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Much research has been devoted to characterizing brain representations of reward and movement. However, the mechanisms allowing
expected rewards to influence motor commands remain poorly understood. Unraveling such mechanisms is crucial to providing expla-
nations of how behavior can be driven by goals, hence accounting for apathy cases in clinics. Here, we propose that the reduction of motor
beta synchrony (MBS) before movement onset could participate in this incentive motivation process. To test this hypothesis, we recorded
brain activity using magnetoencenphalography (MEG) while human participants were exerting physical effort to win monetary incen-
tives. Knowing that the payoff was proportional to the time spent above a target force, subjects spontaneously took breaks when
exhausted and resumed effort production when repleted. Behavioral data indicated that the rest periods were shorter when higher
incentives were at stake. MEG data showed that the amplitude of MBS reduction correlated to both incentive level and rest duration.
Moreover, the time of effort initiation could be predicted by MBS reduction measured at the beginning of rest periods. Incentive effects on
MBS reduction and rest duration were also correlated across subjects. Finally, Bayesian comparison between possible causal models
suggested that MBS reduction mediates the impact of incentive level on rest duration. We conclude that MBS reduction could represent

a neural mechanism that speeds the initiation of effort production when the effort is more rewarded.

Introduction
Typical explanations of behavior involve reward prospect: we
engage in actions to attain more valuable states. The question of
how expected value can induce behavioral activation—a process
termed incentive motivation— has been investigated extensively
in neuroscience (Berridge, 2004; Schultz, 2006). A central issue is
how the value of a world state can be translated into a motor code.
The basal ganglia system seems a likely candidate for mediating
this incentive motivation process, as revealed by electrophysiol-
ogy or functional MRI in healthy subjects (Schmidt et al., 2012;
Tachibana and Hikosaka, 2012) and by the effects of focal lesions
or degenerative disease in patients (Czernecki et al., 2002;
Schmidt et al., 2008).

The case of Parkinson’s disease (PD) is particularly enlighten-
ing. PD is primarily attributable to degeneration of dopaminergic
neurons and manifests as a set of motor symptoms (akinesia,
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rigidity, tremor). However, the reduction of movement (or hy-
pokinesia) could easily be reframed in terms of dysfunctional
motivation, i.e., as a difficulty in activating motor plans leading to
better states (Mazzoni et al., 2007; Baraduc et al., 2013). This idea
accords well with an abundant literature that has implicated do-
pamine in incentive motivation (Berridge, 2004; Salamone and
Correa, 2012). Interestingly, one electrophysiological hallmark of
PD is the high level of synchronous oscillations in the beta band
(Schnitzler and Gross, 2005; Brown, 2006; Uhlhaas and Singer,
2006). Dopamine replacement therapy, as well as deep brain
stimulation, was shown to simultaneously reduce beta synchrony
and alleviate hypokinesia (Brown et al., 2001; Kithn et al., 2008).
More precisely, delay in voluntary movement initiation was
linked to insufficient reduction of beta synchrony in the subtha-
lamic nucleus (Kiihn et al., 2004; Williams et al., 2005). Further-
more, simultaneous deep and surface recordings showed that
beta oscillatory activities were coherent across basal ganglia nuclei
and motor cortical areas (Klostermann et al., 2007; Litvak et al.,
2010). Together, these findings suggest that reducing motor beta
synchronization (MBS) represent a neural mechanism through
which expected rewards may facilitate action initiation.

In healthy people, there is indeed a progressive reduction of
MBS (typically in the 13-30 Hz range and centered on the pre-
central cortex), preceding movement initiation (Jasper and Pen-
field, 1949; Feige etal., 1996; van Wijk et al., 2012). It is thought to
play a “gating role,” meaning that high beta synchrony maintains
the motor status quo, whereas low beta synchrony allows for a
motor change (Engel and Fries, 2010; Jenkinson and Brown,
2011). Direct evidence of this idea is the finding that driving
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Figure 1. Behavioral task and results. 4, The illustrated screenshots were successively pre-
sented every trial. When the thermometer image was displayed, participants could squeeze a
handgrip to win money. Subjects were provided online feedback on force level and cumulative
payoff. The payoff was only increased when force level was above the target bar, at a constant
rate proportional to the monetary incentive. Two factors were manipulated over trials: (1) the
incentive (10, 20, or 50¢), which was explicitly indicated as a coin image; and (2) the difficulty,
i.e., the force required to reach the target bar (70, 80, or 90% of maximal force), which remained
implicit. The last screen indicated the money won so far, summed over all preceding trials. B,
Example recording of the force level produced during one trial. Three rest (blue shading) and
effort (red shading) epochs could be defined. Force production was only rewarded when above
the target threshold (here, 80% of maximal force), i.e., when plotted in black (not gray) on the
graph. , Average data sorted by incentive and difficulty levels. Bars are mean effort and rest
epoch durations, and error bars are the intersubject SEs. Significance of repeated-measure
ANOVA main effects: ™p << 0.1, **p << 0.005, ***p < 0.0005.

motor cortical activity in the beta rhythm slows motor perfor-
mance (Pogosyan et al., 2009; Joundi et al., 2012). Therefore, we
reasoned that, in incentive motivation paradigms, the reward
magnitude should modulate MBS, which, in turn, should impact
movement initiation. To test this hypothesis, we analyzed MEG
activity recorded previously in healthy participants while they
were trying to minimize the duration of breaks during force pro-
duction to maximize their payoff (Meyniel et al., 2013).

Materials and Methods

The experimental procedures were designed for other purposes: tracking
accumulation and dissipation of cost signals while subjects alternate ef-
fort and rest periods. Nevertheless, they seem well suited to address our
question about the role of MBS in incentive motivation. The task in-
volved subjects squeezing a handgrip to accumulate as much money as
possible. The payoff was calculated as the monetary incentive multiplied
by the time spent above a target force level (which indexed task diffi-
culty). Both the incentive and difficulty levels were varied across trials
such that we could assess their effects on effort allocation. Incentive levels
were sufficient for subjects making the effort and reaching the target, but
difficulty levels were too demanding for subjects to sustain their effort
throughout trials, which lasted 30 s. Instead, they freely alternated effort
and rest periods within trials (for an illustration, see Fig. 1B). Note that
any time spent resting corresponded to potential money that was not
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earned. Thus, subjects had no instructions about when to start force
production but were motivated with various incentives to hurry up. We
reproduce here the methodological aspects that are relevant to the pres-
ent question; additional details can be found in our previous publication
(Meyniel et al., 2013).

Subjects. The study was approved by the Pitié-Salpétriere Hospital
ethics committee. Subjects (n = 19, 8 males; aged 24.9 = 0.7 years) were
recruited within an academic database via E-mail and gave informed
consent before participating in the study. They were right-handed (ac-
cording to self-report), between 20 and 30 years old, free from magnetic
artifacts, and had normal vision and no history of neurological or psy-
chiatric disease. They believed that the money won while performing the
task would be their remuneration for participating, but their payoff was
eventually rounded up to a fixed amount (100€).

Experimental setting. Before scanning, participants were given written
instructions on the task, which were repeated step-by-step orally. Subse-
quently, they were escorted inside the MEG scanning room and encour-
aged to find a comfortable body position that they could keep
throughout the experiment. The only change in position was passing the
power grip from one hand to the other between sessions. We used home-
made power grips composed of two plastic cylinders compressing an air
tube when squeezed. The tube led to the control room, where it was
connected to a transducer converting air pressure into voltage. Thus, grip
compression resulted in the generation of a differential voltage signal,
linearly proportional to the force exerted. The signal was fed to a stimuli
presentation computer via a signal conditioner (CED 1401; Cambridge
Electronic Design) and read by a MATLAB program (MathWorks).
Stimuli presentation was also programmed with MATLAB using Cogent
2000 (Wellcome Department of Imaging Neuroscience, London, UK).

Behavioral task. Before starting task performance, we measured the
maximal force for each hand following published guidelines (Gandevia,
2001). Participants were verbally encouraged to squeeze continuously as
hard as they could, until a line growing in proportion to their force
reached a target displayed on a computer screen. Maximal force was
defined as the average, over the last half of the squeezing period, of data
points exceeding the median force. Then subjects were provided real-
time feedback about the force produced on the handgrip, which ap-
peared as a fluid level moving up and down a thermometer (the maximal
force being indicated as a horizontal bar at the top). Subjects were asked
to try outreaching the bar and state whether it truly corresponded to their
maximal force. If not, the calibration procedure was repeated.

Task sessions included nine trials corresponding to the nine cells of the
factorial design (3 incentive X 3 difficulty conditions), which were pre-
sented in random order. Subjects performed eight sessions in total,
switching hands as instructed between sessions to avoid muscle exhaus-
tion. After baseline measurement of the pressure at rest, each trial started
by revealing the monetary incentive with a coin image (10, 20, or 50 euro
cents) displayed for 1 s. Then subjects had 30 s to win as much money as
possible. They knew that the payoft was proportional to both the incen-
tive and the time spent above the target bar, which was always placed at
the same height in the thermometer. The force needed to reach the bar
(70, 80, or 90% of subject’s maximal force), i.e., trial difficulty, was not
indicated to subjects. Subjects only knew that task difficulty would vary
across trials. They were provided with online feedback on both the ex-
erted force (with a fluid level moving up and down a thermometer) and
the trialwise cumulative payoff (with a counter displayed above the ther-
mometer). The counter was only started when fluid level was above the
target bar, with a rate proportional to the current incentive. The fluid had
the same luminance as the background to avoid confounding force level
with basic visual features. Each trial ended with a 2 s display of the
sessionwise cumulative payoff.

Behavioral data analyses. Effort onsets and offsets were manually iden-
tified offline based on the electromyograms and force-level time series.
The first rest period started with coin presentation and ended with the
first effort onset. The last period, which was interrupted by trial ending,
was not analyzed. Effort initial speed was estimated as the mean deriva-
tive of force level within the 500 ms after effort onset. Effort and rest
period durations were separately analyzed using a repeated-measures
ANOVA (R software; John Fox’s CAR library, McMaster University,
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Hamilton, ON, Canada), with incentive and difficulty as factors of inter-
est. The p values reported for these ANOVAs integrate the conservative
Greenhouse—Geisser correction.

MEG data acquisition. A whole-head MEG system with 151 axial gra-
diometers (CTF Systems) was used to sample brain activity at 1250 Hz
with an online low-pass filter of 300 Hz. Two bad sensors (MLT42 and
MRT32) were excluded because of high noise levels. Head position was
determined using marker coils at fiducial points (nasion, left and right
ears) before each session. The first session served as a reference to control
that head displacement in the seven remaining sessions never exceeded 5
mm. The first two sessions were excluded from the analyses in two par-
ticipants because of excessive change in head position.

Electromyograms were recorded simultaneously with two pairs of dis-
posable surface electrodes on each hand, which were placed to target the
flexor digitorum superficialis (on the forearm) and the first dorsal in-
terossei (between thumb and index). The two EMG traces and the force
time series were recorded along with MEG data (hence sampled at 1250
Hz) and were conjointly used to detect effort and rest onsets by visual
inspection. For this offline manual detection, the EMG traces were high-
pass filtered (>100 Hz) and the force levels low-pass filtered (<10 Hz).

MEG spectral decomposition. Data were imported into MATLAB and
analyzed using Fieldtrip toolbox (http://fieldtrip.fcdonders.nl; Oosten-
veld etal.,, 2011). For each session (lasting ~320 s), the whole dataset was
decomposed into power over time and frequency, using a product with a
set of Morlet wavelets after fast Fourier transform. A product in the
frequency space is equivalent, but computationally faster, to a convolu-
tion in the time space. The Morlet wavelets trade temporal against spec-
tral resolution (o, against ay), such that oy0, = 1/(27), and scale this
tradeoff according to the frequency f, such that f/o; is constant. This
ensures that finer temporal resolution is achieved for higher frequencies
at the expense of a lower spectral resolution. We set the f/o; ratio to 7,
which is standard for the frequency range investigated here. For each unit
frequency between 5 and 40 Hz, the product between the wavelets and the
data was computed for every 50 ms step. This is well below the original
sampling rate (1250 Hz) but sufficient considering the timescale of the
process investigated (seconds). The length of each wavelet used for the
computation was three times its temporal resolution (o). These power
data were used for every analysis, except the source reconstruction.

MEG source reconstruction. We used source reconstruction to check
that the desynchronization of beta oscillations during rest was arising
from the motor cortex. Templates of brain anatomy (single_subj_T1.nii)
and meshes of cortical surface and head envelope (cortex_5124.surf.gii)
were taken from SPM8 (http://www.fil.ion.ucl.ac.uk/spm). For every
subject, sensor positions were coregistered in the MNI space using the
mean fiducial positions over sessions as landmarks. The volume conduc-
tor model that served to compute dipole orientation was based on the
template tessellation of cortical surface. The normalized lead field, i.e.,
the forward solution from the distribution of dipoles over the grid space
to the set of scalp sensors, was estimated using a realistic single shell head
model. This corresponds to the “Nolte” method in the Fieldtrip software.
The grid size was 10 X 10 X 10 mm, which covered the entire brain. Time
series were epoched into pairs of temporal windows, first with the 2 s of
rest preceding effort onset and second with the 2 s of baseline preceding
the corresponding trial. All epochs were analyzed together in the 13-30
Hz frequency domain, using multi-tappers to compute the cross-
spectrum matrix between sensor pairs (in which the diagonal corre-
sponds to the power spectrum at each sensor). A spatial filter was jointly
computed for rest and baseline data, using DICS beam former (Dynamic
Imaging of Coherent Sources; Gross et al., 2001), without regularization
of the solution. Then, we projected the signal of each epoch separately
through the filter to estimate the power in the source space, over the
13-30 Hz range. A common filter allows contrasting rest and baseline
power levels, hence computing the percentage of signal change. The
group mean was interpolated onto the anatomical template for display.

MEG statistical analyses. Multiple regressions of power level against the
various factors of interest (see Fig. 3A) were estimated using MATLAB
statistical toolbox. The significance of all regression coefficients was es-
timated at the group level using a nonparametric procedure, which was
repeated for every frequency tested. To estimate uncorrected p values, the
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null distribution of ¢ values was estimated by flipping the sign of regres-
sion coefficients over participants. To estimate familywise error (FWE)
corrected p values, the null distribution of the maximal ¢ value was esti-
mated in a similar manner (Nichols and Hayasaka, 2003). In both cases,
200,000 distinct sign changes were used among the 192 = 524,288 pos-
sible changes. This correction accounts for multiple testing over frequen-
cies but not for regressing against multiple factors. We did not correct for
the number of regressors in the linear models, because they were tested
against each other.

For between-subject correlations (see Fig. 3B), uncorrected p values
were calculated from Spearman’s correlations, and FWE-corrected p val-
ues were derived from Holm’s step-down adaptive method, which
strongly controls FWE without making any assumption (Nichols and
Hayasaka, 2003).

Cluster statistics in Figure 4B were calculated using a cluster-mass
permutation scheme described previously (Maris and Oostenveld, 2007).
First, to determine uncorrected statistical threshold (T,4) correspond-
ing to p = 0.05, we used the same randomization procedure as described
above for multiple regression analyses. These nonparametric thresholds
(incentive, Ty,q = 2.092; rest duration, Tyy,q4 = 2.088) were very close to
their parametric counterpart (, ;5,5 = 2.101). Second, cluster-mass
FWE-corrected p values were estimated from the null distribution of
maximal cluster mass (sum of cluster ¢ values) formed at Ty 4. This
distribution was approximated using 200,000 distinct randomizations
(again among 524,288) of regression coefficient signs over participants.
All p values reported throughout this study correspond to bilateral tests.

Bayesian model selection. For each model depicted in Figure 5B, rest
duration and z power were separately modeled as linear combinations of
the variables supposed to influence them (through the arrows). We fitted
the models by adjusting the beta coefficients so as to minimize the resid-
uals (denoted ¢) in the following equations (with I being the incentive
level, F the first eigenvector of MBS, and D the rest duration):

F=pBI+ ¢

D = B,F + & (model 1),

F =B+ ¢

D = B,F + BsI + & (model 2),
F=pBI+¢

D = B, + & (model3)

All variables were z scored beforehand, such that their offset and scaling
could not bias model comparison. Models were estimated using a
variational-Bayes approach under the Laplace approximation (Fris-
ton et al., 2007; Daunizeau et al., 2009), which was implemented in a
toolbox by Jean Daunizeau (available at http://sites.google.com/site/
jeandaunizeauswebsite/). This algorithm estimates model evidence and
parameters, using the free-energy approximation (Friston et al., 2007).
This approximation of model evidence is computationally tractable and
usually more accurate than the Akaike information criterion or the
Bayesian information criterion (Penny, 2012). A model evidence is
the probability of observing the data given this model. It corresponds to
the marginal likelihood, i.e., the integral over the parameter space of the
model likelihood weighted by the prior on its parameters. Therefore,
model evidence increases with likelihood (accuracy of the fit) but is pe-
nalized by the dimension of the parameter space (complexity of the
model). In other words, it quantifies the complexity versus accuracy
tradeoff, which is mandatory for model comparison (Stephan et al.,
2009). Model selection was performed at the group level using a random
effect: log-evidence values were passed through Gibbs sampling (pro-
vided in SPM8) to approximate the models posterior densities and hence
the models exceedance probabilities. Given the data acquired across par-
ticipants, the model exceedance probability quantifies the belief that this
model is more frequently implemented in the general population than
any other model of the tested set (Stephan et al., 2009).
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Characterization of MBS. A, Beta synchrony level recorded from central sensors. The time—frequency map shows synchrony level around effort onset, averaged over central sensors

(white dots on both hands topography). The mean == SEM (in gray) time series over the beta band (1330 Hz) is plotted underneath. z-power means that the power is z scored relative to the trial
baseline. B, Scalp topography of beta synchrony level. Maps show synchrony level averaged over beta-range frequencies (13—30 Hz) in a time window centered on effort onset (—0.5t0 0.5 s), for
pooled sessions and for left and right hand sessions, separately. White dots correspond to the 10% sensors with lowest synchrony level. (, Sources of beta synchrony reduction. The color code
indicates percentage of beta synchrony reduction relative to the baseline. Coronal and sagittal sections show regions exhibiting the most pronounced reduction, within the 2 s preceding effort onset,
regardless of the hand used (left panels) and contrasted between hands (right panels). To superimpose sources onto brain anatomy, we arbitrarily used a bilateral threshold taken at half the extremes
(==14.5%) for the left panels and a more liberal threshold (-8%) to illustrate lateralization effects in the right panels.

Results

Factors affecting rest behavior

In our task, participants could freely allocate their effort produc-
tion within the 30 s of each trial (Fig. 1A), knowing that the payoff
was proportional to both the effort duration and the incentive
level. All subjects spontaneously alternated effort and rest periods
during the course of trials (Fig. 1B), suggesting that incentive
levels were high enough to induce effort production and diffi-
culty levels high enough to impose breaks. Two repeated-
measure ANOVAs were performed to characterize the effect of
the manipulated factors (incentive and difficulty levels) on the
durations of rest and effort periods separately (Fig. 1B). For
higher incentives, participants prolonged effort duration
(F36) = 11.1, p = 2.7 X 10 °) and shortened rest duration
(F336) = 10.5,p = 3.2 X 10 ~*). These two effects contributed to
increase the payoff, because they augmented the total time spent
squeezing the grip when more money is at stake. Higher difficulty
shortened effort duration (F, 35, = 14.0, p = 4.3 X 10 °) but did
not significantly affect rest duration (F, 35y = 1.0, p = 0.35). In
the following, we focus on rest duration, which was only affected
by incentive level. The aim of the following MEG data analysis
was to test whether incentive effect on rest duration was mediated
by MBS reduction.

Spatiotemporal characteristics of MBS
To be qualified as MBS, our signal had to exhibit three critical
features: (1) a dip around movement initiation; (2) in a specific
frequency band (13-30 Hz); and (3) from a source located over
the central sulcus, lateralized with respect to the hand used.
After spectral decomposition of oscillatory activity, the power
was normalized by a z-score transformation. This z power was
calculated at each frequency by subtracting the mean and divid-

ing it by the standard deviation of the trial baseline, which was
defined as the 2 s window preceding incentive display. To verify
the scalp topography of MBS at effort initiation, we averaged z
power over time (within 1 s centered on effort onset) and fre-
quency (within a range of 13-30 Hz). Sensors showing the lowest
synchrony level were indeed localized around central brain sur-
face (Fig. 24, right). To analyze variations of MBS level, we se-
lected as sensors of interest the 10% sensors with lowest beta
synchrony level. The selection procedure resulted in a similar list
of sensors when applied on left-hand, right-hand, or pooled data
(as can be expected from topographies in Fig. 2B). To simplify
subsequent analyses, we selected a single set of sensors across
hands and subjects, based on pooled data. The time course of z
power, averaged across sensors of interest, showed the classical
progressive reduction in the beta band, over the 2 s preceding
effort initiation, dipping just after effort onset (Fig. 2A, left).

To confirm that beta synchrony reduction arose from motor
regions, we reconstructed the sources of power in the 13-30 Hz
range using a beam former (see Materials and Methods). Con-
trasting rest to baseline revealed that two main sources under-
pinned beta power reduction in the left and right sensorimotor
cortex [MNI peak coordinates: (30, —30, 60) and (—50, —40,
50)]. When contrasting sessions using left and right hands, a
significant asymmetry was observed in favor of the contralateral
sensorimotor cortex (Fig. 2B). Note that the sources of desyn-
chronization in the alpha band (10—13 Hz) were very close, with
peaks at (40, —40, 50) and (—60, 30, 40). The asymmetry between
hemispheres could reflect the fact that slightly different motor
regions are recruited when subjects (who were all right-
handed in our study) move their dominant versus their non-
dominant hand.
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Factors modulating MBS

The above results confirmed that our task elicits MBS reduction
before effort, using classical fixed-window analyses. Because we
aimed at explaining rest duration in the following analyses, we
now considered variable windows: the entire epochs between ef-
fort offset and onset. To identify which factors have an effect on
MBS, we averaged, for each rest epoch, z power over time points
and sensors of interest, which were selected on the basis of inde-
pendent criteria (see above). This mean z power was fitted with a
linear model including both manipulated and observed variables:
(1) incentive level; (2) difficulty level; (3) duration of the preced-
ing effort; (4) rest duration; (5) initiation speed of the following
effort; and (6) duration of the following effort. The model also
included factors of no interest that would capture fatigue or ad-
aptation effects at different timescales: (1) the ordinal position of
the considered rest period within a trial; (2) that of the trial within
a session; and (3) the session number. Regression coefficients
were estimated independently for every frequency, and their sig-
nificance was calculated after FWE correction for multiple com-
parisons at the group level (see Materials and Methods). z power
was specifically reduced in the beta band by two factors: (1)
higher incentive levels; and (2) shorter rest durations (Fig. 3A).
Among the motor execution parameters (previous and following
effort duration, rest duration, effort initiation speed, and effort
difficulty), MBS only varied with rest duration. The size of this
effect was significantly higher than the others (paired ¢ test over
frequencies and variables, all p < 0.05, except for “next effort” at
14-16 Hz and “difficulty” at 39—40 Hz for which there was a
weak trend, p < 0.1). Thus, the regression analysis supports the
idea that MBS reduction may mediate incentive effects on a spe-
cific movement-related parameter: rest duration.

This idea also predicts that subjects who exhibit strong incen-
tive effects on MBS reduction should as well exhibit strong incen-
tive effects on rest duration. Note that, at the subject level, MBS
level and rest duration are not independent, which may bias the
between-subject correlation between incentive effects on MBS
reduction and rest duration. Therefore, we orthogonolized the
two variables by regressing the linear effect of rest duration out
of MBS level before estimating the parametric effect of incen-
tive levels. As predicted, the between-subject correlation was
positive and significant in the beta range (Fig. 3B), surviving
FWE correction for testing multiple frequencies (see Materials
and Methods).

Comparison of causal models linking incentives, MBS,

and behavior

In principle, the statistical dependencies between incentives,
MBS, and behavior could result from rest duration mediating
incentive effects on MBS. In other words, shorter duration would
artifactually reduce measures of MBS level. Although we do not
see what mechanism could support this scenario, we intended to
rule this out formally. Because consequences cannot precede
their causes, we simply tested whether MBS reduction would
anticipate rest shortening. z power was averaged within a limited
time window starting with effort offset and independent from
rest duration (Fig. 4A). This early z power was then regressed
against the subsequent rest duration. The end of the time window
was set for each subject at the 20th percentile of rest durations to
ensure both a sufficient amount of z-power samples (the mini-
mum being 24 samples at 20 Hz, corresponding to 1.2 s) and a
sufficient amount of rest periods included (the 20% rest periods
shorter than the time window being excluded). We also included
incentive level in the regression model, because it is correlated
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Figure 3.  Factors affecting MBS. A, Within-subject effects on z power (z-scored power
change relative to baseline level). The six rows show the effect of the six factors of interest
included in the multiple regression analysis. The coefficients (betas) obtained at each frequency
are shown in the left panels (as intersubject mean == SEM). Their significance was estimated at
the group level and plotted as p value logarithms in the right panels (plain lines, uncorrected p
values; dashed lines, FWE-corrected p values). The horizontal line corresponds to p = 0.05. B,
Across-subject correlations between incentive effects on rest duration and z power (the latter
being estimated in the null space of rest duration effect). Spearman’s correlation coefficients are
plotted for each frequency in and around the beta band (5—40 Hz). empty circle: p << 0.05
uncorrected, filled circle: p << 0.05 FWE corrected.

with rest duration. The regression was done for each subject and
frequency and then tested for significance at the group level (Fig.
4B). Several clusters of frequencies formed at a p < 0.05 uncor-
rected threshold survived FWE correction, revealing that z power
in the beta range was correlated positively with rest duration and
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Figure 4.  Early MBS predicts rest duration. A, Distribution of rest durations pooled over all
participants. The graph below depicts the logic of the analysis: for each subject, the 20th per-
centile of rest duration (D,) was estimated, and early zpower was defined as the mean z power
between rest onset and D,,. Then rest duration (together with incentive level) was regressed
against early z power, across all epochs that lasted longer than D, (hence representing 80% of
the total). B, Simultaneous regression of rest duration and incentive level against early z power.
Regression significance at the group level is shown as logarithm of uncorrected p values, for
each frequency in and around the beta band (5— 40 Hz). Clusterwise FWE-corrected p values are
also indicated above the graph.

negatively with incentive level. Thus, the early MBS reduction
was enhanced by incentive level and predicted the upcoming rest
duration. Therefore, it seems unlikely that shorter rest duration
may be the cause of MBS reduction.

However, the causal links between incentives, MBS, and be-
havior remained to be specified. Our hypothesis posits that in-
centives influence MBS reduction, which in turn controls effort
initiation (model 1). A more complicated possibility is that in-
centives also influence rest duration, independently from their
effect on MBS (model 2). A last alternative is that incentive level is
a common cause of both MBS reduction and rest duration, which
would induce a spurious correlation between MBS level and rest
duration (model 3). To reduce dimensionality of z power, we ran
a singular value decomposition. Results showed that z power
could reasonably be reduced to its first mode, which captured
most of the variance (Fig. 5A). In all subjects, the first eigenvector
mirrored closely the MBS pattern over frequencies at effort initi-
ation. For display purpose (Fig. 5B), we oriented this first eigen-
vector such that its mean value in the beta range (13-30 Hz) was
positive in each subject. Indeed, the orientations of eigenvectors
over frequencies and observations (i.e., left and right singular
vectors) are arbitrary and depend on each other. Thus, using the
first mode of z power, we had one vector of observations for all
three variables (incentive level, MBS reduction, and rest dura-
tion). Models were specified by linear dependencies between
these variables (Fig. 5C, arrows). Given the data, we estimated
these models and took their respective evidence to perform
Bayesian model selection with a random-effect analysis at the
group level (see Materials and Methods). Model 1, with an ex-
pected frequency of 0.85, obtained a high exceedance probability
(xp > 0.99), which is the confidence that this model is more
frequently implemented than the two other models in the general
population. Thus, the model comparison provided evidence for
MBS reduction mediating the effect of incentive level onto rest
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Figure 5.  Evidence for MBS reduction mediating incentive effects on rest duration. 4, Sin-

gular value decomposition of z-power variations over epochs, in the 5— 40 Hz range. Top, Dots
represent R % statistics obtained for each mode and subject; solid line is the mean over subjects.
Bottom, The curve indicates the first eigenvector (intersubject mean == SEM), for each fre-
quency in and around the beta band. Because the direction of eigenvectors is arbitrary, we
flipped them subjectwise for their mean value over the beta range to be positive, which allows
direct visual comparison of the group average with the other figures. B, Results of model com-
parison. The graphs illustrate the three models tested to account for statistical dependencies
between incentive level, betazpower, and rest duration (with arrows representing linear links).
Bars indicate model exceedance probability (i.e., the probability that the model is the most
frequently implemented in the population).

duration. A prediction of this mediation model is that the esti-
mates of incentive effect onto rest duration should be reduced
when MBS level is included as a second regressor in the analysis.
Indeed, the regression coefficients assigned to incentive level
when alone (—0.074 % 0.022 SEM) were greater (more negative)
than when accompanied by MBS level (—0.058 = 0.020 SEM)
with a significant difference (p = 0.007, bilateral paired ¢ test).

Discussion

In this study, participants were not instructed when to start ex-
erting physical effort. Instead, they were motivated by monetary
incentives to spend more time working. They spontaneously ad-
justed effort allocation to these incentives, trading off benefits
against costs. In particular, they shortened breaks when work
paid more. We found evidence that such an effect of incentive
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motivation was underpinned by a reduction of MBS relative to
trial baseline. Indeed, MBS reduction was correlated across trials
with both incentive level and rest duration. In addition, subjects
who exhibited stronger incentive effects on rest duration also
exhibited stronger incentive effects on MBS reduction. Finally,
direct Bayesian model comparison suggested that the most likely
interpretation of statistical dependencies between our three vari-
ables of interest is that incentive effect on rest duration was me-
diated by the amplitude of MBS reduction. In the following, we
first discuss the modulation of rest duration by MBS reduction
and then the modulation of MBS reduction by incentives.

Effort onset could be predicted by MBS reduction measured
in a fixed time window at the beginning of rest periods. This
observation discards the possibility that rest duration per se may
bias MBS measurements. On the contrary, it suggests that MBS
reduction favors the initiation of effort production. This is in line
with the general idea that a high MBS level represents an “idling
rhythm” maintaining the motor status quo and that decreasing
MBS allows for a motor change (Engel and Fries, 2010). More
precisely, the corticospinal pathway might be less excitable dur-
ing high MBS states, preventing any motor program from trig-
gering movement initiation. Interestingly, we observed that MBS
reduction only affected initiation time and no other effort-related
parameter, such as speed or duration. This specificity echoes nu-
merous reports that MBS reduction observed before the action
onset is not linked to any movement parameter (van Wijk et al.,
2012).

Growing evidence suggests that MBS reduction indeed plays
on movement initiation. In PD patients, a higher MBS level in the
subthalamic nucleus was correlated across trials with longer ini-
tiation delay (Kiihn et al., 2004) and with successful inhibition of
the prepotent response in a Stroop task (Swann et al., 2009; Brit-
tain et al., 2012). In healthy participants, faster finger tapping
(with reduced intervals between movements) resulted in a lower
MBS level (Toma et al., 2002), but prolonged movement dura-
tion (with constant intervals between movements) did not (Cas-
sim et al., 2000), suggesting that MBS is specifically modulated by
rest (not effort) duration. Interestingly, increasing response un-
certainty (by augmenting the number of possible movements)
also enhances both reaction time and MBS level (Tzagarakis et al.,
2010). Accordingly, in a visual detection task, the progressive
reduction of MBS correlated with the gradual commitment to a
motor response, which was distinct from the confidence in the
perceptual decision (Donner et al., 2009; O’Connell et al., 2012).

The specific link of pre-effort MBS to initiation time should be
contrasted to the case of readiness potential or field (RP/RF),
which also manifests as a slow ramping signal that precedes vol-
untary movement (Pedersen et al., 1998; Praamstra et al., 1999;
Leuthold and Jentzsch, 2002; Shibasaki and Hallett, 2006). Many
movement-related factors affect the RP/RF, such as the force
load, the effector used, and the movement complexity (Lang,
2003). Thus, although MBS reduction may reflect motor gating
in general (Engel and Fries, 2010), with a main source in the
contralateral motor cortex (Jurkiewicz et al., 2006; Donner et al.,
2009; Tzagarakis et al., 2010), the RP/RF seems to reflect the
preparation of a specific motor program (Shibasaki and Hallett,
2006), with main sources in the supplementary motor area in
addition to the primary motor cortex (Ball et al., 1999; Cunning-
ton et al., 2005). However, such a clear-cut distinction between
MBS-motor gating and RP/RF—motor preparation should be
tempered: some authors argue that the RP denotes the transition
from intention to action (Lang, 2003), and others have proposed
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recently that the RP reflects the passive stochastic accumulation
of a “go” signal (Schurger et al., 2012).

Little is known about how these signals relate to reward pro-
cessing, which has been overlooked by the EEG-MEGQG literature
until recently. On the one hand, MBS reduction was character-
ized as a gating signal in the domain of motor control, the move-
ment being directly instructed or related to a perceptual decision,
without bearing any particular value for the subject. On the other
hand, MBS was characterized in the domain of motor disorders as
a pathological signal, which should be eliminated to alleviate
symptoms such as hypokinesia in PD. To our knowledge, the
intuitive idea that MBS could represent a normal process adjust-
ing motor behavior to subjective goals in healthy conditions has
not been directly investigated. Here we provide evidence that
MBS reduction may speed up effort initiation proportional to
expected rewards in healthy subjects. Other neural mechanisms
have been suggested for underlying such incentive motivation
process. For instance, reward representation may influence mo-
tor output through corticocortical connections, implementing a
top-down regulation of behavior (Locke and Braver, 2008; Kou-
neiher et al.,, 2009). Another possibility is that the interaction
between reward and motor circuits occurs within the basal gan-
glia, with the ventral parts boosting the dorsal parts (Knutson et
al., 2008; Schmidt et al., 2012; Tachibana and Hikosaka, 2012).
An alternative suggestion is that dopamine release facilitates the
expression of motor programs, either at the cortical or subcorti-
cal level (Berridge, 2004; Robbins, 2007; Salamone and Correa,
2012).

These possibilities are not mutually exclusive and could be
articulated with the phenomenon of MBS reduction. It is known
that degeneration of dopaminergic neurons in animal models of
PD, as well as in human patients, results in abnormally high beta
oscillations that can be reduced by dopamine replacement med-
ications (Schnitzler and Gross, 2005; Uhlhaas and Singer, 2006;
Hammond et al., 2007). This is possibly because dopamine re-
lease in the striatum helps filter cortical input and desynchronize
basal ganglia output signals (McIntyre and Hahn, 2010). Thus,
one could speculate that reward prospects represented in limbic
circuits may amplify dopamine release, which in turn may facil-
itate movement initiation by lowering beta oscillations in the
motor circuits. This view would invite reconsidering the status of
bradykinesia or akinesia as motor symptoms. They would instead
represent dysfunction of motivational processes that occur between
pure reward and motor representations. Several computational ac-
counts of dopamine depletion support this interpretation, because
they attributed slowness to a shift in the movement cost/benefit ratio
rather than to suboptimal control of the movement spatiotemporal
trajectory (Mazzoni et al., 2007; Niv et al., 2007; Baraduc et al., 2013).
However, the link between dopamine release and MBS reduction in
healthy conditions remains to be established. We also note that ab-
normal oscillations in PD are not restricted to the beta band: exces-
sive power was found at lower frequency (in the alpha band) and
deficient power at high-frequency oscillations (in the gamma band),
both anomalies being correlated to apathy scores (Ozkurt et al.,
2011; Airaksinen et al., 2012). This is in line with the idea that beta
and gamma motor oscillations have anti-kinetic and pro-kinetic
properties, respectively (Brown et al., 2001; Schoffelen et al., 2005).

How the brain machinery for incentive motivation interacts
with brain systems signaling effort costs remains poorly under-
stood. In a previous study (Meyniel et al., 2013), we investigated
a cost signal conveyed by proprioceptive regions (posterior in-
sula) during the same task. In principle, this signal, which accu-
mulated during effort and dissipated at rest, could be sufficient
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for making “stop” and “go” decisions. In particular, the decision
to resume effort exertion was triggered when the insular cost
signal reached down to a fixed lower bound. It is possible that
insular dissipation is causally linked to MBS reduction or that
they simultaneously favor effort initiation. Interestingly, the dis-
sipation rate in the posterior insula increased with incentive level,
as if a tonic reward signal was negatively integrated into the cost
signal. An open question is whether insular dissipation and MBS
reduction feed one another or integrate the same tonic incentive-
related signal, possibly coming from a common input.

Thus, we conclude that MBS reduction may represent a neural
process translating expected reward into motor activation. How-
ever, there are some limitations that should be acknowledged.
First, our conclusion is based on statistical dependencies between
variables, which suggests, but does not prove, a causal pathway
from incentive level to MBS reduction to effort initiation. Direct
manipulation of MBS level, through dopaminergic medication or
electrical stimulation, could provide more conclusive evidence
for causality by affecting subjects’ sensitivity to incentives and
perhaps patients’ apathetic symptoms. Second, the frequencies
that were correlated to incentive level and rest duration were
slightly different, even if they could all be labeled as “beta.” It
remains to be understood whether these differences in frequency
are functionally significant for the incentive motivation process.
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