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The olfactory bulb (OB) is one of the two major loci in the mammalian brain where newborn neurons are constantly integrated into the
neural circuit during postnatal life. Newborn neurons are generated from neural stem cells in the subventricular zone (SVZ) of the lateral
ventricle and migrate to the OB through the rostral migratory stream. The majority of these newborn neurons differentiate into inhibitory
interneurons, such as granule cells and periglomerular cells. It has been reported that prolonged supply of newborn neurons leads to
continuous addition/turnover of the interneuronal populations and contributes to functional integrity of the OB circuit. However, it is not
still clear how and to what extent postnatal-born neurons contribute to OB neural circuit formation, and the functional role of postnatal
neurogenesis in odor-related behaviors remains elusive. To address this question, here by using genetic strategies, we first determined
the unique integration mode of newly born interneurons during postnatal development of the mouse OB. We then manipulated these
interneuron populations and found that continuous postnatal neurogenesis in the SVZ-OB plays pivotal roles in flexible olfactory

associative learning and memory.
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Introduction

The rodent olfactory bulb (OB) has a unique neural circuit con-
sisting predominantly of interneurons. Unlike most other central
nervous system (CNS) regions, in the OB, inhibitory interneu-
rons far outnumber principal neurons by at least 50:1 (Isaacson
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and Strowbridge, 1998; Shepherd and Greer, 2004; Egger and
Urban, 2006). In contrast, in neocortex, the ratio of inhibitory to
principal neurons is ~1:5 (Anderson et al., 1994). Furthermore,
integration of OB interneurons continues long after the sensory
neuron axons and principal neurons have established their ma-
ture connectivity. Although most neurons comprising the mam-
malian CNS are produced during embryonic development, a
large proportion of the interneurons in the OB are generated
during postnatal life (Lazarini and Lledo, 2011; Breton-
Provencher and Saghatelyan, 2012). In the postnatal brain, neu-
rons are generated from neural stem cells (NSCs) in the
subventricular zone (SVZ) of the lateral ventricle (LV). Newborn
neurons migrate to the OB through the rostral migratory stream
(RMS), and the majority of them mature into inhibitory in-
terneurons (Lledo et al., 2006), although a small number of new-
born neurons differentiate into glutamatergic neurons (Brill et
al., 2008; Sequerra et al., 2010; Winpenny et al., 2011). The two
most numerous types of inhibitory OB interneurons are granule
cells (GCs) and periglomerular cells (PGCs) (Shepherd and
Greer, 2004; Yamaguchi et al., 2013). The number of GCs is ~1
order larger than that of PGCs. Both GCs and PGCs are continually
generated postnatally and even in adulthood. However, despite ex-
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tensive studies with [*H] -thymidine, BrdU, or retroviruses, how
these postnatal-born neurons integrate into OB neural circuits is still
unclear, partly because [ *H]-thymidine and BrdU can be adminis-
tered only for restricted periods, and injections of retroviruses into
the brain infect only small populations. Thus, postnatal develop-
ment of the OB inhibitory network is based on estimations from
lineage-tracing experiments of limited populations (Bayer, 1983;
Gould, 2007).

Strikingly, neurogenesis in the SVZ of the LV occurs throughout
adulthood (Imayoshi et al., 2011; Ming and Song, 2011). This ongo-
ing supply of adult-born interneurons leads to continuous turnover/
addition of the interneuronal populations and structural integrity of
the OB circuit (Kohwi et al., 2007; Ninkovic et al., 2007; Imayoshi et
al., 2008; Adam and Mizrahi, 2011; Breton-Provencher and Saghat-
elyan, 2012). However, the significance of postnatal neurogenesis
and turnover of interneurons on olfaction-dependent behaviors is
still unclear (Lledo et al., 2006; Lazarini and Lledo, 2011; Breton-
Provencher and Saghatelyan, 2012).

To understand information processing in the OB, it is impor-
tant to reveal how the newly generated OB interneurons are in-
tegrated into OB circuitry during postnatal development. To
address these issues, we used genetic approaches that specifically
and efficiently label postnatal NSCs and newly formed neurons,
and analyzed how continuous neurogenesis contributes to the
formation of inhibitory neural networks in the postnatal OB. We
also used intersectional strategies to achieve precise genetic tar-
geting of newly born OB neurons. Our fate mapping efforts were
complemented with specific loss-of-function strategies coupled
with behavioral odor discrimination tasks, and conducted to ex-
amine the functionality of the newly formed neurons.

Materials and Methods

Breeding and tamoxifen treatment of mice. mGFAP-Cre, Nestin-CreER™?,
and DIx5/6-Flpe transgenic mouse strains were described previously
(Garcia et al., 2004; Imayoshi et al., 2008; Miyoshi et al., 2010). These
strains were crossed with the following reporter/effector strains: R26R-
CAG-LoxP-mTFPI, R26R-LoxP-ECFP, RCE:FRT (R26R-CAG-Frt-EGFP),
RCE:dual (R26R-CAG-LoxP-Frt-EGFP), neuron-specific enolase (NSE)-
LoxP-DTA, R26R-CAG-LoxP-Frt-EGFP-TeNT, and VGLUTI-LoxP-
TeNT (LI and R.K., manuscript in preparation) (Srinivas et al., 2001;
Imayoshi et al., 2008; Miyoshi et al., 2010; Imayoshi et al., 2012). Double
or triple transgenic mice were identified by PCR as described previously.
Mice were housed in a room with 12 h light/dark cycle (lights on at 6:00
A.M.). All animals were handled in accordance with the Kyoto University
Guide for the Care and Use of Laboratory Animals. CreER T activation
in P1 pups was triggered by tamoxifen (30 ul i.p. of 20 mg/ml stock in
corn oil; Sigma). For CreER ™2 activation in P21 mice, one shot of 200 ul
of tamoxifen stock was administered orally.

Generation of R26R-CAG-LoxP-Frt-EGFP-TeNT strain. The R26R-
CAG-LoxP-Frt-EGFP-TeNT knock-in vector contains a splice acceptor
sequence-puromycin resistance gene, a CAG promoter, a floxed primary
stop cassette containing three polyadenylation sequences (pA) from
SV40pA, a Frt-flanked stop cassette containing three pA sequences
(SV40pA-TKpA-SV40pA), and EGFP-TeNT-SV40pA. To generate the
final targeting vector, the above transgene construct was introduced into
the Pacl/AscI site of the pRosa26PAS plasmid (Mao et al., 2005; Stenman
etal., 2008). The resulting vector contains 5" and 3" homology arms of 1.1
and 4.1 kbp, respectively, which target the construct to the Xbal site of
intron 1 at the Rosa26 locus. The detailed cloning strategy and complete
sequence of the plasmids are available on request.

The targeting vector was linearized with Swal and electroporated
into the 129S6/SvEvTac-derived Tc-1 embryonic stem cells;
puromycin-resistant clones were selected. Genomic DNA from drug-
resistant cells was screened by PCR for homologous recombination at
the Rosa26 locus, using the primers Rosa26-5'armFlanking (5'-
CCTAAAGAAGAGGCTGTGCTTTGG-3') and Rosa26-SA (5'-CATCA
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AGGAAACCCTGGACTACTG-3"), which amplified a 1.2-kbp product.
Southern blot hybridization on EcoRV-digested genomic DNA was used
to confirm homologous recombination at the 5'-end using a 0.14 kbp
probe located outside of the 5'-homology arm. The probe was generated
by EcoRI and HindIII digestion of the pRosa26 5'probe plasmid. The
targeted and wild-type alleles produced products of 11.5 and 4.9 kb,
respectively. Chimeric mice were produced from two successfully tar-
geted ES cell clones by aggregation with C57BL/6] embryos. Germline
transmission of the targeted allele was assessed by EGFP-TeNT PCR with
the primers (5'-CGAGAAGCGCGATCACATGGTCCTG-3") and (5'-
TATCTAATAAGGCTTCACCTGCTAC-3"), which generate a 413 bp
product. The chimeric mice and their descendants were crossed with
wild-type C57BL/6] mice five times before the analysis.

The R26R-CAG-LoxP-Frt-EGFP-TeNT strain and its derivatives were
deposited at the RIKEN Bioresource Center (http://www.brc.riken.
jp/lab/animal/en/) under the following reference numbers: B6;12956-
Gt(ROSA)26Sortm1(CAG-EGFP/TeNT)Imayo (RBRC05153), B6;129S6-
Gt(ROSA)26Sortm1.1(CAG-EGFP/TeNT)Imayo (RBRC05154), and B6;
129S6-Gt(ROSA)26Sortm1.2(CAG-EGFP/TeNT)Imayo (RBRC05155).
Live mice, cryopreserved embryos, and sperm of the deposited knock-in
strains are available from the RIKEN Bioresource Center.

Virus preparation and injection. Moloney viral particles carrying
SypGFP-IRES-mCherry-VAMP2 were prepared as described previously
(Nakashiba et al., 2012). Mice and their control littermates (12 weeks
old) were anesthetized with ketamine (22.5 mg/kg), and 0.4 ul of virus
concentrate was stereotaxically injected to SVZ/LV. The stereotaxic co-
ordinate was 0.0 mm anterior from bregma, 1.7 mm lateral from the
midline, and 1.8 2.6 mm ventral from the brain surface.

Tissue preparation and immunohistochemistry. Pups and adult mice
were deeply anesthetized with sodium pentobarbital (50 mg/kgi.p.) and
transcardially perfused with 50 ml of PBS and 50 ml of 4% PFA/PBS, pH
7.2. Brains were postfixed in the perfusing solution overnight at 4°C and
then cryoprotected for 24 h in 30% sucrose in PBS. Brains were embed-
ded in OCT compound (Sakura Finetek) and frozen at —80°C.

Cryostat sections (16 um thick) were incubated in 5% normal goat
serum and 0.1% Triton X-100/PBS at room temperature for 1 h, incu-
bated with primary antibodies diluted in 0.1% Triton X-100/PBS con-
taining 1% normal goat serum overnight at 4°C, washed with PBS, and
then incubated with secondary antibodies conjugated to Alexa-405,
Alexa-488, Alexa-594, or Alexa-633 (1:200, Invitrogen) for 1 h at room
temperature. The sections were mounted with Fluormount-G (Southern
Biotech) and photographed with an LSM510 confocal laser-scanning
microscope (Zeiss).

The following primary antibodies (final dilution and source) were
used: rat anti-BrdU (1:50; Oxford Biotech), rabbit anti-DsRed (1:400;
Clontech), rabbit anti-GFP (1:400; Invitrogen), rat anti-GFP (1:400; Na-
calai), mouse anti-NeuN (1:400; Millipore), rabbit anti-5T4 (1:1000;
Imamura et al., 2006), rabbit anti-Reelin (1:100; kindly provided from
Dr. Masaharu Ogawa), and rabbit anti-VAMP2 (1:500; Synaptic Sys-
tems), mouse anti-TH (1:1000; Millipore), mouse anti-Calbindin-D28K
(1:1000; Swant), and mouse anti-Calretinin (1:1000; Swant).

Organization of tissues for histological quantification. We analyzed at
least three mice at all time points. Serial sections (16 wm thick) were cut
from the anterior to the posterior ends of the OB, and a different 1-in-10
series was used for each of the quantifications. Four regions (dorsal,
medial, ventral, and lateral) were selected from the granule cell layer
(GCL) or periglomerular cell layer (PGL) of the OB in each section,
including GCLs/PGLs throughout the deep to the superficial extent. Flu-
orescent images were taken on a LSM510 confocal laser scanning micro-
scope using a 20X objective.

Quantification of mTFP1/ECFP-labeled granule cells (GCs) and periglo-
merular cells (PGCs) in the OB. mTFP1/ECFP-labeled, newly generated
GCs/PGCs were analyzed on sections throughout the anterior—posterior
extent of the GCL/PGL of the OB, and their average scores were deter-
mined. Average scores from the same genotype groups were pooled to
determine the total average and SD, and the proportion of mTFP1/ECFP
labeling of marker (NeuN, CalR, CalB, or TH)-positive GCs/PGCs was
determined.
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Estimation of the total cell number of OB GCs
during postnatal development. P7, P14, P21,
P35, and P60 C57BL/6] male mice were ob-
tained from Japan SLC. Sections were stained
with anti-NeuN antibody, and the volume of
the GCL in the OB of each stained section was
quantified using Zeiss software. The mean
GCL volume in one section was calculated, and
the total volume was determined by multiply-
ing the mean value by the total number of
sections. Neuronal density was assessed in the
OB (as described above) of each anti-NeuN
antibody-stained section. Sections from four
different anterior/posterior levels at regularly
spaced intervals were examined. The numbers of
NeuN-positive cells were counted on z-stacked
confocal images, and the mean numbers of cells
within the counting area were calculated. The to-
tal numbers of GCs in the OB were obtained by
multiplying the GCL volume by the neuronal
cell-density. For statistical analysis, one-way
ANOVA with the post hoc Tukey’s test was done
for multiple comparisons.

Behavioral tests. All behavioral tests were
conducted with 3-month-old male control
(n = 6) and mutant (n = 6) mice, except for the
experiments in Figure 8.

In the analysis of OB-mutant (mGFAP-Cre;
Dlx5/6-Flpe;R26R-CAG-LoxP-Frt-EGFP-TeNT
triple transgenic) mice, mGFAP-Cre;R26R-
CAG-LoxP-Frt-EGFP-TeNT double transgenic
mice were used as control. No apparent behav-
ioral differences were observed between control
and wild-type littermate mice.

In the analysis of postnatal neurogenesis-
mutant mice, 4 mg of tamoxifen in corn oil
(n =9) or corn oil alone (n = 9) was orally
administered to P21 Nestin-CreER"*NSE-
LoxP-DTA double transgenic mice. Behavioral
analysis was started from P35. Corn oil-treated
Nestin-CreER'NSE-LoxP-DTA  double  trans-
genic mice were used as control. Previously,
we also analyzed two other control mouse
groups (oil-treated Nestin-CreER' mice and
tamoxifen-treated Nestin-CreER'? mice) and
did not observe any significant differences in
behavioral tests between these and the oil-treated
Nestin-CreER"%;NSE-LoxP-DTA (Imayoshi et
al., 2008).

Behavioral analyses of dentate gyrus (DG)-
mutant (mGFAP-Cre;VGLUT1-LoxP-TeNT dou-
ble transgenic) mice were conducted by using
3-month-old mutants and their wild-type lit-
termates. No behavioral abnormalities were
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Figure 1. Postnatal neurogenesis in the OB visualized by mTFP1 fluorescent protein in mGFAP-Cre;R26R-CAG-LoxP-mTFP1
double transgenic mice. A, Schematic drawing of genetic strategy to label progeny of postnatal NSCs. B—B’”, Sections including
the SVZ/LV were immunostained with anti-NeuN (red) antibody. Cre-reporter (mTFP1)-expressing cells (green) were observed in
the postnatal SVZ/LV. C, Experimental design. BrdU was administered to the E15.5 double transgenic mice, and the 0Bs were
analyzed at P60. D, BrdU-positive cells (red) were detected by immunostaining in the dorsal regions of the GCLs of the 0B. Only
1.23 == 0.71% of BrdU-positive cells displayed mTFP1 expression in mGFAP-Cre;R26R-CAG-LoxP-mTFPT mice. E-G""", GCLs of the
0B were immunostained with anti-NeuN (red) antibody at P7, P28, and P90. Postnatal-born GCs were visualized via mTFP1
fluorescence (green). The number of mTFP1-expressing GCs increased during postnatal periods from P7 to P90. H, Proportions of
mTFP1-expressing GCs in the OB during postnatal development. Data points represent mean = SD from at least three mice. /-K,
Bar graphs summarizing volume (/), cell density (J), and total cell number (K) of GCLs in the OB during postnatal development. The
numbers of GCs in the OB increased significantly. Data are mean = SD from each of three mice. **p < 0.01; ***p < 0.001;
one-way ANOVA followed by Tukey's post hoc test. ns, Not significant. Scale bars: B, 500 pem; G""’, 100 m.

observed in the mGFAP-Cre and VGLUT1-LoxP-TeNT single transgenic

mice (I.I. and R.K., manuscript in preparation).
Habituation—dishabituation test. This experiment was performed as

previously described (Imayoshi et al., 2008). Mice were habituated to a

cage (20 X 15 X 13 cm), and then a sheet of filter paper (2 X 2 cm) with

Table 1. Proportions of mTFP1/NeuN-labeled GCs in the OB of mGFAP-Cre;R26R-CAG-
LoxP-mTFP1 double transgenic mice

Percentage of mTFP */NeuN ™ cells == SD

20 wl of the first odor was presented for 3 min. This procedure was repeated - No. of cells

three times with 15 min inIt’ervals. On the fourth triai filter paper w1tl£) 20 ul Age Dorsal Medial Ventral Latera Whole analyzed

of the second odor was presented for 3 min. Nasal contacts with the filter ~ GCL

paper within 1 mm distance were judged as “investigating.” Investigation P7 79*35 66*29 73*X26 78*47 74x34 937

time during a 3 min test period was measured. For statistical analysis, Stu- P28 551%12 550*+12 55839 52860 546%25 10978

dent’s t test was done between sessions 3 and 4. Odors were used as follows: PO 740*37 73.0*£22 68110 684236 709 =21 14367

mineral oil (Sigma), basil (1:10 dilution in mineral oil, Hasegawa), and pep- Outer GCL

permint (1:10 dilution in mineral oil, Hasegawa). E;S ;;2 f (5)2 312 f (1]; 311 f ;g 333 f ;‘2‘ 32? f (3)3 ;lg?
Olfactory associative learning and memory test with reward-reversal par- P00 461+20 38648 416+31 35551 405432 3351

adigm. This task was performed as previously described with minor mod-




Sakamoto et al. @ Neurogenesis in the Postnatal Olfactory Bulb

Table 2. Proportions of ECFP-labeled GCs in the OB of P1-tamoxifen-treated Nestin-
CreER™;R26R-LoxP-ECFP double transgenic mice

Percentage of ECFP */NeuN * cells = SD

J. Neurosci., April 23, 2014 - 34(17):5788 -5799 + 5791

(+)-Carvone (6.4M, Sigma). On days 5-8, the sugar reward was associ-
ated with (—)-Carvone (6.4M, Sigma). On days 9—12, the sugar reward
was again associated with (+)-Carvone. On days 5-12, the probe test was
conducted without the sugar reward before each training.

Mouse behavior was recorded with a digital video camera. The time
(seconds) spent digging for each odorant was measured during the 4 min
probe tests. Differences in behavior (digging time) between the mutant
and control mice were assessed with two-way repeated-measures
ANOVA, and p values <0.05 indicated significant differences.

Statistical analysis. Statistical analyses were performed with Prism 6.0
software (GraphPad). p values <0.05 were considered to be significant.
Statistical methods used in the analysis were described in figure legends
or experimental procedures.

Results

The mode of integration of postnatal-
born neurons into the OB

To investigate how and to what extent
newborn, postnatal neurons contribute to
functional OB neural circuit formation,
we used Cre/LoxP-based genetic labeling
to visualize nearly all newborn neurons
with fluorescent proteins and analyzed
OB development during the postnatal pe-
riod. In mGFAP-Cre transgenic mouse,

No. of cells
Age Dorsal Medial Ventral Lateral Whole analyzed
GCL
P7 8304 91*16 89+18 86*21 8714 10270
P28 61459 620+43 62641 61670 61946 11,266
P90 75809 780*17 75037 77615 76,6 =10 15717
Outer GCL
P7 84*+31 83*X29 81Xx29 71*x36 80*+34 3495
P28 49314 41189 41.0x85 394+18 42746 3113
P90 507 =21 474%+27 51.0*50 456*22 486=*=16 2709
A B F
Superficial _100
: 5 2 80
Q
5 8% B o O
o 7 it g% 60
E| owgili €3
A z
S| sVolellioc $S 40
3| +Zhul o ag
ol B - E 20 ,
2 S E i
- 0 b ¥
1: 12345678 Birth

Row number

+ '
4 weeks 8 weeks

Cre expression is regulated by a 15 kb
mouse GFAP mini-gene and begins in

2 y'ears

- = —'_‘
mTFP1/5T4/NeuN

Figure 2.

regions of the GCL in the OB. Scale bars: €, 100 wm; E'", 50 wm.

ifications (Imayoshi et al., 2008). Mice were food-restricted to maintain
80—85% of their free feeding weights and trained to associate one of the
enantiomers of Carvone with sugar reward for 4 d. During the training,
the mice received four 10 min trials a day: two trials for an odor paired
with sugar reward and two for the unpaired odor. In the test session, each
test odorant (20 ul soaked into a 2 cm X 2 cm filter paper) was placed
independently, without sugar, in a cage (26 X 40 X 18 cm) under the
bedding (5 cm depth). On days 1-4, the sugar reward was associated with

Integration modes of newborn neurons in the GCL of the postnatal OB. 4, B, Coronal sections through the GCL of the
0B from P90 mGFAP-Cre;R26R-CAG-LoxP-mTFPT mice were divided into eight rows, and the ratios of mTFP1 to NeuN labeling were
determined in each row. (—=C’’, Outer GCLs of mGFAP-Cre;R26R-CAG-LoxP-mTFPT mice at P7, P28, and P90 were immunostained
by anti-NeuN (red) antibody. Outer GCLs are indicated by asterisks. A restricted number of newborn neurons were incorporated into
the outer GCL of the 0B. D, Quantification of mTFP1 versus NeuN labeling ratios in outer GCs of the OB during postnatal develop-
ment. Data points represent mean = SD from at least three mice. E—E’’, Outer GCs labeled by 5T4 (red) were typically negative for
mTFP1 labeling. F, Proposed model of integration modes of postnatal-born GCs in the main 0B. In the OB schematics, postnatal-
born GCs and embryonic-born GCs were indicated by green dots and red dots, respectively. In the OB, newborn neurons are
integrated into and build up the basic architecture of the OB neural circuit before 4 weeks of age. After that, it is likely that the
dynamic turnover of old GCs and newborn GCs occurs continuously. Postnatal-born GCs are preferentially integrated into deep

Addition Repiacement postnatal NSCs but not in embryonic
NSCs (Garcia et al., 2004). We crossed
mGFAP-Cre mice with R26R-CAG-LoxP-

D mTFPI reporter mice (Imayoshi et al,
® 607 2012), which can induce permanent irre-

% 50 versible Cre-mediated recombination in
i postnatal NSCs and followed the subse-
o0 40 quent integration of mTFP1-labeled new-
2 % 30/ born neurons in the OB (Fig. 1A—H; Table
g Z 1). To confirm that leaky Cre-mediated
Q tn_. 20y recombination during embryonic devel-
L 10 opment and in preexisting neurons does

£ not occur in mGFAP-Cre;R26R-CAG-

T T T LoxP-mTFP1 double Tg mice, we labeled

i Z;g R embryonically born GCs by administer-

ing BrdU to these mice at E15.5, and ana-
lyzed the OBs at postnatal day 60 (P60)
(Fig. 1C). Only 1.23 * 0.71% of BrdU-
positive embryonically born GCs dis-
played mTFP1 expression in mGFAP-Cre;
R26R-CAG-LoxP-mTFP1 mice (Fig. 1D),
indicating that mTFP1 labeling was specif-
ically induced in postnatal-born GCs and
excluded from embryonically born GCs. In
quite small subsets of mTFP1-positive
postnatal-born GCs, BrdU signal was ob-
served, but signal intensity in these cells was
always very weak, suggesting that these
double-labeled GCs were derived from
NSCs retaining BrdU because of the limited
number of cell divisions between E15.5 and P60. From these results,
we concluded that mTFPl-reporter labeling is restricted to
postnatal-born neurons in our Tg model.

In mGFAP-Cre;R26R-CAG-LoxP-mTFPI mice, large num-
bers of migrating, mTFP1-positive neuroblasts were observed in
the RMS and core region of the OB at P7 (Fig. LE-E'""). Subsets of
mTEFP1-positive newborn neurons already migrated to the GCL
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at P7 and expressed the mature GC
marker NeuN (Mullen et al., 1992) (Fig.
1E-E'""). In the OB of P7 pups, large
numbers of mTFP1-negative GCs were
observed. These mTFP1-negative GCs
were likely generated during the embry-
onic period. NSCs existing in the lateral
ganglionic eminence give rise to OB in-
terneurons during embryonic develop-
ment (Stenman et al., 2003; Long et al.,
2007; Batista-Brito et al., 2008). Cell
counting of GCs in the OB during postna-
tal development demonstrated that a
considerable proportion of GCs, corre-
sponding to ~25% of the adult OB GCs,
were already generated before P7 (Fig. 11—
K). By P28, greater numbers of mTFP1-
positive GCs were observed throughout
the OB (Fig. 1F-F"""), comprising ~60%
of GCs (Fig. 1H ). By P90, ~80% of the OB
GCs were labeled by mTFP1 (Fig. 1G,H;
Table 1). These results indicate that most
of the OB GCs are generated during the
postnatal period, as previously estimated
by [’H]-thymidine- and BrdU-labeling
methods (Rosselli-Austin and Altman,
1979; Bayer, 1983; Lemasson et al., 2005).

It has been shown that there are signif-
icant regional differences in the properties
of NSCs along dorsoventral/rostrocaudal
axes of the postnatal SVZ of the LV
(Kriegstein and Alvarez-Buylla, 2009; Ih-
rie and Alvarez-Buylla, 2011). To exclude
the possibility that mGFAP-Cre targets a
biased population of the stem cell pool, we
also used the Nestin-CreER'? transgenic
mouse, in which tamoxifen-inducible
CreER™ proteins are specifically ex-
pressed by NSCs throughout develop-
ment and in the adult brain. Tamoxifen
administration to pups induces very effi-
cient recombination in postnatal NSCs
without recombination during embryo-
genesis (Imayoshi et al.,, 2010; and data
not shown). We injected tamoxifen to
P1 pups of Nestin-CreER™%;R26R-LoxP-
ECFP double transgenic mice, inducing
permanent, irreversible Cre-mediated re-
combination in postnatal NSCs, and fol-
lowed the subsequent integration of
ECFP-labeled newborn neurons in the OB
(Table 2). Consistent with our results
when using the mGFAP-Cre driver, grad-
ual increase of Cre-reporter expressing
GCs was observed in the postnatal OB,
and the proportions of labeled GCs were
quite similar between the two Tg models
(Table 1).

Considering that our cell counting of total GCs in the OB
shows no further increase in the number of GCs after P35
(Imayoshi et al., 2008) (Fig. 1K), the substantial increase in
mTFP1-labeled newborn neurons between P28 and P90 raised
the possibility that the integration of the newly generated neu-
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Figure 3.  Postnatal development of the PGL in the OB. A-D"'’, The PGL of mGFAP-Cre;R26R-CAG-LoxP-mTFP1 mice at P7
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expressing cells in the PGLs of the OB during postnatal development. /, Proportions of mTFP1-labeling in the CalR-, CalB-,
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rons changes from an addition to replacement mode during this
period. We propose that ~25% of GCs are generated from em-
bryonic NSCs and that newborn neurons derived from postnatal
NSCs are integrated into the OB neural circuit by an addition
mode, and contribute to the increase in the total GC number
until P35. After P35, because the total number of GCs does not
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significantly change (Fig. 1K), newly generated neurons must be
proportionately replacing preexisting GCs. Therefore, newborn
neurons are integrated into and build up the basic architecture of the
OB neural circuit before P35. After P35, it is likely that the dynamic
turnover of old GCs and recently generated, new GCs occurs con-
tinuously, contributing to plasticity in the OB neuronal network
(Fig. 2F).

Heterogeneous integration of postnatal-born GCs in the OB
We then asked whether newborn neurons are uniformly inte-
grated into the GCL of the OB or whether there exist unique rules
for the integration of newborn neurons. Coronal sections of the
GCL were divided into eight rows from deep to superficial re-
gions (Fig. 2A), and we determined the proportions of mTFP1-
labeled GCs along the entire deep to superficial axis of the GCL of
P90 mice. In the deep region, nearly 90% of GCs displayed
mTEP1 expression; whereas in the superficial region, only 60% of
GCs were labeled by mTFP1, indicating limited integration of
postnatal-born GCs in the superficial area of the GCL of the OB
(Fig. 2A, B). Thus, newborn neurons generated from postnatal
NSCs are preferentially integrated into the inner region of the
GCL; and in the superficial area, embryonic NSC-derived GCs
comprise approximately half of all GCs and are maintained with-
out replacement (Fig. 2F).

In the mitral cell layer of the OB, outer GCs become aligned
along the mitral cell bodies (Fig. 2C-C'"’, asterisks). We separately
analyzed the mTFP1 labeling ratio in these outer GCs in mGFAP-
Cre;R26R-CAG-LoxP-mTFP1 double transgenic mice (Fig.
2C,D). At P28, only ~35% of outer GCs expressed mTFP1; and at

Postnatal
NSCs GABAergic neurons

OB GABAergic neurons

Neocortex Cerebellum

Specific genetic targeting of postnatal-born GCs by Cre/loxP- and Flp/Frt-mediated intersectional strategy. 4, Sche-
matic drawing of genetic strategy to selectively target postnatal-born GABAergic neurons by mGFAP-Cre and Dix5/6-Fpe trans-
genic mouse strains. B, Dorsal view of the whole brain from adult mGFAP-Cre;DIx5/6-Flpe;R26R-CAG-LoxP-Frt-EGFP triple the
transgenic mice. (~K, EGFP expressions (green) were specifically expressed by neuroblasts in the SVZ of the LV () and by the
GABAergicinterneurons in the 0B (G—K), but not in the DG (D), neocortex (E), or cerebellum (F). Scale bars, 500 wm (F,G) and 100
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Forebrain

P90, ~40%. It was reported that the 5T4
glycoprotein is specifically expressed in
outer GCs and regulates dendritic ar-
borization (Imamura et al., 2006; Yoshi-
hara et al., 2012). Figure 2E-E"" shows
that 5T4-expressing outer GCs were typi-
cally negative for mTFP1-labeling, indi-
cating that approximately half of the outer
GCs and GCs in the superficial GCL are
generated during the embryonic period
and are stably maintained for an extended
period. This limited integration of labeled
newborn neurons in the superficial GCLs
was similarly observed in P1-tamoxifen-
treated Nestin-CreER"%;R26R-LoxP-ECFP
mice (data not shown). Thus, we con-
clude that postnatal-born GCs are prefer-
entially integrated into deep regions of the
OB, whereas embryonically derived GCs
are maintained in the outer/superficial ar-
eas without replacement (Fig. 2F).

Postnatal-born

EGFP/NeuN

Postnatal neurogenesis of PGCs in

the OB

Newly generated neurons in the postnatal
brain also differentiate into PGCs in the
PGL as well as GCs in the OB (Lledo et al.,
2006; Kohwi et al., 2007). We analyzed in-
tegration of labeled newborn neurons in
PGL of mGFAP-Cre;R26R-CAG-
LoxP-mTFP1 double transgenic mice
(Fig. 3). Because some major cell types ap-
pear devoid of immunoreactivity for
NeuN in the PGL (Bagley et al., 2007), we
quantified mTFP1-labeling ratios among DAPI-stained PGCs.
PGCs were progressively labeled with mTFP1 during postnatal
development and in the adult brain (Fig. 3A-D,H ). The propor-
tion of labeled PGCs in the OB was ~5% at P7 and increased to
~25% at 3 months of age, indicating that postnatal-born neu-
rons contribute to formation and modification in the neural cir-
cuit of the PGL. PGCs are subdivided into at least three subtypes
based on immunoreactivity to calretinin (CalR), calbindin-28K
(CalB), and TH, which show different turnover rates (Kosaka et
al., 1998; Kohwi et al., 2007; Ninkovic et al., 2007). In mice, all
three PGC subtypes seem to be GABA-expressing inhibitory neu-
rons, but the physiological characteristics and functional roles of
each neuronal subtype have not been well determined. We also
estimated the proportion of labeled postnatal-born neurons
among these three PGC subtypes (Fig. 3E-G,I). A progressive
increase of mTFP1-labeling was observed in all three PGC sub-
types, but the labeling ratio was the highest in CalR-expressing
and lowest in CalB-expressing PGCs, indicating that each PGC
subtype has the unique replacement and/or addition mode.
Therefore, as reported previously (Kohwi et al., 2007; Ninkovic et
al., 2007), all major subtypes of periglomerular OB interneurons
are continuously generated from the postnatal period through-
outadulthood, but these cells mature and are replaced at different
rates. It was reported that TH-positive PGCs are integrated to
PGLs as an addition manner (Adam and Mizrahi, 2011; Sawada et
al., 2011). These results suggest that continuous postnatal neuro-
genesis dynamically contributes to formation and reorganization
of the neural circuit in the glomerulus, consisting of terminals of
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the olfactory nerve and the dendrites of
mitral, periglomerular, and tufted cells.

Together, our comprehensive analysis
using the Cre/LoxP-based genetic labeling
method revealed the lifetime integration
dynamics of interneurons born during
postnatal OB development. Previous es-
timations of postnatal development of
the OB inhibitory network were based on
lineage-tracing experiments of limited
populations using [*H]-thymidine- and
BrdU-labeling methods (Rosselli-Austin
and Altman, 1979; Bayer, 1983; Lemasson
et al., 2005). Our genetic labeling study
targeting nearly all newborn neurons with
fluorescent proteins provided the direct ev-
idence of integration modes of postnatal-
born OB interneurons. Although similar
Cre/LoxP-based genetic labeling methods
were applied for newly generated OB in-
terneurons, most studies focused on adult-
born neurons (Ahn and Joyner, 2005;
Lagace et al., 2007; Ninkovic et al., 2007;
Imayoshi et al., 2008). Our fate-mapping
study during postnatal OB development,
combined with cell counting of total GCs,
revealed that, from the age of 1 month
onward, the integration of newborn GCs
in the OB switches from addition to re-
placement mode. Interestingly, this re-
placement is largely restricted to the deep
layers and does not extend to the superfi-
cial layers. Embryonically derived GCs are
located mainly in the superficial layers,
and there is limited turnover of this pop-
ulation (Fig. 2F).

Specific genetic targeting of postnatal-
born GCs in the OB

The OB is the first relay station of the cen-
tral olfactory system in the mammalian
brain. Synaptic connections in the exter-
nal plexiform layer (EPL) of the OB are
dominated by dendrodendritic recipro-
cal synapses between lateral dendrites
of mitral/tufted cells and GCs, the latter
being most numerous type of inhibi-
tory interneurons in the OB (Isaacson
and Strowbridge, 1998; Shepherd and
Greer, 2004; Egger and Urban, 2006).
The GC-to-mitral/tufted dendroden-
dritic inhibition plays pivotal roles in
odor representation and processing (Yokoi
et al., 1995; Shepherd and Greer, 2004).
PGCs, which synapse within and between
glomeruli, also mediate lateral inhibition
in the OB together with granule cells.
They have inhibitory synapses on mitral

cells and tufted cells (Shepherd and Greer, 2004).

By using inducible genetic labeling strategies, we demon-
strated above that the prolonged supply of newborn neurons
from the SVZ/LV contributes to the formation of neuronal cir-
cuits in the postnatal OB. To investigate whether the postnatal
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1-3) and dishabituation trials. In trials 1-3, filter papers with mineral oil were presented to mice for 3 min with 10 min
intervals. In trial 4, filter papers scented with basil were presented to the mice for 3 min. There were no differences in
investigation time in each trial for the control (n = 6) and 0B-mutant (n = 6) mice. Both groups showed significantly
increased investigation after the dishabituating odor (between trials 3 and 4). B, Habituation (trials 1- 4; basil odor) and
dishabituation trials (trials 5; peppermint odor). Both groups again showed significantly increased investigation after the
dishabituating odor (between trials 4 and 5). ns, Not significant. **p < 0.01 (two-tailed Student’s t test). ***p < 0.001
(two-tailed Student’s t test).

neurogenesis functionally contributes to olfactory-related behav-
iors, we performed a loss-of-function study of postnatal-born OB
interneurons. In order that the study of the cellular, network, and
behavioral consequences of this manipulation is not confounded,
itis vital that our manipulation does not impact other neurogenic
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Figure 7.  Postnatal-born GCs regulate flexible olfactory associative learning. A, B, A schematic drawing of the experimental

time course (A), and schematic representation of the olfactory associative memory test (B). Three-month-old control and 0B-
mutant mice were trained for 4 d to associate a reward (sugar grains) with either of two related odorants ((+)- and (—)-carvone
enantiomers). On day 5 (single arrowhead), the carvone enantiomers were presented without the sugar reward, and digging time
was measured for each pair of related odorants. After the nitial probe test, the sugar reward was associated with the other odorant,
and the first reversal learning task was started on the same day. From days 6 to 9 (double arrowheads), probe tests for reversal
learning were performed every day, and reversal learning trials were conducted immediately after each probe test. On day 9, after
the probe test, the sugar reward was again associated with the initial odorant, and the second reversal learning was started. From
days 10 to 12 (triple arrowheads), probe tests for the second reversal learning were performed every day followed by continuing
learning. C, D, Control (n = 6) and OB-mutant (n = 6) were subjected to the above flexible olfactory associative memory test.
Mean digging times (seconds) == SEM during the 4 min probe test period are shown. *p << 0.05; **p << 0.01; ***p << 0.001;
two-way repeated-measures ANOVA of odor and day followed by Fisher's LSD post hoc test (control; odor: F; 5y = 4.542, p =
0.0863; day: ; 55, = 1.386, p = 0.2420; interaction: F; 35) = 20.18, p < 0.0001, 0B-mutant: odor: F, 5, = 1.556, p = 0.2803;
day: F; 35 = 1.731,p = 0.1423; interaction: f; 55) = 7.471,p < 0.0001). E, Ratio was calculated for probe test period using the
digging times according to the following formula: (+)-carvone/((+)-carvone + (—)-carvone). *p << 0.05; **p << 0.01; two-
way repeated-measures ANOVA of mouse group and day followed by Fisher's LSD post hoc test (group: F; ;4 = 0.2566, p =
0.6247; day: F; ;) = 19.31, p < 0.0001; interaction: f; ;,) = 3.957,p < 0.0012).

J. Neurosci., April 23, 2014 - 34(17):5788 -5799 * 5795

domains, including the hippocampal DG
during the postnatal stages. To this end,
we adapted a more sophisticated intersec-
tional genetic strategy based on dual re-
combination using both the Cre and Flp
recombinases (Branda and Dymecki, 2004;
Imayoshi et al, 2011). In Cre- and Flp-
dual recombinase-responsive alleles, the
reporter/effector-encoding sequence is
interrupted by a loxP-flanked STOP cas-
sette, followed by an Frt-flanked STOP
cassette. Using this strategy, the reporter/
effector proteins are expressed only when
Cre and Flp are at least at some point co-
incidently or sequentially present within
the target population (Fig. 4A). We used
DIx5/6-Flpe transgenic mice as the Flp-
driver strain, which induces efficient re-
combination specifically in forebrain
GABAergic interneurons, including the
OB interneurons (Miyoshi et al., 2010;
Imayoshi et al., 2012). Newborn neurons
in the hippocampal DG are glutamatergic
excitatory neurons and hence not in the
DIx5/6-lineage. Indeed, when we crossed
mGFAP-Cre and DIx5/6-Flpe mice with
R26R-CAG-LoxP-Frt-EGFP (original strain
name is RCE:dual) mice (Miyoshi et al.,
2010), EGFP reporter expression was spe-
cifically observed by neuroblasts in the
SVZ/LV and RMS and by interneurons in
the OB (Fig. 4 B, C,G-K), and not in new-
born neurons in the DG (Fig. 4D), cortical
astrocytes (Fig. 4E), or Bergmann glial
cells of the cerebellum (Fig. 4F). Although
we had an extra step of recombination in-
volving Flpe- and Frt-flanked STOP cas-
sette in the triple transgenic line, the
efficiency of labeling in the OB was com-
parable with that found in the original
labeling just by Cre (mGFAP-Cre;R26R-
CAG-LoxP-mTFP1) (Figs. 1 and 4G-K),
and EGFP expression was specifically lim-
ited to the postnatal-born inhibitory neu-
rons in the OB. Newborn glutamatergic OB
interneurons should not be targeted be-
cause the DIx5/6-Flpe transgenic line in-
duces specific recombination in GABAergic
interneurons (Miyoshi et al., 2010).

To specifically inhibit the function of
postnatal-born OB interneurons, we
used the R26R-CAG-LoxP-Frt-EGFP-
TeNT mouse strain (Fig. 5A). TeNT (tet-
anus toxin light chain) suppresses vesicle-
mediated neurotransmitter release by
cleaving the synaptic-vesicle-associated
membrane protein VAMP2. In mGFAP-
Cre;DIx5/6-Flpe;R26R-CAG-LoxP-Frt-
EGFP-TeNT triple transgenic (designated
as OB-mutant) mice, EGFP-TeNT ex-
pression was observed in neuroblasts in
the SVZ/LV, RMS, and in GCs in the OB
(Fig. 5B-D). To examine whether synap-



5796 - J. Neurosci., April 23,2014 - 34(17):5788-5799

tic transmissions within postnatal-born
GCs are inhibited, a genetically engi-
neered Moloney viral vector was injected
into the SVZ/LV (Nakashiba et al., 2012)
(Fig. 5E-H ). Four weeks after the viral in-
jection, mCherry-fused VAMP2-positive
puncta (mCheV2) were observed in the
OB of control mice. These puncta were
superimposed nearly perfectly with GFP-
fused synaptophysin (SypGFP). Con-
versely, in OB-mutant mice, mCheV2
signal was not observed in SypGFP-posi-
tive puncta, suggesting that synaptic
transmission of postnatal-born GCs is in-
hibited (Fig. 5G,H). Basic histological
structures of the OBs, including numbers
of GCs and Reelin-expressing mitral cells,
of control and OB-mutant mice were in-
distinguishable (Fig. 5I-M).

Postnatal-born OB interneurons are
essential for flexible olfactory
associative learning

To examine whether the prolonged post-
natal neurogenesis is required for the be-
havior of animals (i.e., in discrimination
and memory of odors), we performed a
habituation—dishabituation test in con-
trol and OB-mutant mice. Spontaneous
odor exploration in OB-mutant mice was
not different from that of controls (Fig. 6A).
Although it is quite difficult to experimen-
tally prove that odor detection is completely
preserved, results of the habituation—disha-
bituation test indicate that OB-mutant mice
can detect and respond to odor stimuli as
well as control mice (Fig. 6B).

To investigate the influence of inhibi-
tion of postnatal OB neurogenesis on
odor-associated learning and memory,
3-month-old control and OB-mutant
mice were trained for 4 d to associate one
of two related odorants (enantiomers)
with a sugar reward (Fig. 7A, B). On day 5,
we separately placed both odors without
sugar beneath the cage bedding and mea-
sured the digging time spent near each
odor. Both control and OB-mutant mice
spent significantly more time near the
odorants associated with sugar rewards
(Fig. 7C-E), indicating that both were
able to acquire olfactory associative mem-
ory. It was reported that such simple ol-
factory associative learning was not
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27.36,p = 0.0008; day: F; 55 = 2.352,p = 0.0353; interaction: ; 55 = 12.42,p << 0.0001). E, Ratio was calculated for probe test period
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day: F7 115 = 24.53,p << 0.0001; interaction: F; ) = 7.549, p < 0.0001).

affected in adult mice, in which newly generated neurons were
eliminated by DT-A (Imayoshi et al., 2008; Sakamoto et al.,
2011). Therefore, in the absence of postnatal-born OB interneu-
rons, simple discrimination of two related odorants and acquisi-
tion of odor-associated memory are not fundamentally affected,
although more difficult tasks of odor-associated memory may depend
on postnatal neurogenesis (Alonso et al., 2012).

Thus, we conducted reversal-learning experiments using the
same olfactory associative learning test. After the initial odor-

associated memory was generated, on days 5—8, we switched the
sugar-reward from (+)-Carvone to (—)-Carvone (Fig. 7A) to
begin the first reversal learning. Control mice accomplished this
task with ease and spent significantly more time digging near the
newly associated odorant (—)-Carvone (Fig. 7C), in contrast to
the OB-mutant mice (Fig. 7D). The OB-mutant mice’s deficits in
the flexibility of olfactory association learning and memory were
even more apparent in the second reversal memory test, during
which they spent nearly equal time digging near both odorants
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Figure 9.  Blocking synaptic transmission of postnatal-born GCs in the hippocampal DG does not affect flexible olfactory asso-

ciative learning. 4, Schematic drawing of our genetic strategy to selectively target postnatal-born GCs in the hippocampal DG.
Postnatal NSC Cre-driver, mGFAP-Cre mice were crossed with VGLUTT-LoxP-TeNT mice, in which the LoxP-Stop-LoxP-IRES-TeNT
gene cassette was knocked into the 3’-noncoding region of the glutamatergic, neuron-specific VGLUT1 gene locus. B, €, Hip-
pocampal sections from adult control (B) and DG-mutant (€) mice stained with anti-VAMP2 antibody (red) and nuclear DAPI (blue).
Hippocampal CA3-regions are magnified in B” and C’, respectively. D, E, Control (n = 6) and DG-mutant (n = 6) mice were
subjected to the same olfactory associative memory tests shown in Figure 74, B. DG-mutant mice did not exhibit impaired flexible
associative olfactory learning and memory. Mean digging times (seconds) == SEM during the 4 min probe test period are shown.
*p < 0.05; **p < 0.01; ***p < 0.001; two-way repeated-measures ANOVA of odor and day followed by Fisher's LSD post hoc test
(control; odor: F; 5) = 9.044, p = 0.0298; day: F; 55, = 1.782, p = 0.1222; interaction: F; 35) = 19.07,p << 0.0001, DG-mutant:
odor: F; 5 = 4.058, p = 0.1142; day: F; 35) = 1.754, p = 0.1370; interaction: ; 55, = 17.87, p < 0.0001). F, Ratio was
calculated for probe test period using the digging times according to the following formula: (+)-carvone/((+)-carvone +
(—)-carvone). *p << 0.05; **p < 0.01; ***p < 0.001; two-way repeated-measures ANOVA of mouse group and day followed by
Fisher's LSD post hoc test (group: ;1) = 2.966, p = 0.1233; day: F; ;o) = 12.65, p < 0.0001; interaction: F; ;) = 7.503,p <
0.0012). Scale bars, 100 m.

(Fig. 7 D, E; days 10—12). Therefore, postnatal-born OB interneu-
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found that these mutant mice having def-
icits in late-postnatal neurogenesis also
showed severe defects in the flexibility of
olfactory associative learning and mem-
ory (Fig. 8C-E). These results indicate
that ongoing supply of recently generated
interneurons has crucial functions for
the flexible olfactory associative learning,
although embryonically born OB in-
terneurons are sufficient for simple dis-
crimination of two related odorants and
initial acquisition of odor-associated
memory. As neurogenesis in the adult
hippocampus is also reported to play sig-
nificant roles in the flexible use of spatially
precise learning strategies (Garthe et al.,
2009), it is possible that they also contrib-
ute to flexible odor-associated learning.
To address this, we specifically silenced
the postnatal-born DG glutamatergic
neurons by generating VGLUTI-LoxP-
TeNT knock-in mice and crossing them
with mGFAP-Cre mice (I.I. and RK,
manuscript in preparation) (Fig. 9A).
Here, because newborn neurons in the OB
are GABAergic inhibitory neurons and do
not express VGLUT1, they remain intact.
VAMP2 immunoreactivity can be used as
a criterion for transmission at mossy
fiber-CA3 synapses (Nakashiba et al,
2012). VAMP2 immunoreactivity was
greatly reduced specifically in mossy fiber
terminals of mGFAP-Cre;VGLUT1-LoxP-
TeNT double transgenic mice (DG-
mutant), suggesting an inhibition of
synaptic transmission of postnatal-born
dentate GCs (Fig. 9B, C). To our surprise,
DG-mutant showed no deficits in flexible
odor-associated learning and memory
(Fig. 9D-F), indicating that the contribu-
tion of DG newborn neurons to flexible
olfactory associative learning is minimal.
Therefore, continuous postnatal neuro-
genesis in the SVZ/LV-OB and ongoing
supply of newborn interneurons contrib-
ute to optimized behaviors in flexible ol-
factory associative learning.

Discussion

Most neurons comprising the mamma-
lian CNS are produced during embryo-
genesis. The vast majority of NSCs switch
to give rise or transform to glial cells as

rons have critical roles on the flexibility of the olfactory associa-
tive learning. In this behavioral analysis, we performed the odor-
associated learning and memory test using 3-month-old control
and OB-mutant mice; therefore, most GCs, except for superfi-
cial/outer GCs, would be silenced according to our fate-mapping
results. To analyze more causal relationship between postnatal
neurogenesis and flexible olfactory associative learning, we per-
formed the same associative learning tests by using mutant mice
in which late-postnatal neurogenesis was acutely ablated by diph-
theria toxin fragment A (DT-A) (Fig. 8A,B). To our surprise, we

brain development proceeds, whereas, in the SVZ of the LV, NSCs
are maintained and continue to generate newborn neurons postna-
tally (Kriegstein and Alvarez-Buylla, 2009). Comprised by a large
number of interneurons, this prolonged supply of newborn neurons
from the SVZ/LV aids in forming and maintaining the inhibitory OB
network.

Although postnatal-born GCs are preferentially integrated
into deep regions of the GCL in the OB, a substantial proportion
of embryonic-born GCs are maintained in the outer/superficial
regions without replacement (Fig. 2F). Interestingly, it has been
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argued that outer/superficial GCs, whose dendrites target pri-
marily the superficial lamina of the EPL, establish synapses with
tufted cells, whereas deep GCs mostly contact the dendrites of mitral
cells in the deep lamina of the EPL (Mori et al., 1983; Orona et al.,
1983; Shepherd and Greer, 2004; Imamura et al., 2006). Therefore,
one interesting possibility is that these two subpopulations funda-
mentally modulate distinct neural circuits. This, in turn, implies that
the activity of tufted cells is under the preferential control of
embryonic-born GCs, whereas postnatal-born GCs provide an in-
hibitory drive to both mitral and tufted cells.

Interestingly, OB neurogenesis mutant strains tested in this
study, the OB-mutant (Fig. 7) and the late-postnatal neurogen-
esis mutant (Fig. 8), showed severe impairments in flexible olfac-
tory associative learning. These results indicate that continuous
postnatal neurogenesis and ongoing supply of newborn in-
terneurons regulate optimized behaviors in flexible olfactory as-
sociative learning. Conversely, in these OB neurogenesis mutant
mice, embryonically born OB interneurons should be normal;
therefore, embryonically born OB interneurons are sufficient for
simple odor discrimination and initial acquisition of odor-
associated memory, although it is possible that postnatal-born
new neurons also intensely contribute to these functions in more
difficult odor discrimination (Alonso et al., 2012). It is highly
desirable to reveal how the differences in anatomical location and
turnover rates between embryonically (static, superficial layers)
and postnatally (turnover, deep layers) derived GCs contribute to
functional dissociations in olfactory-related behaviors. More re-
fined strategies to manipulate these OB inteneuron populations
independently will be required to fully address this notion. In
addition to GCs and PGCs, numerous types of GABAergic in-
terneurons have been identified in the OB (Pressler and Strow-
bridge, 2006; Batista-Brito et al., 2008; Eyre et al., 2008, 2009;
Kosaka and Kosaka, 2011; Huang et al., 2013; Kato et al., 2013;
Miyamichi et al., 2013), including deep short-axon cells, Blanes
cells, and EPL interneurons. Although lineage and turnover anal-
yses of these OB interneuronal populations have just been started
(Batista-Brito et al., 2008), dynamic turnover of these cells by
postnatal neurogenesis may also contribute to the reorganization
of OB circuitry.

Importantly, it was reported that, shortly after newly gener-
ated GCs differentiate and become synaptically integrated, they
exhibit long-term synaptic plasticity (Nissant et al., 2009); more-
over, this ability is progressively lost as the GCs mature over time,
indicating that recently generated, newborn GCs play a more
distinct role in the plastic change in the bulber local circuits than
more mature counterparts (Nissant et al., 2009). Recently, it was
reported that immediate activation of newly generated GCs via
channelrhodopsin accelerated difficult odor discrimination
learning and improved memory, indicating an immediate causal
relationship between the activity of newborn neurons and the
function of the OB circuit (Alonso et al., 2012). Strikingly, neu-
rogenesis in the SVZ of the LV occurs throughout adulthood. OB
interneurons receive glutamatergic inputs from centrifugal in-
puts originating from other regions of the brain, such as the
olfactory cortex (Shepherd and Greer, 2004; Lazarini and Lledo,
2011; Manabe et al., 2011; Boyd et al., 2012; Breton-Provencher
and Saghatelyan, 2012; Markopoulos et al., 2012). Interestingly,
long-term synaptic plasticity was selectively observed between
centrifugal glutamatergic inputs and recently generated GCs
(Nissant et al., 2009). Therefore, the continuous supply of newly
generated OB interneurons allows higher brain areas to partici-
pate in the modification of odor detection and value judgment of
odor information. Our results demonstrated that the constant
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arrival of newborn interneurons maintains structural and func-
tional plasticity in the postnatal OB circuitry. It appears to medi-
ate this plasticity through the highly dynamic formation and
elimination of dendrodendritic synapses with principal neurons
(mitral and tufted cells), which may play pivotal roles in flexible
odor-associated learning processes that require dynamic eras-
ability as well as adaptable consolidation of odor-associated
memories.
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