed techniques that permit the global as-
sessment of translation in genetically defined cell types in vivo
(Doyle et al., 2008; Heiman et al., 2008). Here, we apply this
methodology for the first time to the serotonergic system. The
serotonergic system is thought to have important roles in reg-
ulation of basic physiological processes, such as breathing,
thermoregulation, and sleep, as well as higher cognitive phe-
nomena, such as mood and learning. Most importantly, its
dysfunction is suspected in several neuropsychiatric diseases,
including obsessive compulsive disorder and autism, among
others (Veenstra-VanderWeele et al., 2000; Canli and Lesch,
2007; Deneris and Wyler, 2012).

Autism is a pervasive developmental disorder characterized by
core symptoms, including impairment in social interactions and
communication, as well as repetitive behaviors, restricted inter-
ests, and resistance to change (American Psychiatric Association,
2000; Fombonne, 2005). With a concordance rate reported from
60 –90% for monozygotic twins, autism clearly has a remarkably
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strong genetic component, yet, as is the case for many psychiatric
disorders, studies indicate that this genetic contribution is likely
to be complex and polygenic. In autism, those genes that have
been implicated thus far either explain only a small number of the
cases or make relatively small contributions (Moldin and
Rubenstein, 2006; Freitag, 2007; Wang et al., 2009; Weiss et al.,
2009; Abrahams and Geschwind, 2010). One possible explana-
tion for the difficulty in discovering genes contributing to com-
plex psychiatric disorders, such as autism, would be distinct
genetic causes in different groups of individuals. However, the
commonality of the symptoms suggests that these distinct genes
would still be impacting a common pathway or circuit in the
brain. This suggests a candidate approach, focused on particular
categories of genes, or genes expressed in particular cell types that
are a priori suspected to contribute to a particular symptom, may
increase statistical power by decreasing the number of tests.
However, one risk with candidate gene studies is that choice of
genes may be considered arbitrary or limited by our current
knowledge of relevant genes for a specific biological process.
Here, we propose that cell type specific translational profiling can
be applied to provide guidance for genetic studies of the symp-
tomatology of CNS disorders, and we test this approach in the
case of serotonergic neurotransmission and autism.

To this end, we have applied the Translating Ribosome Affin-
ity Purification (TRAP) methodology to identify the comprehen-
sive in vivo suite of ribosome bound mRNA in serotonergic
neurons in adult mice. Screening the TRAP-identified serotoner-
gic genes using human data suggested polymorphisms in the
CUGBP Elav-like family member 6 (CELF6) gene may contribute
to autism risk. Consistent with these findings, Celf6 mutant mice
exhibit some autism-related behaviors and abnormal brain levels
of serotonin.

Materials and Methods
Generation and husbandry of Slc6a4 TRAP mice
All protocols involving animals were approved by the Institutional Ani-
mal Care and Use Committee of Rockefeller University and the Animal
Studies Committee of Washington University. BAC transgenic mice
were generated as described previously (Gong et al., 2002), using BAC
RP24-335M24. Positive founders and subsequent eGFP-L10a-positive
progeny were bred to C57BL/6J and pups were genotyped with tail-DNA
PCR for eGFP at each generation. Lines from two independent founders
were tested for accurate expression as described below. All serotonin-
positive neurons labeled with GFP in both lines. A few nonserotonergic
neurons showed trace labeling with GFP antibodies in the cingulate cor-
tex, hypothalamus, inferior colliculi, lateral nucleus of the olfactory tract
in one of the two lines (JD57), and in the dorsal part of the caudal spinal
trigeminal nucleus in the other line (JD60, data not shown). We used line
JD60 for all subsequent experiments.

Generation and characterization of Celf6 antibodies
Peptides (QPGSDTLYNNGVSPC and AASEGRGEDRKC) from Celf6,
selected for cross-species conservation, relative uniqueness across the
Celf family, and hydrophobicity, were synthesized, conjugated to KLH,
and injected into New Zealand white rabbits following standard proto-
cols (Green Mountain Antibodies). ELISA was used to confirm genera-
tion of antibodies specific to each peptide. High-titer rabbits were
boosted, and blood sera were affinity purified following standard proto-
cols. Antibodies were tested for effectiveness for Western blot, and im-
munofluorescence, using 3T3 cells transfected with GFP-tagged and
untagged isoforms of Celf6, then fixed with 4% paraformaldehyde. An-
tibodies against both peptides exhibited immunoreactivity by immuno-
blot on protein from in Celf6 overexpressing 3T3 cells. Only antibodies
against QPGSDTLYNNGVSPC were effective for immunofluorescence
on fixed cells. Specificity was confirmed in Celf6 knock-out (Celf6 �/�)
mouse tissue.

Immunofluorescence and microscopy
Adult mice were killed and perfused transcardially with 15 ml PBS, then
25 ml 4% paraformaldehyde in PBS. Brains were extracted and then
cryoprotected in 30% sucrose PBS overnight, frozen in Neg 50 mounting
media (Richard Allen Scientific), and sectioned on a cryostat to 40 �m of
thickness. Serial sections were collected in PBS with 0.1% sodium azide
and stored at 4°C, protected from light, until use.

EGFP-L10a expression was examined both with and without chicken
anti-GFP antibody (Abcam ab13970), and colocalization was confirmed
with rabbit anti-serotonin antibody (Immunostar), mouse anti-Neun
(Millipore Bioscience Research Reagents), detected with appropriate Al-
exa dye-conjugated secondary antibodies (Invitrogen). Images were cap-
tures on a LSM 510 Zeiss confocal microscope.

Immunohistochemistry
Mice were processed as above. For anti-GFP immunohistochemistry,
brains were processed by Neuroscience Associates as described previ-
ously (Doyle et al., 2008), using custom goat anti-GFP antibodies. For
Celf6 immunohistochemistry, brains were processed as above, incubated
overnight with 1:1000 with purified rabbit anti-Celf6 antibody, then
donkey anti-rabbit biotinylated secondary antibodies (Jackson Immu-
noResearch Laboratories), and developed with the Vectashield Elite ABC
kit (Vector Laboratories). Sections were digitized with a Zeiss Axioskop2
and customized macros.

Translating ribosome affinity purification
Three replicate pools of five adult mice of both sexes were killed, and
brains were rapidly dissected in ice-cold dissection buffer, containing
cycloheximide, to isolate the midbrain and brainstem. TRAP was con-
ducted as described previously (Heiman et al., 2008). Briefly, each pool
was homogenized for 12 strokes in a glass Teflon homogenizer on ice, in
buffer (10 mM HEPES [pH 7.4], 150 mM KCl, 5 mM MgCl2, 0.5 mM

dithiothreitol, 100 �g/ml cycloheximide, protease inhibitors, and re-
combinant RNase inhibitors). Nuclei and debris were removed with cen-
trifugation at 2000 � g for 10 min at 4°C. DHPC (Avanti) and NP-40
(Ipgal-ca630, Sigma) were added to supernatant to final concentrations
of 1% and 30 mM, respectively. After 5 min incubation of ice, supernatant
was centrifuged for 15 min at 20,000 � g, and pellet was discarded.
Supernatant was mixed with protein G-coated magnetic beads (Invitro-
gen), previously conjugated with a mix of two monoclonal anti-GFP
antibodies (Doyle et al., 2008), and incubated with rotation for 30 min at
4°C. Beads were washed three times with high salt wash buffer (10 mM

HEPES [pH 7.4], 350 mM KCl, 5 mM MgCl2, 1% NP-40, 0.5 mM dithio-
threitol, and 100 �g/ml cycloheximide), and RNA was purified from
ribosomes using Trizol (Invitrogen), following the manufacturer’s pro-
tocols, followed by DNase treatment, further purification, and concen-
tration with RNeasy min-elute columns, following the manufacturer’s
protocol (Qiagen). RNA was also harvested in parallel from each un-
bound fraction of affinity purification as a measure of total tissue RNA.
RNA concentration of all samples was measured with Nanodrop spec-
trophotometer, and integrity was confirmed with PicoChips on the Agi-
lent BioAnalyzer (RIN � 8).

Microarray experiments and statistical analysis
A total of 20 ng of each RNA sample was amplified with the Affymetrix
Two-Cycle amplification kit following the manufacturer’s instructions,
and quality of labeled aRNA was assessed with Bioanalyzer. Labeled RNA
from immunoprecipitated ribosomes and total tissue RNA was hybrid-
ized to separate Affymetrix Mouse Genome 430 2.0 arrays and scanned
following the manufacturer’s protocols. Data are available from the Gene
Expression Omnibus (GSE36068).

Data were analyzed using the Bioconductor module within the statis-
tical package R. Data quality was assessed by examining raw images of
slides, boxplots, histograms, correlation coefficients, false-positive rates,
and scatterplots comparing replicate experiments. Data were normalized
as described previously (Dougherty et al., 2010) but using Affymetrix
chip definition files. Briefly, GCRMA was used to normalize within rep-
licates and to biotinylated spike in probes between conditions. Fold
change, Specificity Index (SI), and Specificity Index statistic (pSI) were
calculated for all genes with expression above background, as described
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(Dougherty et al., 2010). Probesets with pSI � 0.01 were selected as
enriched in serotonergic neurons for the purposes of further analysis.
This resulted in 196 probesets covering 174 distinct genes.

Heirarchical clustering was conducted using Bioconductor on any
genes with pSI � 0.01 in any cell type from the current data and the initial
survey (Doyle et al., 2008).

Mouse genes from above were mapped to human Unigenes genes
using homologene, gene symbol, and BLAT of mouse mRNA against
human genome sequence, with 147 genes having clear human homologs.
Custom perl scripts were used to identify alignment coordinates of hu-
man Unigenes from UCSC genome browser, along with 10 kb of flanking
sequence to cover potential regulatory regions, with 136 Unigenes having
clear and unique genome coordinates.

Chromosomal distribution was analyzed by comparing number of
regions expected to be found on each chromosome (Wilming et al.,
2008), compared with observed number of regions.

Analysis of genome-wide association studies
The Rockefeller University Institutional Review Board and the Washing-
ton University Human Research Protection Office reviewed all human
subjects related work in this manuscript.

Deidentified human genotype and phenotype data were downloaded
with permission from the Autism Genetic Research Exchange (AGRE)
consortium (Geschwind et al., 2001) for 3787 individuals in 943 multi-
plex families, genotyped for 550,000 SNPs with the Illumina Hap550
platform (Wang et al., 2009). SNP genotypes were called with BeadStudio
3.1.3.0, and genotypes and phenotypes were formatted for PLINK
(Purcell et al., 2007) using Perl. Individuals with missing or poor data
were excluded (MIND � 0.1, Geno � 0.1). Only those individuals with
clearly diagnosed as autistic by AGRE were scored as affected. Those with
ambiguous diagnosis (scored NQA or broad spectrum) were excluded.
We selected all available SNPs within 10 kb of the transcription start or
end site of the serotonergic neuron enriched genes, filtered to remove
those with MAF � 0.05 and those that were out of Hardy-Weinburg
equilibrium ( p � 0.01). We further removed SNPs with an r 2 � 0.5 as
they would violate the assumption of independence for multiple testing
corrections and would not provide any further information. This re-
sulted in a total of 555 SNPs being tested with the transmission disequi-
librium test. Tests were then corrected with the Bonferroni method for
multiple testing. Tests were run for all probands (1142 trios); and because
prior work had suggested that autism in males and females may have a
separate genetic etiology (Stone et al., 2004), we further analyzed these
SNPs with males (915 trios) and females (227 trios) independently.

To determine whether segregating probands by sex was meaningful,
we performed an additional permutation analysis by randomly sampling
915 probands and repeating the analysis. Excluding SNPs in C1QTNF2
and CELF6, corrected p values �0.05 were observed in only 8 of 1000
iterations, suggesting that this sex-specific difference was not spurious.

Resequencing of candidate genes
Primers were designed for resequencing following standard methods
(Montgomery et al., 2008), taking care to avoid SNPs and repetitive
sequences in locations for the primers. Standard M13F and M13R se-
quences were incorporated into the primers. Deidentified DNAs from
384 male white probands from distinct families within the AGRE sample
and 384 male white controls from the NIMH Human Genetic Initiative
Controls (HGIC) set were amplified with PCR.

Amplicons were then purified and Sanger sequenced using M13F or
M13R primers by Agencort Beckman Coulter Genomics. Sequences were
trimmed to exclude low-quality reads and analyzed with Seqman soft-
ware to identify known and novel SNPs. Any putative novel coding se-
quence mutations were confirmed by sequencing with the opposite
primer.

Screening for stop mutation in additional cases and controls
An additional 864 probands from the Simons Simplex Collection (SSC)
and 4992 controls from the HGIC set were screened as follows:

HGIC samples were first screened with Sequenom. The sequence vari-
ant was run in a 29-plex SNP Genotyping Assay using Sequenom iPLEX
Gold Technology. The initial PCR, performed as per the manufacturer’s

instructions (Sequenom). The subsequent Shrimp Alkaline Phosphatase
clean, the iPLEX reaction, and the resin clean were all performed as stated
by Sequenom. Spectro chip arrays were spotted using a nanodispenser,
according to the manufacturer’s instructions. A Sequenom MALDI-TOF
spectrophotometer was used to read the array. The SpectroAquire and
MassARRAY Typer Software packages (Sequenom) were used for inter-
pretation, and Typer analyzer Version 3.4.0.18 was used to review and
analyze all data.

Any positive HGIC samples and all SSC samples were then screened
with allele-specific PCR (Little, 2001). Primers that specifically amplify
CELF6 only with the stop codon mutation were included in a multiplex
reaction with internal control primers for �-actin for a final concentra-
tion of 500 nM each with Maxima SYBR Green quantitative RT-PCR
Master Mix (Fermantas), and subjected to quantitative RT-PCR in an
ABI Prism 7900, followed by a melt curve. �-Actin and CELF6 amplicons
were distinguished on the basis of melting temperature (83°C and 88°C,
respectively). Positive control DNA with stop codon was included on
each plate of PCR.

Analysis of 1000 genomes data
VCF files corresponding to exome sequence data from 1092 individuals
(1000 Genomes Project Consortium, 2010) were downloaded into
WASP (Dubin et al., 2010) and custom scripts used to extract all exonic
variants, annotate these with regard to likelihood of being pathogenic
(Sunyaev et al., 2001; Ng and Henikoff, 2002; Eddy, 2004; Adzhubei et al.,
2010), and then determine minor allele frequencies. The DGV was que-
ried in March 2012 in the UCSC genome browser using the UCSC anno-
tated CELF6 transcriptional start and stop as a query.

Quantitative real-time RT-PCR
TRAP was conducted as above for an additional three male and three
female slc6a4 bacTRAP mice. Each sample was used to synthesize cDNA
from 50 ng of total RNA using Protoscript (NEB), primed with Oligo dT,
following the manufacturer’s instructions. Quantitative RT-PCR was
conducted in a Bio-Rad IQ5 with Bio-Rad 2� Sybr Green Mastermix
(Bio-Rad). Data were analyzed in the IQ5 software using the ddCT
method, with �-actin as a control. Melt curves were conducted to assure
specificity of product, and each product was sequenced to confirm accu-
racy of amplification.

Generation of Celf6 knock-out mice
Long and short arms with LoxP sites flanking exon 4 of Celf6 were cloned
by PCR adjacent to an Frt flanked neomycin-resistance cassette gene.
B6(Cg)-Tyr c-2j/j-derived ES cells were electroporated using standard
methods, and neomycin-resistant colonies were screened by PCR and
southern blot for proper integration. Positive colonies were injected into
C57BL/6J mouse blastocysts, and chimeric mice were bred to germline
Flpe expressing C57BL/6J mice to remove neomycin selection cassette,
then actin-Cre C57BL/6J mice to create germline deletions of Celf6. Re-
combination was confirmed in progeny by PCR. Heterozygous progeny
were crossed to generate knock-out (Celf6 �/�) and wild-type (WT) lit-
termate mice for behavioral and anatomical assays.

Behavioral tests
Animals and experimental design of behavioral studies. A total of 46
C57BL/6J Celf6 �/� (n � 23, 14 females and 9 males) and litter-matched
WT (n � 23, 14 females and 9 males) mice were used for ultrasonic pup
vocalization (USV) recording and analysis. The animal colony room
lighting was a 12:12 h light/dark cycle; room temperature (�20°C–22°C)
and relative humidity (50%) were controlled automatically. Standard
laboratory chow and water were available on a continuous basis.

Twenty experimentally naive male C57BL/6J Celf6 �/� (n � 11) and
litter-matched WT (n � 9) mice were used for adult behavioral testing.
The sequence of behavioral testing was devised to minimize “carry-over”
effects across behavioral tests as much as possible. Behavioral testing
began when the mice were 3–5 months of age and included a 1 h loco-
motor activity/exploration test, followed 1 d later by an evaluation on a
battery of sensorimotor measures, to assess possible disturbances in gen-
eral activity and sensorimotor functions that might affect performance
on subsequent tests. One day later, the mice were tested in the Morris
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water maze, which included cued (visible platform), place (hidden plat-
form), and probe (platform removed) trials to assess potential nonasso-
ciative deficits as well as spatial learning and memory impairments. The
following week, the mice were tested for their ability to learn another
platform location (reversal and additional probe trials) to evaluate cog-
nitive flexibility in terms of extinguishing one learned response and ac-
quiring another. During the next week, sociability was assessed using the
social approach test followed by an evaluation of sensorimotor reactivity
and gating by quantifying acoustic startle and prepulse inhibition (PPI).
Approximately 2–3 months later, anxiety-like behaviors were measured
in the mice by testing them in the elevated plus maze (EPM). The follow-
ing week, the mice were retested on the social approach test for further
evaluation of sociability and preference for a novel conspecific (stimulus
mouse). Nineteen days later, exploratory behaviors and olfactory prefer-
ence were quantified in the holeboard exploration/olfactory preference
test.

Ultrasonic vocalization recording and analysis. WT and Celf6 �/� pups
were individually removed from their parents at postnatal day 8 and
placed in a dark, enclosed chamber. Ultrasonic vocalizations were ob-
tained using an Avisoft UltraSoundGate CM16 microphone, Avisoft Ul-
traSoundGate 416H amplifier, and Avisoft Recorder software (gain � 6
dB, 16 bits, sampling rate � 250 kHz). Pups were recorded for 3 min,
after which they were weighed and returned to their home cages. Fre-
quency sonograms were prepared from recordings in MATLAB (fre-
quency range � 40 kHz to 120 kHz, FFT size � 256, overlap � 50%), and
individual syllables were identified and counted from the sonograms
according to a previously published method (Holy and Guo, 2005).

One hour locomotor activity and sensorimotor battery. Locomotor ac-
tivity was evaluated in the mice using transparent (47.6 � 25.4 � 20.6 cm
high) polystyrene enclosures and computerized photobeam instrumen-
tation as previously described (Wozniak et al., 2004). General activity
variables (total ambulations and vertical rearings) along with indices of
emotionality, including time spent, distance traveled, and entries made
in a 33 � 11 cm central zone and distance traveled in a 5.5 cm contiguous
peripheral zone were analyzed. All mice were also evaluated on a battery
of sensorimotor tests designed to assess balance (ledge and platform),
strength (inverted screen), coordination (pole and inclined screens), and
initiation of movement (walking initiation), as previously described
(Wozniak et al., 2004; Grady et al., 2006). For the walking initiation test,
the mouse was placed on a surface in the center of a 21 � 21 cm square
marked with tape, and the time the mouse took to leave the square was
recorded. During the balance tests, the time was recorded that the mouse
remained on a Plexiglas ledge (0.75 cm wide) or a small circular wooden
platform (3.0 cm in diameter) elevated 30 or 47 cm, respectively. The
screen tests were conducted by placing a mouse head-oriented down in
the middle of a mesh grid measuring 16 squares per 10 cm, elevated 47
cm, and angled at 60° or 90°. The time was recorded that the mouse
required to turn 180° and climb to the top. For the inverted screen, the
mouse was placed on the screen as described above; and when it appeared
to have a secure grip, the screen was inverted 180°, and the time the
mouse remained on to the screen was recorded. Each test had a maxi-
mum time of 60 s, except for the pole test, which had a maximum time of
120 s. The averaged time of two trials for each test was used for the
analyses.

Morris water navigation. Spatial learning and memory were evaluated
in the Morris water maze using a computerized tracking system (ANY-
maze, Stoelting) as previously described (Wozniak et al., 2004). Cued
(visible platform, variable location) and place (submerged, hidden plat-
form, constant location) trials were conducted, and escape path length,
latency, and swimming speeds were computed. To assess nonassociative
dysfunctions, the cued condition involved conducting 4 trials per day (60
s maximum per trial) for 2 consecutive days with the platform being
moved to a different location for each trial using a 30 min intertrial
interval, and with very few distal spatial cues being present to limit spatial
learning. Performance was analyzed across four blocks of trials (2 trials/
block). Three days later, place trials were conducted, which involved
acquisition training to assess spatial learning where mice were required to
learn the single location of a submerged platform in the presence of
several salient distal spatial cues. During the 5 consecutive days of place

trials, the mice received 2 blocks of 2 consecutive trials [60 s maximum
for a trial; 30-s intertrial interval (spent on platform)] with each block
being separated by �2 h and each mouse being released from a different
quadrant for each trial. The place trials data were analyzed over five
blocks of trials (4 trials/block) where each block represented the perfor-
mance level for each of five consecutive days. A probe trial (60 s maxi-
mum) was administered �1 h after the last place trial on the fifth day of
training with the platform being removed and the mouse being released
from the quadrant opposite to where the platform had been located.
Time spent in the various pool quadrants, including the target quadrant
where the platform had been placed and crossings over the exact plat-
form location, served as the dependent variables. Three days after com-
pleting the place and probe conditions, mice were tested on reversal
trials, which involved the same procedures as the place trials, except that
the hidden platform was moved to a new location in the pool for all trials.
Another probe trial was conducted after completing the reversal trials.

Social approach. Our protocol was adapted from methods previously
described (Moy et al., 2004; Silverman et al., 2011) and involves quanti-
fying sociability [tendency to initiate social contact with a novel conspe-
cific (stimulus mouse) or cagemate] and preference for social novelty
(tendency to initiate social contact with a novel vs a familiar stimulus
mouse). The apparatus was a rectangular 3-chambered Plexiglas box
(each chamber measuring 19.5 cm � 39 cm � 22 cm) containing Plexi-
glas dividing walls with rectangular openings (5 � 8 cm) covered by
sliding Plexiglas doors. A small stainless-steel withholding cage (10 cm
h � 10 cm diameter; Galaxy Pencil/Utility Cup, Spectrum Diversified
Designs) was used to sequester a stimulus mouse. The withholding cage
consisted of vertical bars, which allowed for minimal contact between
mice but prevented fighting, and one was located in each outer chamber.
A digital video camera connected to a PC loaded with a tracking software
program (ANY-maze, Stoelting) recorded the movement of the mouse
within the apparatus and quantified time spent in each chamber and
investigation zone surrounding the withholding cages. The investigation
zones were 12 cm in diameter, encompassing 2 cm around the with-
holding cages. An entry into the chambers was defined when a cham-
ber contained 80% of the mouse’s body while only the head was
tracked in the zones surrounding the withholding cages to capture
investigative social behaviors. Indirect lighting illuminated the test
room, and the entire apparatus was cleaned with Nolvasan solution
while the withholding cages were cleaned with 75% ethanol solution
between tests.

The first test sequence consisted of 3 consecutive 10 min trials. For the
first trial, each mouse was placed in the middle chamber with the doors to
the outer chambers shut to become acclimated to the apparatus. During
the second trial, the mouse was allowed to freely investigate and habituate
to all three chambers, including the empty withholding cages (Page et al.,
2009; Naert et al., 2011; Pobbe et al., 2012). Neither group showed prior
preference for a particular withholding cage during habituation. The
third (test) trial assessed sociability exhibited toward a novel stimulus
mouse versus a familiar, empty withholding cage by placing an unfamil-
iar, gender-matched stimulus mouse in one withholding cage while the
other was left empty, and the test mouse was allowed to freely explore the
apparatus and investigate the novel mouse in the withholding cage. A
second test sequence conducted �2 months later also consisted of 3
consecutive 10 min trials. For trial 1, each mouse was allowed to freely
investigate and habituate to all three chambers, including the empty
withholding cages. For the second trial, a gender-matched cagemate was
placed in one withholding cage while the other remained empty, and the
test mouse could freely explore the apparatus and investigate the cage-
mate in the withholding cage. During the third (test) trial, the familiar
cagemate remained in the withholding cage, although a new, unfamiliar
gender-matched stimulus mouse was now placed in the other withhold-
ing cage, and the test mouse was allowed to explore the apparatus and
investigate the two mice contained in the withholding cages. The loca-
tions of the stimuli mice in the outer chambers for the first test sequence
were counterbalanced within and across groups, and placement of the
stimuli mice for the second test sequence was randomized. All stimuli
mice were acclimated to the metal withholding cages for 10 min before
beginning of testing.
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Acoustic startle/prepulse inhibition. Sensorimotor reactivity and gating
were also evaluated in the mice by quantifying their acoustic startle re-
sponse (ASR) and PPI because PPI has been reported to be abnormal in
individuals with autism (Perry et al., 2007; Yuhas et al., 2011). The ASR
and PPI were tested using computerized instrumentation designed spe-
cifically for mice (StartleMonitor, Kinder Scientific). The ASR to a 120
dBA auditory stimulus pulse (40 ms broadband burst) and PPI (response
to a prepulse plus the startle pulse) were measured concurrently using
our previously described methods (Hartman et al., 2001; Gallitano-
Mendel et al., 2008). Beginning at stimulus onset, 65, 1 ms force readings
were averaged to obtain an animal’s startle amplitude for a given trial. A
total of 20 startle trials were presented over a 20 min test period, during
which the first 5 min served as an acclimation period when no stimuli
above the 65 dB white noise background were presented. The session
began and ended by presenting 5 consecutive startle (120 db pulse alone)
trials unaccompanied by other trial types. The middle 10 startle trials
were interspersed with PPI trials, consisting of an additional 30 presen-
tations of 120 dB startle stimuli preceded by prepulse stimuli of 4, 12, or
20 dB above background (10 trials for each PPI trial type). A percent PPI
score for each trial was calculated using the following equation: %PPI �
100 � (ASRstartle pulse alone � ASRprepulse � startle pulse)/ASRstartle pulse alone

(see Hartman et al., 2001 for more details).
EPM. Anxiety-like behaviors were evaluated in the EPM according to

our previously described procedures (Schaefer et al., 2000; Boyle et al.,
2006). Our apparatus consisted of two opposing open arms and two
opposing enclosed arms (36 � 6.1 � 15 cm) that extended from a central
platform (5.5 � 5.5 cm), which were constructed of black Plexiglas. The
maze was equipped with pairs of photocells configured in a 16 (x-axis) �
16 ( y-axis) matrix, the output of which was recorded by a computer and
interface assembly (Kinder Scientific). A system software program (Mo-
torMonitor, Kinder Scientific) enabled the beam-break data to be re-
corded and analyzed to quantify time spent, distance traveled, and entries
made into the open and closed arms and center area. To adjust for dif-
ferences in general activity, the percentage of distance traveled, time
spent, and entries made into the open arms out of the totals (open
arms � closed arms) for each variable were also computed. Test sessions
were conducted in a dimly lit room where light was provided by two 13 W
black-light bulbs (Feit EcoBulbs) and each session began by placing a
mouse in the center of the maze and allowing it to freely explore the
apparatus. Each test session lasted 5 min, and the mice were tested over 3
consecutive days.

Holeboard exploration/olfactory preference test. Mice were evaluated for
possible differences in exploratory behaviors and olfactory preferences
using a slightly modified version of our previously published methods
(Ghoshal et al., 2012) where hole poking served as the main behavioral
response. Our modifications were based on procedures described by
Moy et al. (2008) for Study 2 within their publication to assess shifts in
olfactory preference in an autism mouse model. We used the same odor-
ant, familiarization technique, and testing procedure, although our ap-
paratus is slightly different from the one used by these authors. Our
protocol involved the use of a computerized holeboard apparatus (41 �
41 � 38.5 cm high clear plastic chamber), containing 4 corner and 4 side
holes in the floor, with a side hole being equidistant between the corner
holes (Learning Holeboard; MotorMonitor, Kinder Scientific). Pairs of
photocells were contained within each hole (27 mm in diameter) and
were used to quantify the frequency and duration of pokes, whereby a
poke that was at least 35 mm in depth was required to be registered as a
hole-poke. Each mouse received one 30 min habituation session in the
holeboard during which no holes contained any odorants. The following
day (test session 1), a 20 min session was conducted during which hole-
poke frequency and duration data were collected in the presence of
empty and odorant-containing holes. All side holes were empty, while
odorants were placed at the bottom of each of three corner holes, al-
though access to the odorants was blocked, and one corner hole re-
mained empty. The configuration of odorant-containing and empty
corner holes (see Fig. 7C) was such that one hole contained a familiar
odorant (fresh corn-cob bedding used in the home cages), which was
placed in a corner hole opposite to a corner hole containing an unfamiliar
odorant (woodchip bedding). Another novel odorant (chocolate chips)

was placed in a corner hole opposite to the empty corner hole. This
pattern was counterbalanced within and across groups. Immediately af-
ter completing test session 1, the mice were familiarized with the choco-
late chips by placing 4 –7 chocolate chips in each home cage. The same
thing was done on the following day, and all but 1 chocolate chip were
consumed before the start of the second test session. Test session 2 was
conducted two days after test session 1 using the same procedures and
pattern of odorant-containing and empty corner holes, except that the
actual configuration used for test session 2 was opposite to the one used
during test session 1 (see Fig. 8C). For example, the corner holes that
contained bedding for test session 1 contained chocolate chips or were
empty during test session 2, and vice versa. General exploratory behavior
was evaluated by quantifying total hole-pokes as well as pokes into the
side and corner holes for test sessions 1 and 2. Olfactory preferences were
assessed by analyzing poke frequencies involving odorant-containing
and empty corner holes within and between groups. Poke durations
exhibited for the different types of holes were also analyzed to provide
additional data on possible differences in the processing of olfactory
stimuli.

Statistical analyses for behavioral data. ANOVA models were used to
analyze the behavioral data. A two-way ANOVA model was used to an-
alyze differences within and between genotype and sex for USV. Re-
peated measures (rm) ANOVA models containing one between-subjects
variable (genotype) and one within-subjects (repeated measures) vari-
able (e.g., blocks of trials) were typically used to analyze the learning and
memory data. The Huynh-Feldt adjustment of � levels was used for all
within-subjects effects containing more than two levels to protect against
violations of sphericity/compound symmetry assumptions underlying
rmANOVA models. Typically, one-way ANOVA models were used to
analyze differences between groups for 1 h locomotor activity test and
measures in the sensorimotor battery. Planned comparisons were con-
ducted within ANOVA models for certain holeboard variables. In most
other instances, pairwise comparisons were conducted following rele-
vant, significant overall ANOVA effects, which were subjected to Bonfer-
roni correction when appropriate.

Extraction for measurement of neurotransmitter levels
Ten Celf6 �/� and seven WT whole adult mouse brains frozen at �80°C
were dried on a lyophilizer for 72 h. The dried brains were crushed to a
powder and stored at �80°C. A total of 10 mg of each was extracted as
follows: vortexed 30 s; centrifuged 13,000 RPM, 4°C, 10 min; sonicated at
50°C in a bath sonicator; stored at �4°C; liquid nitrogen bath 1 min and
then allowed to thaw. Acetone (600 �l at 4°C) was added to each tube.
Tubes were vortexed, placed in liquid nitrogen and sonicated for 10 min;
this was repeated three times. Samples were incubated for 30 min
and then centrifuged. Supernatant was poured into new microcentrifuge
tubes and stored. Methanol, water, and formic acid (400 �l at 86.5:
12.5:1) were added to the remaining pellet. Tubes were vortexed, soni-
cated for 15 min, and incubated for 30 min. Samples were centrifuged,
and the supernatant was combined with the previous 600 �l. The pooled
supernatant was dried with a speedvac with no heat for 23 h. To each
tube, 100 �l of water was added. Tubes were sonicated for 5 min and
incubated for 1 h. Samples were centrifuged and the resulting supernatant
was transferred to deactivated glass autosampler vials for MS analysis.

LC/MS analysis
Targeted LC/MS analyses were done using an HPLC system (Agilent
1260 Infinity) coupled to an Agilent 6460 Triple Quadrapole MS oper-
ated in positive ESI mode. Analytes were separated using a Zorbax 300
SB-C18 (5 �m, 150 � 0.5 mm) column. An isocratic elution was used
with 0.1% v/v formic acid in water. The injection volume was 0.8 �l. A 30
min wash was performed between injections. Flow was set to 5 �l/min.
Source conditions were gas temperature 300°C, gas flow 6 L/min, nebu-
lizer 15 psi, capillary 4000 V. Acquisition settings were dwell time 200 ms,
MS1 resolution unit, MS2 resolution unit, polarity positive, cell acceler-
ator voltage 7. The 6460 Triple Quadrapole was operated in MRM mode
monitoring two transitions for each analyte with the most intense tran-
sition being used for analysis. MRM transitions were integrated with
Agilent Mass Hunter Qualitative Analysis B.04.00. Statistical analysis was
conducted in MS Excel using 2-tailed t tests, with Bonferroni correction.
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Results
Slc6a4 bacTRAP mice target eGFP-L10a specifically to
serotonergic neurons
Classical studies using a variety of methodologies (Hillarp et al.,
1966; Steinbusch, 1981, 1984; Ishimura et al., 1988), including in
situ hybridization studies of the presynaptic serotonin trans-
porter Slc6a4 (Bengel et al., 1997), have defined nine populations
of serotonergic neurons, predominantly within the raphe nuclei.
To enable translational profiling of these cells, we generated
transgenic mouse lines using a Slc6a4 BAC to drive the expression
of the TRAP construct (eGFP fused to the ribosomal protein
L10a). Immunohistochemistry with anti-GFP antibodies dem-
onstrated robust expression in a pattern consistent with expres-
sion in all serotonergic neurons (Fig. 1A, B). Neurotransmitter
phenotype was confirmed using confocal immunofluorescence
with antibodies to GFP and serotonin (Fig. 1C). In all cells, GFP
signal was seen only in the cytoplasm and nucleolus, consistent
with ribosomal incorporation of the fusion protein.

Serotonergic neurons have a distinct translational profile
Using eGFP as an affinity tag, we purified the suite of ribosome
bound mRNAs from serotonergic neurons (the TRAP method-
ology) (Doyle et al., 2008, Heiman et al., 2008) and interrogated
them with microarrays. Independent biological replicates
showed high reproducibility (Fig. 2A), with an average correla-
tion �0.99. When these samples were compared with microar-
rays of the whole tissue (Fig. 2B), there was a clear, robust, and
comprehensive enrichment of all mRNAs known to be specifi-
cally expressed in serotonergic neurons, including enzymes in the
pathway for synthesizing serotonin in the CNS (Tph2, Ddc)
(Goridis and Rohrer, 2002), transcription factors known to be
important for specifying these neurons (Goridis and Rohrer,
2002; Pfaar et al., 2002) (Fev, Gata2, and Gata3), the serotonin
autoreceptor (Htr1a; Korte et al., 1996), and the serotonin trans-
porter itself (Slc6a4). There was also a clear depletion of mRNAs
known to not be expressed by neurons, such as the glial genes
Mobp, Aldh1L1, Mbp, and Plp. This suggests that we could indeed
capture mRNA specifically from serotonergic neurons.

To select for all mRNAs used in serotonergic neurons, we
removed those probesets with median expression �50, or a fold
change below a background threshold determined by the glial
genes (Dougherty et al., 2010). These normalized data represent
�5000 genes clearly expressed in serotonergic neurons.

To generate a comprehensive list of those mRNAs either
highly enriched or specific for serotonergic neurons, we com-
pared this translational profile to our previous survey of cell types
in the CNS (Doyle et al., 2008) using the pSI statistic (Dougherty
et al., 2010). We identified 196 probesets with pSI � 0.01 (Table
1), corresponding to 174 genes that included the known seroto-
nergic cell genes listed above. To validate this list, we compared it
to the online catalog of mouse in situ hybridizations of the
Allen Brain Atlas (Lein et al., 2007) in a blinded and unbiased
manner (Dougherty et al., 2010). Compared with a random
list of genes from the array, the serotonergic cell list had nearly
three times as many in situ hybridizations with a pattern of
enrichment in the raphe nuclei. Seventeen of these genes
scored as specific to serotonergic neurons, compared with
none from the random list (Fig. 2C).

We next compared our list of enriched and specific genes with
the recently published data from flow-sorted embryonic seroto-
nergic neurons from rostral and caudal nuclei (Wylie et al., 2010).
There are numerous differences in methodology and design be-
tween the two studies, including age (embryonic vs adult), puri-

fication methodology (flow sorting vs TRAP), amplification
methodology, normalization, and analytical strategy. Despite
this, there was highly significant overlap between the two studies
(� 2 test, p � 8.7E�227), suggesting good conservation of gene
expression across development for these neurons. Thus, the lines
generated here provide in vivo access to the translational profile
of the adult serotonergic system and can be used in the future to
study the response of these cells to whole animal manipulations
in a reproducible and accurate manner.

Using hierarchical clustering, we compared the serotonergic
translational profile to the cell types from our previous survey
(Doyle et al., 2008; Fig. 2D). Serotonergic neurons are clearly
distinct from other cells. However, remarkably, of the surveyed
cell types, serotonergic neurons are most similar to cholinergic
neurons of the basal forebrain. Although these two populations
come from distinct regions and have distinct transmitter pheno-
types, both have similar functional roles; that is, both cell types
project widely through the CNS and function as neuromodula-
tors, influencing the physiological properties of whole circuits.
This suggests that the translational profile of a cell population is
more strongly influenced by its particular roles within the CNS
than the region in which it is found or the particular neurotrans-
mitter it uses.

Next, we performed a standard Gene Ontologies analysis
on the 174 serotonergic genes using DAVID (Dennis et al.,
2003), which indicated, unsurprisingly, a role for a significant
fraction of these genes in serotonin signaling (not shown).
However, many other genes were unannotated, and we sus-
pected that these 174 genes may provide a novel list of candi-
date genes for neuropsychiatric disorders thought to involve
the serotonergic system.

Of the 174, 147 had clear human homologues based on ho-
mologene, BLAT, and probematchDB (Wang et al., 2002). These
were distributed across 136 noncontiguous regions of the ge-
nome. Chromosomal analysis revealed a remarkably nonrandom
distribution of these regions (� 2 test, p � 3.57E�7). In particular,
10.4% of these were found on the X chromosome, compared with
the 4.5% that would be expected to be found there by chance
given the size and gene density of the chromosomes. This is in-
teresting considering the gender disparity in prevalence for au-
tism (4:1 male to female; Fombonne, 2005) and depression (1: 1.7
male to female; Kessler et al., 1993), two of the disorders with
suspected connections to the serotonergic system.

Transmission disequilibrium testing for polymorphisms in
serotonergic genes in autism
We next sought to determine whether polymorphism in these
136 regions may be related to autism, using the Transmission
Disequilibrium Test (Spielman and Ewens, 1996; Collins, 2007),
applied to data generated by AGRE (Geschwind et al., 2001;
Wang et al., 2009) from multiplex families with autism. We dis-
covered two SNPs that met criteria for significance after multiple
testing correction (Table 2): one in both males and females in the
C1QTNF2 gene and one specifically in males in the gene encoding
the CELF6 RNA-binding protein.

We decided to first focus on the CELF6 gene because another
RNA-binding protein, FMRP, is disrupted in fragile X syndrome,
the most common syndromic cause of autism (Verkerk et al.,
1991; Chonchaiya et al., 2009). CELF6 is a less well-studied mem-
ber of an RNA binding protein family known as the CELF family
(Cugbp and Etr-3 like factors) (Barreau et al., 2006). CELF pro-
teins are known to regulate RNA in a variety of manners. In
Drosophila, this family has been studied in the context of regula-
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tion of translation (Good et al., 2000); whereas in Xenopus, ho-
mologous proteins are implicated in mRNA localization and
stability (Barreau et al., 2006). In mammals, family members are
known to both positively and negatively regulate splicing of a

variety of transcripts (Ladd et al., 2004), and members of the
CELF family seem to be in a dynamic competition with other
splicing factors to regulate cell type-specific alternative splicing
(Charlet et al., 2002).
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Figure 1. A bacTRAP line for serotonergic neurons. A, DAB immunohistochemistry with anti-GFP antibodies on Slc6a4 bacTRAP mice reveals eGFP-L10a transgene expression in the known
serotonin cell-containing nuclei. B, Higher magnification of DRV shows neuronal morphology of eGFP-positive cells. C, Confocal immunofluorescence colocalization of eGFP-L10a transgene with
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SNP rs2959930 is found near an alternative transcriptional
start site of CELF6
The CELF6 gene has 16 exons (Fig. 3A) and is highly homologous
to other CELF genes, particularly CELF3 (TNRC4), CELF4, and
CELF5. Their long isoforms each contain three RNA recognition
motifs (RRMs) that are nearly identical across family members,
and a divergent domain, required in other family members for
both splicing activity and repression (Han and Cooper, 2005). In
other family members, the first two RRMs are required for RNA
binding (Good et al., 2000), whereas the third may be involved in
nuclear localization (Chapple et al., 2007).

The SNP associated with autism in the AGRE male probands,
rs2959930, is found in the 5� UTR of an alternative first exon (Fig.
3C). Inclusion of this exon precludes the incorporation of the
first RRM (Fig. 3D). In family member CELF2, truncations re-
moving the first RRM reduce the inclusion of GRIN1 exon 21 in
a minigene splicing assay (Han and Cooper, 2005). This would

suggest that polymorphisms that impact the transcription, trans-
lation, or stability of the different isoforms of CELF6 may have an
impact on the splicing, localization, and translation of mRNA
within the cell. However, it is unclear whether SNP rs2959930 is a
relevant functional polymorphism or whether it is in linkage dis-
equilibrium with a more profound variation. First, we sought to
determine whether both isoforms are expressed in serotonergic
neurons and to confirm that CELF6 is indeed being translated in
these cells. Then, we initiated a screen for more profound poly-
morphisms that may be influencing this gene in autism.

Celf6 is found in serotonergic neurons
To determine which isoforms might be used in serotonergic neu-
rons, we designed primers specific to the long and short isoforms.
Quantitative RT-PCR clearly confirmed an enrichment of Celf6
mRNA in serotonergic neurons (data not shown), with both iso-
forms detectable. To investigate whether Celf6 protein is also
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Table 1. Serotonin cell-specific and enriched genes

Gene symbol Probe set ID pSI Name

Acsl4 1451828_a_at 6.54E-04 Acyl-CoA synthetase long-chain family member 4
Ankrd2 1419621_at 1.72E-03 Ankyrin repeat domain 2 (stretch responsive muscle)
Apoa2 1417950_a_at 9.57E-03 Apolipoprotein A-II
Arhgdig 1448660_at 4.87E-04 Rho GDP dissociation inhibitor (GDI) gamma
Asb4 1433919_at 1.91E-06 Ankyrin repeat and SOCS box-containing protein 4
Celf6 1429790_at 8.40E-03 Cugbp and Elav-like family member 6, RNA binding protein
C1qtnf2 1431079_at 8.01E-03 C1q and tumor necrosis factor related protein 2
Calcr 1418688_at 1.91E-06 Calcitonin receptor
Calr3 1453232_at 2.20E-03 Calreticulin 3
Cckar 1421195_at 1.43E-03 Cholecystokinin A receptor
Cd1d1 1449131_s_at, 1449130_at 1.91E-06 CD1d1 antigen
Ceacam10 1448573_a_at, 1417074_at 1.91E-06 CEA-related cell adhesion molecule 10
Cep63 1436274_at 1.91E-06 Similar to protein C6orf117
Chodl 1451440_at 3.57E-03 Chondrolectin
Ciapin1 1438163 xat 1.97E-03 Rhomboid domain containing 2
Cited1 1449031_at 1.91E-06 Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1
Col7a1 1419613_at 1.91E-06 Procollagen, type VII, alpha 1
Cpa3 1448730_at 1.91E-06 Carboxypeptidase A3, mast cell
Cpne8 1430521_s_at, 1430520_at 2.19 to 3.24E-03 Copine VIII
Cryba2 1419011_at 1.91E-06 Crystallin, � A2
Cthrc1 1452968_at 5.54E-05 Collagen triple helix repeat containing 1
Ctla2b 1416811_s_at, 1448471_a_at 1.91E-06 cytotoxic T lymphocyte-associated protein 2 �
Cxcl7 1418480_at 1.91E-06 Chemokine (C-X-C motif) ligand 7
Ddc 1430591_at, 1426215_at 1.91E-06 Dopa decarboxylase
Dlk1 1449939_s_at 1.91E-06 Delta-like 1 homolog (Drosophila)
Dnajc12 1417441_at 3.44E-05 DnaJ (Hsp40) homolog, subfamily C, member 12
E2f5 1434493_at 4.57E-04 E2F transcription factor 5, p130-binding
En1 1418618_at 1.34E-05 Engrailed 1
Esm1 1449280_at 2.87E-05 Endothelial cell-specific molecule 1
Fbxw4 1442674_at 7.26E-03 F-box and WD-40 domain protein 4
Fev 1425886_at 1.91E-06 FEV (ETS oncogene family)
Fgd5 1460578_at 1.91E-06 FYVE, RhoGEF. and PH domain containing 5
Foxa1 1418496_at 7.42E-03 Forkhead box A1
Fxyd5 1418296_at 1.91E-06 FXYD domain-containing ion transport regulator 5
Fxyd6 1417343_at 9.95E-03 FXYD domain-containing ion transport regulator 6
Gas5 1449410_a_at 2.42E-04 Growth arrest-specific 5 (non-protein coding)
Gata2 1428816_a_at, 1450333_a_at 1.91E-06 GATA binding protein 2
Gata3 1448886_at 1.91E-06 GATA binding protein 3
Gch 1429692_s_at, 1420499_at 1.91E-06 GTP cyclohydrolase 1
Glra2 1434098_at 2.58E-04 Glycine receptor, � 2 subunit
Gm1574 1446591_at 1.91E-06 Gene model 1574, (NCBI)
Gnas 1421740_at 6.19E-04 GNAS (guanine nucleotide binding protein, � stimulating) complex locus
Gng2 1418451_at 6.11E-03 Guanine nucleotide binding protein (G protein), � 2 subunit
Gnpda2 1457230_at 3.19E-04 Glucosamine-6-phosphate deaminase 2
Gpr1 1460123_at 5.89E-04 G protein-coupled receptor 1
Gpr4 1457745_at 1.91E-06 G protein-coupled receptor 4
Gpx3 1449106_at 1.34E-05 Glutathione peroxidase 3
Gstm6 1422072_a_at 1.83E-04 Glutathione S-transferase, � 1
Guca1a 1421061_at 1.91E-06 Guanylate cyclase activator 1a (retina)
Gus 1430332_a_at 3.05E-03 Glucuronidase, �
H2-Q1 1418734_at 1.91E-06 histocompatibility 2, Q region locus 1
Hcrtr1 1436295_at 1.91E-06 Hypocretin (orexin) receptor 1
Hoxb3 1456229_at 4.80E-03 Homeo box B3
Hs6st2 1420938_at, 1450047_at 2.05E-04 to 1.91E-06 Heparan sulfate 6-O-sulfotransferase 2
Htr1a 1438710_at 1.91E-06 5-Hydroxytryptamine (serotonin) receptor 1A
Htr1d 1440166_x_at, 1440741_at 4.22E-04 to 1.91E-06 5-Hydroxytryptamine (serotonin) receptor 1D
Htr5b 1422196_at 1.91E-06 5-Hydroxytryptamine (serotonin) receptor 5B
Igh-6 1427351_s_at, 1427329_a_at 5.75E-03 to 1.91E-06 Immunoglobulin heavy chain 6 (heavy chain of IgM)
Igh-VJ558 1425763_x_at, 1421653_a_at 3.82 to 1.91E-06 Immunoglobulin heavy chain (J558 family)
Il1r1 1448950_at 7.70E-04 Interleukin 1 receptor, type I
Ing1 1456857_at 2.10E-05 Inhibitor of growth family, member 1
Irs4 1441429_at 1.91E-06 Insulin receptor substrate 4
Klk27 1421587_at 1.91E-06 Kallikrein 1-related peptidase b27
Krt2–1 1422481_at 6.65E-03 Keratin complex 2, basic, gene 1

(Table continues.)
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found in serotonergic neurons, we generated antibodies to Celf6.
Quantitative RT-PCR of 3T3 cells suggested no endogenous ex-
pression of Celf6. Experiments with these cells transiently ex-
pressing long or short isoforms, or a GFP fusion, demonstrate
that these antibodies can detect Celf6 by SDS-PAGE (Fig. 4A) or
in fixed cells (Fig. 4B).

Immunofluorescence in Slc6a4 bacTRAP mice reveals colo-
calization of eGFP with Celf6 immunoreactivity in raphe neurons
(Fig. 4C). Celf6 immunoreactivity is also seen in a few other
neuromodulatory populations, including the noradrenergic lo-
cus ceruleus, populations of cells in the hypothalamus, including
presumptive dopaminergic cells of the arcuate nucleus, and a few,
scattered, dimly labeled cells in cortex (data not shown). Unlike
other presumptive neuronal splicing factors, which are predom-
inantly nuclear (Underwood et al., 2005), labeling is largely cyto-

plasmic, suggesting that in the brain Celf6 may have roles beyond
splicing. Having confirmed Celf6 protein is found in serotonergic
neurons, we next conducted a screen to identify additional vari-
ants that may be associated with human autism.

Resequencing of candidate exons in CELF6 identifies rare
premature stop codon
Toward an understanding of the extent to which CELF6 tolerates
genetic variation in humans, we used publicly available exome
data from 1092 individuals, to compare SNV rates here with
those in all other RefSeq protein coding genes (n � 19,032).
Although tolerance for nonsynonymous variation was seen to
vary, the large majority of annotated genes (n � 14,022) were
observed to harbor one or more SNVs predicted to be deleterious
(2� of BLOSUM62, Polyphen2, and SIFT) (Sunyaev et al., 2001;

Table 1. Continued

Gene symbol Probe set ID pSI Name

Lgals8 1422661_at 4.22E-03 Lectin, galactose binding, soluble 8
Lst1 1425548_a_at 1.92E-03 Leukocyte specific transcript 1
Maob 1434354_at 1.91E-06 Monoamine oxidase B
Mbd1 1430838_x_at, 1453678_at 4.20E-03 to 7.45E-05 Methyl-CpG binding domain protein 1
Mcpt5 1449456_a_at 7.07E-05 Chymase 1, mast cell
Nanos1 1436648_at 8.47E-03 Nanos homolog 1 (Drosophila)
Nkx6-1 1425828_at 1.10E-03 NK6 transcription factor related, locus 1 (Drosophila)
Nos3 1434092_at 8.57E-03 Nitric oxide synthase 3 antisense
Nrl 1450946_at 1.91E-06 Neural retina leucine zipper gene
Oas1e 1416847_s_at 1.91E-06 2�-5� Oligoadenylate synthetase 1E
Pcbd 1418713_at 1.09E-04 Pterin 4 � carbinolamine dehydratase
Pcdha4 1424341_s_at 3.91E-03 Protocadherin � 4
Pcdha6 1451769_s_at 7.28E-03 Protocadherin � 6
Pcdhac1 1425017_at 1.91E-06 Protocadherin � subfamily C, 1
Pcsk1 1421396_at 1.91E-06 Proprotein convertase subtilisin/kexin type 1
Pcsk5 1451406_a_at, 1437339_s_at 2.89E-03 to 6.66E-03 Proprotein convertase subtilisin/kexin type 5
Pdzk8 1439088_at 1.91E-06 PDZ domain containing 8
Prph1 1422530_at 3.16E-03 Peripherin 1
Ptger3 1450344_a_at 1.91E-06 Prostaglandin E receptor 3 (subtype EP3)
Resp18 1417988_at 2.03E-04 Regulated endocrine-specific protein 18
Rims3 1459042_at 1.75E-03 Regulating synaptic membrane exocytosis 3
Rpgrip1 1454231_a_at 1.91E-06 Retinitis pigmentosa GTPase regulator interacting protein 1
Rph3al 1444409_at 2.10E-05 Rabphilin 3A-like (without C2 domains)
Rpl37a 1416217_a_at 9.57E-03 Ribosomal protein L37a
Rps27 1460699_at 2.10E-05 Ribosomal protein S27
Saa1 1419075_s_at 1.51E-04 Serum amyloid A1
Scg2 1450708_at 3.12E-04 Secretogranin II
Scn9a 1442333_a_at, 1442810_x_at, 1442809_at 1.91E-06 Sodium channel, voltage-gated, type IX, �
Siat8f 1456147_at, 1456440_s_at 9.94E-05 to 1.91E-06 ST8 �-N-acetyl-neuraminide �-2,8-sialyltransferase 6
Slc18a2 1437079_at 1.91E-06 Solute carrier family 18 (vesicular monoamine), member 2
Slc22a3 1420444_at 1.91E-06 Solute carrier family 22 (organic cation transporter), member 3
Slc6a4 1417150_at 1.91E-06 Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4
Sln 1420884_at 3.20E-03 Sarcolipin
Sncg 1417788_at 1.91E-06 Synuclein, �
Stard3 nl 1430274_a_at 7.55E-03 STARD3 N-terminal like
Stk32b 1431236_at 1.91E-06 Serine/threonine kinase 32B
Swam2 1449191_at 1.91E-06 WAP four-disulfide core domain 12
Tinag 1419314_at 1.91E-06 Tubulointerstitial nephritis antigen
Tmie 1441926_x_at, 1443964_at 1.26E-03 to 5.76E-03 Transmembrane inner ear
Tnfrsf11b 1449033_at 4.80E-03 Tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)
Tph2 1435314_at 1.91E-06 Tryptophan hydroxylase 2
Trh 1418756_at 1.91E-06 Thyrotropin releasing hormone
Trpm4 1435549_at 5.66E-03 Transient receptor potential cation channel, subfamily M, member 4
Twsg1 1441302_at 8.37E-03 Twisted gastrulation homolog 1 (Drosophila)
Zar1 1434494_at 2.10E-05 Zygote arrest 1
Zfp622 1447775_x_at 8.60E-04 Zinc finger protein 622
Zwint 1444717_at 7.90E-03 ZW10 interactor

Probesets corresponding to all named genes with pSI � 0.01 are listed.
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Ng and Henikoff, 2002; Eddy, 2004; Adzhubei et al., 2010) and
present at an appreciable frequency in this population (�1%).
Consistent with intolerance to nonsynonymous variation, no
such events were observed within CELF6. Similarly, no structural
variants overlapping with CELF6 were observed in the DGV

(Iafrate et al., 2004). Although power issues currently limit a
precise ranking of how tolerant different genes are to genetic
variation, consideration of all coding variation put CELF6 at the
97th percentile of all annotated genes, a result consistent with
biological intolerance. Based on this result, we reasoned that a

Table 2. Transmission disequilibrium in SNPs near two serotonergic neuron genes in human autistic probands

Chromosome SNP
A1
(minor allele)

A2
(major allele 2)

No. of observations of minor
allele transmission to
individual with autism

No. of observations
of untransmitted
minor allele OR p value

Bonferonni-
corrected
p value Gene

Male probands
15 rs2959930 G A 273 378 0.72 3.87E-05 0.02521 CELF6
5 rs9313845 A G 110 171 0.64 0.000274 0.1785 C1QTNF2
14 rs8003220 A G 38 77 0.49 0.000276 0.18 IGH
5 rs17409286 A G 144 203 0.71 0.001539 1 C1QTNF2
8 rs11573856 A G 113 165 0.68 0.001816 1 TNFRSF11B

Female probands
17 rs4470197 G A 70 113 0.62 0.00148 0.9647 CCDC55
16 rs9929530 C A 52 88 0.59 0.002346 1 TMEM114
23 rs4599945 A C 6 22 0.27 0.002497 1 DGKK
5 rs3762986 A G 93 138 0.67 0.003069 1 PCSK1
4 rs11731545 A G 90 56 1.61 0.004895 1 TNFRSF11B

Male and female probands
5 rs9313845 A G 129 202 0.64 6.01E-05 0.03918 C1QTNF2
14 rs8003220 A G 48 92 0.52 0.0002 0.1306 IGH
15 rs2959930 G A 352 451 0.78 0.000477 0.3107 CELF6
8 rs11573856 A G 143 205 0.70 0.000889 0.5795 TNFRSF11B
10 rs363341 A G 400 498 0.80 0.001074 0.7005 SLC18A2
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Figure 3. CELF6 gene, exons, domains, and regions of interest. A, UCSC genome browser view of the CELF6 gene in human, showing 16 exons (blue numbers), 5 putative isoforms (a– e), and
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focused resequencing effort, enabling deep characterization of
key functional regions, should be used.

Toward this end, we selected three regions for our first screen of
CELF6. This included the area around the alternative first exon 1b,
where the common variant was identified, as well as the exon 12,
which contains a short CAG repeat (Fig. 3B). Finally, we also targeted
the exon 11 because available EST data suggest that it is used exclu-
sively by humans: no other available species show any mRNA or
ESTs aligning to it (Fig. 3B). Of course, as human, mouse, and rat
sequences dominate the EST databases, these data could represent a
loss of the exon in rodents, rather than a gain in humans.

Thus, we sequenced the promoter and alternative first exon
1b, as well as exons 11–13 in 384 male white probands (randomly
selected from previous AGRE probands) and 384 normal male
white controls (new samples). In this semi-independent sample,
we found no common alleles showing stronger association than
rs2959930 (Fisher’s exact test, p � 0.051), although one novel
low-frequency intronic variant was seen only in controls (Table 3,
p � 0.0012). We did not detect any instances of triplet repeat
expansion in exon 12, although extraordinarily large repeats
would not be assayable with PCR-based methods.

We did, however, discover a premature stop codon in one
autistic patient (Fig. 5A) and no controls. This SNP is found in
the putative human-specific exon 11 and would be predicted
to lead nonsense-mediated decay, and thus is likely a loss of
function allele. No coding sequence variations were identified
in the 384 controls. The presence of this rare variant in an

autistic patient provides further evidence implicating this
gene in autism, although it clearly cannot account for the
original transmission disequilibrium findings. Sequencing of
the entire pedigree (AU1397) reveals that the variant was in-
herited from the father, suggesting incomplete penetrance if
the allele is involved in autism. There is also additional strong
matrilineal contribution for autism in this family, as the pro-
band has affected twin siblings and matrilineal cousins not
harboring this allele (Fig. 5B). Although not included in the
AGRE consortium, the father’s extended family also included
additional individuals with intellectual disability and report-
edly odd behavior.

To determine whether this rare variant is found in any addi-
tional cases or controls, we designed both a primer-extension
(Sequenom) assay as well as an allele-specific PCR (Fig. 5C, D).
Analysis of 4992 normal individuals, as well as 864 autistic indi-
viduals from the Simons Simplex Collection, identified no addi-
tional cases or controls harboring this allele, highlighting the
rarity of the variant. Likewise, this variant was not seen in the
1092 individuals above, or the �5000 individuals currently avail-
able in the Exome Variant Server (http://evs.gs.washington.edu/
EVS/)[3/2012].

Like other cases of extremely rare variants detected in autism,
such as many of the exonic deletions (Bucan et al., 2009) and
other copy number variants (Pinto et al., 2010), it is difficult to
amass sufficient power to draw statistical conclusions regarding
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the relevance of such an extremely rare variant. Also, similar to
what is seen in deletions of NRXN1 and 16p11, this polymor-
phism, if contributing to causation, is not showing complete pen-
etrance in the afflicted family (Abrahams and Geschwind, 2010).

Further statistical validation of this allele now awaits more
complete resequencing studies of CELF6, a byproduct of ongoing
large-scale autism exome sequencing efforts. However, even with
these studies, the human genetics alone will still likely be under-

Table 3. Results of Celf6 resequencing study

DBsnp Amplicon

Position
within
amplicon SNP

AGRE, % (no.) of samples
with SNP detected, of
interpretable reads

Controls, % (no.) of samples
with SNP detected, of
interpretable reads

p value (Fisher’s test),
deviating from
expected (Controls) Type Confirmed

Novel B1 129 C3 CG 0.27% (1/370) 0% (0/355) 0.510 Stop Yesa

Novel B1 150 C3 CG 0.27% (1/370) 0% (0/355) 0.510 Intron None
Novel B1 247 T3 CT 0.81% (3/370) 0.57% (2/353) 0.522 Intron None
Novel B1 263 T3 CT 0.27% (1/370) 0.57% (2/353) 0.469 Intron None
Novel B2 88 C3 CG 0.53% (2/375) 0.29% (1/341) 0.536 Intron None
Novel B2 104 T3 TC 0% (0/375) 0.29% (1/341) 0.476 Intron None
Novel B2 200 G3 AG 0.28% (1/357) 0% (0/341) 0.511 Intron None
Novel B2 362 G3 GA 0% (0/375) 0.29% (1/341) 0.476 Intron None
Novel B2 391 T3 CT 0% (0/375) 0.29% (1/341) 0.476 Intron None
Novel B2 459 G3 AG 0% (0/375) 2.64% (9/341) 0.001 Intron None
Novel B2 513 C3 CT 0% (0/375) 0.29% (1/341) 0.476 Intron None
rs4625684 A3 60 T3 C 100% (282/282) 100% (357/357) 1.000 Promoter/intron In dbSNP
rs2959930 A3 147 C3 CT 29.43% (83/282) 35.85% (128/357) 0.051 5� UTR In dbSNP
rs2959930 A3 147 C3 T 6.74% (19/282) 3.64% (13/357) 0.055 5� UTR In dbSNP
Novel A3 151 C3 CT 0.71% (2/282) 1.12% (4/357) 0.459 5� UTR None
rs74026061 A3 165 G3 CG 0.35% (1/282) 0% (0/357) 0.441 5� UTR In dbSNP
Novel A3 166 C3 CT 0% (0/282) 0.28% (1/357) 0.559 5� UTR None
Novel A3 234 C3 CT 0.35% (1/282) 0% (0/357) 0.441 5� UTR None
rs2959928 A4 91 C3 CT 1.06% (4/377) 0% (0/363) 0.067 Promoter/intron In dbSNP
rs2959929 A4 159 G3 AG 4.26% (16/376) 2.48% (9/363) 0.129 Promoter/intron In dbSNP
Novel A4 233 C3 CT 0.27% (1/376) 0% (0/363) 0.509 Promoter/intron None
Novel A4 50 G3 AG 0% (0/376) 0.28% (1/363) 0.491 Promoter/intron None
Novel A4 169 C3 AC 0% (0/376) 0.28% (1/363) 0.491 Promoter/intron None
aConfirmed in proband and father with bidirectional Sanger sequencing, as well as sequenome and allele-specific PCR assays.
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powered. In addition, reanalysis of published microarray data-
from human lymphoblasts reveals that CELF6 is not detectable in
these cells (Luo et al., 2012), precluding any straightforward
patient-based allelic expression imbalance analyses. Therefore,
we decided to investigate this allele functionally by creating a
mutation in mouse and testing for autism-like behaviors.

Characterization of Celf6 mutant mice
Autism is characterized by abnormal social interactions and lan-
guage delay, as well as restricted interests and resistance to
change. To determine whether mutations in Celf6 could contrib-
ute to analogous abnormalities in mouse behavior, we deleted the
constitutive fourth exon of Celf6. This deletion introduces pre-
mature stop codons in all known isoforms of Celf6 and, like the
human mutation, would be predicted to result in nonsense-
mediated decay of mRNA. PCR confirmed the deletion of the
locus in the genome. Quantitative RT-PCR from mouse brain
confirmed decrease of Celf6 mRNA (data not shown). Examina-
tion of the brain using nuclear stains (DAPI) and neuronal stain-
ing (NeuN) did not reveal any gross morphological differences.
However, immunofluorescence using Celf6 antibodies confirms
a loss of Celf6 signal from cells in all regions of the brain, includ-
ing raphe neurons (Fig. 6A). Behavioral studies were then con-
ducted to characterize Celf6�/� and littermate WT control mice
during both development and later in adulthood. It was our goal

not only to study behaviors that may be related to autism but also
to broadly characterize the phenotype of Celf6�/� mice also, as
this is the first report of deletion in mice.

Celf6�/� pups have decreased ultrasonic vocalizations
To determine whether Celf6�/� mice exhibited any alterations in
communication-related behaviors during early development, we
conducted the standard maternal isolation test, which is fre-
quently used to evaluate mouse models of autism (Hofer et al.,
2002; Chadman et al., 2008; Scattoni et al., 2008; Nakatani et al.,
2009). Eight-day-old mouse pups exhibit robust stereotyped vo-
calizations in the ultrasonic range when separated from their
dam. These calls (“syllables”) (Holy and Guo, 2005) can be con-
sidered a form of social communication as they elicit a retrieval
response from the dam. Celf6�/� pups produced 60% fewer syl-
lables per 3 min recording session compared with WT littermates
(Fig. 6B, ANOVA; F(1,42) � 12.794, p � 0.001). The significant
reduction in vocalization in Celf6�/� pups was further observed
between genotypes within each sex separately (F(1,42) � 5.792,
p � 0.02 for females, F(1,42) � 7.049, p � 0.01 for males; not
shown) with no significant difference between sexes. There was
no difference in body weights between groups, suggesting that the
vocalization effect was not the result of gross developmental delay
(data not shown). Results from this assay can be interpreted as
reflecting alterations in anxiety levels or communicative function
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(Hofer et al., 2002). However, we think
that the decreased USV in Celf6�/�

mouse pups probably reflects commu-
nication deficits because we found no
evidence of abnormally high levels of
anxiety-like behaviors in Celf6�/� mice
when they were tested as adults in the ele-
vated plus maze (EPM), at ages when this
test has been well validated (see results de-
scribed below for the EPM).

Adult male Celf6�/� mice exhibit
several normal behavioral/cognitive
functions
Adult male Celf6�/� and WT mice per-
formed similarly on several basic behav-
ioral assays, including a 1 h locomotor
activity test and a battery of sensorimotor
measures (e.g., Fig. 7A, B). For example,
no differences were observed between
groups in terms of general ambulatory ac-
tivity (Fig. 7A) or vertical rearing (not
shown) during a 1 h locomotor activity
test. In addition, no performance deficits
were observed in the Celf6�/� mice on the
ledge test (Fig. 7B) or on any of the other 6
sensorimotor measures that were con-
ducted (not shown). The Celf6�/� mice
also generally performed at control-like
levels on the Morris water maze. Specifi-
cally, there were no effects involving geno-
type for either escape path length (Fig. 7C)
or latency (not shown) during the cued
trials, although the Celf6�/� mice swam
significantly (25%) faster than the WT
control group (Fig. 7D; rmANOVA– ge-
notype effect: F(1,18) � 8.13, p � 0.011).
Importantly, no differences were ob-
served between groups with regard to spa-
tial learning and memory; no effects
involving genotype were found for path
length (Fig. 7E) or latency (not shown)
during the place (hidden platform) trials,
and no retention performance deficits
were evident during the probe trial in
terms of spatial bias (Fig. 7F), platform
crossings, or time in the target quadrant
(data not shown). The increased swim-
ming speeds in the Celf6�/� mice during
the cued trials were a transitory effect be-
cause no differences were observed be-
tween groups on this variable during the
place (spatial learning) trials. Sensorimo-
tor reactivity and gating were also evalu-
ated in the mice, but no significant effects
involving genotype were found for either
the acoustic startle response (data not
shown) or PPI (Fig. 7G). In summary, the
above results suggest that Celf6�/� mice
did not have demonstrable deficits in nonassociative (visual, sen-
sorimotor, or motivational) functions and that their spatial
learning and memory appeared to be intact, at least for reference
memory-based capabilities.

The mice were also evaluated on standard social interaction
assays involving the social approach test (Moy et al., 2004;
Silverman et al., 2011), the results of which showed that the
Celf6�/� mice performed like WT controls. In the first social
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approach test sequence, neither Celf6�/� nor WT control mice
demonstrated investigation zone biases during the habituation
trial (empty vs target zone, Fig. 8A), presenting no confounding
issues for the interpretation of the test trial results. We assessed
sociability exhibited toward a novel stimulus mouse versus an
empty withholding cage during the test trial, and rmANOVAs
conducted on the relevant variables did not reveal significant
effects involving genotype. More importantly, planned compar-
isons conducted within each group showed that both groups
spent significantly more time investigating a novel stimulus
mouse compared with an empty withholding cage, whether mea-
sured by time in the investigation zone surrounding the cage (Fig. 8A;
F(1,18) �37.30,p�0.000009forCelf6�/�,F(1,18) �43.45,p�0.000003
for WT), or by time spent in the chamber (F(1,18) � 17.30, p �
0.0006 for Celf6�/�, F(1,18) � 25.75, p � 0.0008 for WT not
shown). A second social approach test conducted at a slightly
later age involved quantifying social preference for a same-sex
cagemate versus a novel stimulus mouse. Again, neither Celf6�/�

nor WT control mice demonstrated investigation zone biases
during the habituation trial (empty vs target zone, Fig. 8B). The
Celf6�/� mice showed no deficits in sociability toward a cage-
mate during test trial 1. No differences were found between
Celf6�/� and WT control mice during test trial 2 in that both
groups of mice spent significantly more time in the investigation
zone (Fig. 8B; F(1,16) � 30.46, p � 0.00005 for Celf6�/�, F(1,16) �
23.51, p � 0.0002 for WT) and chamber (F(1,16) � 12.59, p �
0.003 for Celf6�/�, F(1,16) � 9.28, p � 0.008 for WT) containing
a novel stimulus mouse compared with the times spent in the
same areas where a cagemate was contained.

Given the robust decreases in USV observed in the Celf6�/�

mouse pups, we were interested to determine whether they

showed high levels of anxiety-like behav-
iors in the EPM because it might have rel-
evance to interpreting the vocalization
results. Specifically, the Celf6�/� mice ex-
hibited control-like levels in terms of time
spent (Fig. 8C), distance traveled (Fig.
8D), and entries made into the open arms,
as well as the percentages of these vari-
ables computed with reference to totals
observed in both sets of arms (not
shown). Thus, analyzing the classic vari-
ables thought to represent anxiety-like be-
haviors in the EPM did not reveal any
differences between the Celf6�/� and WT
control mice. These results suggest that
the USV deficit was not likely the result of
any consistent lifelong differences in anx-
iety but instead may reflect an impairment
in early social communication.

Celf6�/� mice show evidence of
resistance to change
Another diagnostic criterion of autism in-
volves resistance to change. Although
Celf6�/� mice exhibited intact spatial
learning and retention during in the Mor-
ris water maze, they swam faster than the
WT control group when introduced into
the pool during the cued trials, an effect
that disappeared with extended exposure
during the place trials. This initial increase
in swimming speeds in the Celf6�/� mice

suggests an altered response in these mice to a significant change
in environmental conditions. To evaluate the mice more formally
for resistance to change, we evaluated their performance during
reversal trials in the water maze. In the first block of trials, the
Celf6�/� mice exhibited a tendency toward considerably longer
escape latencies and path lengths (Fig. 9A, B), although planned
comparisons showed that these differences were not significantly
different (F(1,18) � 3.88, p � 0.065 and F(1,18) � 3.45, p � 0.080,
respectively). Consistent with the data from the place trials, the
groups performed in a similar manner in the later blocks of trials,
with regard to swimming speeds, and during the probe trial (data
not shown).

Based on the differences observed during the first block of
reversal trials, we decided that a less stressful behavioral task,
which involved exploratory behavior using the primary sensory
system of mice (olfaction), might provide a more sensitive test of
the resistance-to-change phenotype. A type of holeboard task has
been used to study behaviors in mice considered to be analogous
to the resistance to change and restricted interests found in peo-
ple with autism-spectrum disorder (Moy et al., 2008; Silverman
et al., 2011). Our modified version of this holeboard test
(Ghoshal et al., 2012) was used to evaluate both exploratory and
olfactory preference behaviors and whether familiarization with
the putative reward value of an odorant could alter behavior.
Figure 9C shows a schematic of the holeboard apparatus as well as
the placement of odorants into the corner holes for test sessions 1
and 2. The results from ANOVAs showed that, initially, Celf6�/�

and WT mice displayed similar general hole-poke frequencies
with regard to total and corner hole-pokes (Fig. 9D, E, left), as
well as side (empty) hole-pokes (not shown). Within-subjects
comparisons revealed that both groups also poked significantly
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Figure 8. Adult Celf6 �/� mice exhibit control-like levels of sociability, social preference, and anxiety-like behaviors. A, During
the first social approach test, adult Celf6 �/� and WT mice both showed normal sociability preference for a novel stimulus mouse
over an empty withholding cage during the test trial (rmANOVA with planned comparisons, *p � 0.00004). B, During the second
social approach test, adult Celf6 �/� mice spent more time investigating the cagemate compared with the empty withholding
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Celf6 �/� and WT mice both displayed a preference for social novelty by spending more time investigating the novel stimulus
mouse compared with a familiar cagemate during test trial 2 (rmANOVA with planned comparisons, *p � 0.0003). C, D, Adult
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more often (F(1,18) � 17.83, p � 0.0005 for
Celf6�/�, F(1,18) � 8.58, p � 0.009 for WT)
into the hole containing a familiar odor-
ant (fresh homecage bedding) than the
empty corner hole (Fig. 9F, left), suggesting
that both Celf6�/� and WT mice have intact
olfactory abilities, and a baseline preference
for familiar bedding, as do other strains of
mice (Moy et al., 2008). Poke frequencies
did not differ between groups for any odor-
ant or the empty corner hole at baseline.

After test session 1, the mice were fa-
miliarized with the chocolate chips by
permitting consumption over a two-day
period before they were tested on the
holeboard again, with the odorants being
placed in the corner holes as depicted in
Figure 9C (right, test session 2). Familiar-
ization with the chocolate chips had a pro-
found effect on exploratory hole-poking
and olfactory preference behaviors in the
WT control mice but had no effect on the
Celf6�/� group. For example, the results
of ANOVAs showed that, after familiar-
ization, WT mice made significantly
greater numbers of total hole-pokes (Fig.
9D, F(1,18) � 12.46, p � 0.002), corner
hole-pokes (Fig. 9E, F(1,18) � 16.71, p �
0.0007), and side hole-pokes (F(1,18) � 6.185,
p � 0.023; data not shown) compared with
the Celf6�/� group. Most importantly,
familiarization with the chocolate also
had a major impact on differences in poke
frequencies into the odorant-containing
and empty corner holes (Fig. 9F, right).
For example, a significant genotype by
hole interaction (F(3,54) � 2.814, p �
0.048) for test session 2, followed by sub-
sequent comparisons showed that the WT
mice poked significantly more often into
the holes containing the novel bedding
(F(1,18) � 9.90, p � 0.006), and particu-
larly the chocolate chips (F(1,18) � 15.91,
p � 0.0009), compared with the Celf6�/�

group, with large differences also ob-
served between groups in hole-pokes into
the hole containing familiar bedding
(F(1,18) � 6.51, p � 0.020, Bonferroni-
corrected critical p � 0.013). Moreover,
within-subjects comparisons revealed that the
Celf6�/� mice showed no preference for
any odorant over the empty corner hole
during test session 2, whereas the WT
group showed significant preferences
(F(3,16) � 14.13, p � 0.00009), for the fa-
miliar bedding (p � 0.0002), novel bed-
ding (p � 0.006), and chocolate (p �
0.00005) over the empty corner hole
(Bonferroni corrected critical p � 0.017).
Thus, familiarization with the chocolate
had a robust effect on WT control mice in
terms of increasing their general explor-
atory hole poking and changing their ol-
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mice failed to show any change in exploratory hole poking or evidence of olfactory preferences following familiarization to
the chocolate. Data are mean 	 SEM.

2748 • J. Neurosci., February 13, 2013 • 33(7):2732–2753 Dougherty et al. • Disruption of Celf6



factory preferences, whereas the Celf6�/� group showed a
resistance to change on either of these two behavioral dimensions
after exposure to the chocolate.

We also measured duration of hole-pokes to determine
whether it was likely that the Celf6�/� and WT groups were
processing the olfactory stimuli in a different manner. Our anal-
yses showed that there were no differences between the groups
with regard to the durations of total hole-pokes or for pokes
made into odorant-containing or empty holes for either test ses-
sion (data not shown). These findings along with the similar
hole-poking performances of the groups before familiarization
with the chocolate provide evidence that the groups did not differ
in their abilities to discriminate odors. Rather, our holeboard
results suggest that mutations in CELF6 may contribute au-
tism risk by influencing the propensity to modify behavior in
response to a rewarding experience. More generally, our re-
sults provide evidence that Celf6 contributes to a subset of the
autism-like behaviors that were assayed in the present study.

Celf6�/� mice have abnormal levels of CNS serotonin
Finally, our initial bacTRAP screen was to identify genes that may
be important for the regulation of the serotonergic system in the
brain (Figs. 1, 2), and we determined that Celf6 protein in mice
was indeed found fairly specifically in monoamine-containing
neurons within the brainstem (Fig. 4). To determine whether the
changes in behavior seen might indeed be the result of perturba-

tions of monoaminergic systems, we used
mass spectrometry to measure total levels
of three monoamines in the brains of
Celf6�/� and WT mice. We observed a
30 	 4% (mean 	 SEM) decrease in sero-
tonin levels (p � 0.002, Bonferroni cor-
rected), and similar trends in
norepinephrine and dopamine (p � 0.08,
� 0.04, respectively, before Bonferroni
corrections, not significant after) in brains
of Celf6�/� mice (Fig. 10). There was no
effect on levels of the GABA, glycine, or
glutamate (not shown) neurotransmitters
(p � 0.88, p � 0.23, and p � 0.28, respec-
tively, no Bonferroni correction), demon-
strating the specificity of the effect to
neurons previously seen to be expressing
Celf6.

Discussion
The paradigms of the previous era of hu-
man genetics, typified by observations of a
suspicious looking variant in a few fami-
lies and nothing similar in a few hundred
families, are insufficient to cope with the
overwhelming catalogs of variants being
discovered now (Neale et al., 2012;
O’Roak et al., 2012; Sanders et al., 2012).
Results like those reported here are be-
coming standard: an inherited variant
within a compelling candidate gene is ob-
served only once in thousands of families.
This highlights the need not only to in-
crease our sample sizes, but also to find
new analytical approaches to this com-
plexity to overcome issues of power. We
propose here that a broader adoption of
blended strategies, drawing simultane-

ously on statistical genetics and empirical biology, are required.
There is a growing consensus that many psychiatric disorders

are strongly influenced by a diverse set of rare, nearly private
mutations (McClellan and King, 2010; Pinto et al., 2010). Thus, it
is likely that there are multiple genetic routes to developing a
particular disorder, or even individual symptoms within a disor-
der. Yet these diverse genetic routes must converge at some
smaller number of common pathways in their molecular or cel-
lular neurobiology to engender a common behavioral phenotype.
Therefore, we have combined a unique and unbiased method for
generating key biological priors in mice, with analysis of genetic
variation in humans, and functional validation in murine mod-
els, to identify a gene contributing to some of the essential diag-
nostic features of autism. We propose that this kind of paradigm,
leveraging information at multiple analytical levels, may be re-
quired to dissect complex genetic disorders. By working from the
hypotheses that serotonergic abnormalities may contribute to a
reasonable fraction of the cases of autism, we were able to reduce
the penalties taken by looking at common variation genome-
wide, as well as appropriately direct our functional assays in mice.
More broadly, although the evidence linking serotonergic neu-
rons to some cases of autism is alluring, the true extent of the
contribution of this cell type remains to be established. Several
lines of evidence suggest that a subset of cases of autism may
involve a perturbation of the serotonergic system. Multiple stud-

**

0

20

40

60

80

100

5-HT NE DA GABA Gly

Celf6      (n=10)

WT CONTROL (n=7)
%

 O
F

 W
T

 L
E

V
E

L
S

-/-

pmol 5-HT NE DA GABA Glycine

WT mean 0.47 9.08 0.42 60.34 10.35

WT s.d. 0.05 0.73 0.1 7.36 0.76

-/- mean 0.37 8.52 0.35 57.36 10.36

-/- s.d. 0.05 0.73 0.03 4.64 1.44

**

**Celf6

Celf6

Figure 10. Celf6 �/� mice show decreased brain serotonin levels. LC-MS/MS measures of levels of neuromodulatory neu-
rotransmitters serotonin (5HT), norepinephrine (NE), and dopamine (DA) reveal a significant decrease (**p � 0.002) in 5HT levels,
and nonsignificant trend for NE and DA in whole brains from n � 7 WT and Celf6 �/� mice. There is no change in the negative
control transmitters GABA and glycine. Data are plotted as a percentage of WT ion count levels; error bars represent SEM. Tables
provide absolute levels in pMol.

Dougherty et al. • Disruption of Celf6 J. Neurosci., February 13, 2013 • 33(7):2732–2753 • 2749



ies have detected abnormally high levels of serotonin in whole
blood of a subset (�25%) of autistic patients (Schain and
Freedman, 1961; Takahashi et al., 1976; Anderson et al., 1987;
Cook, 1990). A combination of genetic investigation, neural im-
aging, and drug treatment have all implicated corresponding dys-
regulation of serotonin-related genes and pathways in affected
individuals (McDougle et al., 1996b, 1997; McDougle et al., 1998;
Chugani et al., 1999; Chandana et al., 2005; Coon et al., 2005;
Hollander et al., 2005). For example, selective serotonin reuptake
inhibitors have been shown to alleviate rigid/compulsive behav-
iors in some cases (Gordon et al., 1993; McDougle et al., 1996b;
Hollander et al., 2011) and depletion of serotonin in autistic in-
dividuals exacerbates these symptoms (McDougle et al., 1996a).
Likewise, genetic or pharmacological perturbation of the seroto-
nergic system in rodents alters behavioral responses which char-
acterize animal models of autism, such as altered USV, repetitive
behavior, social interaction, and resistance to change (Olivier et
al., 1998; Fish et al., 2000; Lopez-Rubalcava et al., 2000;
Whitaker-Azmitia, 2001; McNamara et al., 2008; Nakatani et al.,
2009). Most recently, Veenstra-VanderWeele et al. (2012) have
shown that introduction of an autism-associated human coding
variant in the serotonin transporter gene into mice resulted in a
number of autism-related behaviors, such as impaired USV, de-
creased social dominance, and increased repetitive behaviors.

Our behavioral results suggest that, although Celf6�/� and
WT mice performed similarly on several different tests, the
Celf6�/� mice exhibited certain selective functional deficits that
may be analogous to the behavioral impairments that exist in a
subset of people with autism. Specifically, Celf6�/� and WT mice
performed similarly on several behavioral assays, including: a 1-h
locomotor activity test; a battery of sensorimotor measures; spa-
tial learning and memory performance in the Morris water maze;
various tests of social interaction as indexed by the social ap-
proach test; and anxiety-like behaviors quantified in the elevated
plus maze. However, reduction of isolation-induced USV sug-
gests that Celf6�/� pups show early communication deficits. The
measurement of USV in response to maternal isolation is an es-
tablished assay that has been used in several other mouse models
of autism, including the BTBR, Shank1 null, and neuroligin mod-
els (Chadman et al., 2008; Scattoni et al., 2008; Nakatani et al.,
2009). Although genotypic differences in pup USV may be the
result of either communication deficits or changes to anxiety, we
feel the latter is unlikely as adult Celf6�/� mice did not exhibit
differences compared with littermate WT control mice in
anxiety-like behaviors measured during elevated plus maze test-
ing. However, we acknowledge that it will be important to eval-
uate vocalization in Celf6�/� mice at later stages, such as during
juvenile play and adult mating, and this is one of our future
research aims. Our behavioral data also suggest that Celf6�/�

mice react abnormally to certain environmental alterations and
may be resistant to changing their behavior under conditions that
robustly alter WT mouse behavior. For example, Celf6�/� swam
faster than controls when first introduced into the water maze
during cued trials, but this effect habituated and was not present
during the place condition. Also, familiarizing the mice with
chocolate chips during the holeboard exploration/olfactory pref-
erence test led to robust changes in the behavioral responses of
the WT control group, whereas Celf6�/� mice showed a resis-
tance to such changes. Specifically, familiarization with the choc-
olate in WT mice led to greatly increased exploratory hole poking
and distinct olfactory preferences for several odorants, whereas
Celf6�/� showed no such changes. These results are similar to
those reported by Moy et al., 2008 who used a slightly different

procedure to show that BTBR mice exhibit a similar resistance to
change after familiarization with chocolate. Our holeboard re-
sults provide evidence that mutations in CELF6 may promote
autism risk by modifying behavioral responses to rewarding ex-
periences. However, it will be necessary to further characterize
the resistance to change in olfactory preference in Celf6�/� mice
after exposure to various rewarding odorant stimuli, and we are
conducting additional studies to this end. Our initial behavioral
data suggest that Celf6�/� mice exhibit selective deficits and may
serve as a model for understanding a subset of autism-like
behaviors.

Still, additional mechanistic studies are needed to inform both
the Celf6 and the serotonergic contribution to autism in general.
Although Celf6 is clearly enriched in these cells, and serotonin is
decreased in the brains of Celf6�/� mice, conditional deletion
and rescue studies are needed to confirm the behavioral abnor-
malities are cell-autonomous to the serotonergic system. Like-
wise, although we have provided evidence for this gene at
multiple levels (a common 5�UTR variant and a rare heterozy-
gous stop codon in humans, and homozygous deletions in
mouse), each of these levels warrants additional investigation to
generate a comprehensive view of the contribution of this gene.
Although the common variant is linked with autism in the AGRE
sample, this finding does not replicate in the Simons Simplex
Collection (J. K. Lowe, personal communication), although that
sample was smaller and optimized for finding idiopathic and
especially de novo events rather than inherited, familial causes.
The most parsimonious interpretation of our CELF6 findings
thus far is that CELF6 levels may influence some behaviors rele-
vant to autism; thus, there are alleles in this gene that contribute
to risk of developing autism in a subset of patients. This would be
consistent with autism being a highly heterogeneous and poly-
genic disorder; there are likely to be many genes with this type and
magnitude of effect. This may also explain the incomplete pen-
etrance seen in the family with the CELF6 mutation: resistance to
change, in the absence of social deficits, would be insufficient to
generate a diagnosis for autism. This would be consistent with
recent studies, which suggest that the restricted interests and so-
ciability components are factorially separable and partially genet-
ically independent (Happe and Ronald, 2008; Frazier et al., 2012;
Robinson et al., 2012). Thus, other genes and cell types likely
contribute more to the social symptoms. An unbiased screen
using this same approach systematically across many cell types
may permit inferences regarding circuitry important to the neu-
robiology of autism.
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