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Spatial informationabouttheenvironmentisencodedbytheactivityofplaceandgridcells inthehippocampalformation.Asananimaltraverses
a cell’s firing field, action potentials progressively shift to earlier phases of the theta oscillation (6 –10 Hz). This “phase precession” is observed
also in the prefrontal cortex and the ventral striatum, but mechanisms for its generation are unknown. However, once phase precession exists in
one region, it might also propagate to downstream regions. Using a computational model, we analyze such inheritance of phase precession, for
example, from the entorhinal cortex to CA1 and from CA3 to CA1. We find that distinctive subthreshold and suprathreshold features of the
membrane potential of CA1 pyramidal cells (Harvey et al., 2009; Mizuseki et al., 2012; Royer et al., 2012) can be explained by inheritance and that
excitatory input is essential. The model explains how inhibition modulates the slope and range of phase precession and provides two main
testable predictions. First, theta-modulated inhibitory input to a CA1 pyramidal cell is not necessary for phase precession. Second, theta-
modulated inhibitory input on its own generates membrane potential peaks that are in phase with peaks of the extracellular field. Furthermore,
we suggest that the spatial distribution of field centers of a population of phase-precessing input cells determines, not only the place selectivity,
but also the characteristics of phase precession of the targeted output cell. The inheritance model thus can explain why phase precession is
observed throughout the hippocampal formation and other areas of the brain.
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Introduction
Place-specific firing and local field potential (LFP) oscillations in
the rodent hippocampal formation could be important to under-
standing navigation and episodic memory (Buzsáki, 2005).
Within a firing field, action potentials exhibit phase precession;
that is, the firing phases relative to the LFP theta decrease as a
function of position (O’Keefe and Recce, 1993; Hafting et al.,
2008). Phase precession can encode spatial information (Jensen
and Lisman, 2000; Reifenstein et al., 2012a) and can temporally
compress behavioral sequences to match the time scales of neu-
ronal plasticity (Skaggs et al., 1996; Bi and Poo, 1998). Mecha-
nisms generating phase precession, however, remain unresolved
(Maurer and McNaughton, 2007; Burgess and O’Keefe, 2011;
Eggink et al., 2014). Network models of phase precession empha-
size the role of recurrent inputs from cells with neighboring place
fields (Jensen and Lisman, 1996; Tsodyks et al., 1996; Wallenstein

and Hasselmo, 1997; Baker and Olds, 2007; Navratilova et al.,
2012), coupled excitatory and inhibitory neurons (Bose et al.,
2000; Castro and Aguiar, 2012; Cutsuridis and Hasselmo, 2012),
and a summed-population effect (Geisler et al., 2010; Thurley et
al., 2013). Alternatively, cellular models suggest that phase pre-
cession results from an interaction between a somatic and a den-
dritic signal within a cell (Kamondi et al., 1998; Magee, 2001;
Harris et al., 2002; Mehta et al., 2002; Leung, 2011), a superposi-
tion of two oscillations with different frequencies (O’Keefe and
Recce, 1993; Lengyel et al., 2003; O’Keefe and Burgess, 2005),
synaptic facilitation (Thurley et al., 2008), persistent firing (Has-
selmo, 2008), or excitatory inputs from two regions (Chance,
2012). The possibility of feedforward inheritance, however, has
not been studied thoroughly.

Phase precession is observed, not only throughout the hip-
pocampus (for example, see Skaggs et al., 1996), but also in the
medial entorhinal cortex (MEC; Hafting et al., 2008), the pre-
frontal cortex (Jones and Wilson, 2005), the subiculum (Kim et
al., 2012), and the ventral striatum (van der Meer and Redish,
2011). Interestingly, principal cells in these regions receive pro-
jections from regions that also show phase precession. Can phase
precession observed in a cell be simply inherited from a popula-
tion of cells upstream?

In this computational study, we investigate how phase preces-
sion can be propagated from one region to another. We first
analyze how phase precession in CA3 can lead to characteristic
subthreshold (Harvey et al., 2009) and suprathreshold (for exam-
ple, see Mizuseki et al., 2012) features of phase precession in a
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CA1 place cell. We also outline how inhi-
bition modulates phase precession in CA1
(Royer et al., 2012). Next, in a more gen-
eral feedforward network, we focus on
spatial distributions of field centers of ex-
citatory phase-precessing input cells, in-
cluding grid cells in the MEC. We
determine the resulting place selectivity
and the phase precession characteristics of
a target cell and explain, for example, why
phase precession in hippocampal in-
terneurons is weaker than in principal
neurons (Maurer et al., 2006a; Ego-
Stengel and Wilson, 2007; Geisler et al.,
2007). The proposed inheritance mecha-
nism may thus account for phase preces-
sion in various cell types in the
hippocampus proper, subiculum, pre-
frontal cortex, and ventral striatum.

Materials and Methods
Model of the CA1 membrane potential. We
model the membrane potential VCA1(t) at the
soma of a CA1 pyramidal cell by taking into
account an inhibitory and an excitatory com-
ponent. Inhibitory input is characterized by an
ongoing oscillation of the membrane voltage of
a CA1 pyramidal cell. The oscillation is coher-
ent with the LFP (Kamondi et al., 1998; Bland
et al., 2005) and is independent of place field
activity (Harvey et al., 2009; Epsztein et al.,
2011). We model this intracellular theta oscil-
lation with a sinusoidal function as follows:

V��t� � B��1 � cos(��t � ���] (1)

where B is the amplitude of the oscillation, �� is
its angular frequency (�� � 2�f� and f� is the
frequency of the theta LFP), and �� is the phase
of the intracellular oscillation peak with respect
to the theta LFP peak. Here, we use the conven-
tion that 0° corresponds to the peak of the theta
LFP recorded in the CA1 pyramidal cell layer.
We note that the DC level of the inhibitory
contribution V� (t) is below zero; that is, the
oscillation is always hyperpolarizing.

Phase-precessing excitatory input from CA3
to CA1 is characterized by the dynamics of the
CA3 population firing rate and the shape of
EPSPs; input from the entorhinal cortex is an-
alyzed at a later stage. To model the excitatory
component from CA3, we assume that the an-
imal is traversing a place field with constant
speed so that time and space are equivalent up to a constant conversion
factor. The place fields of the cells of the CA3 population are assumed to
be identical and completely overlapping. This assumption will be relaxed
later.

The time course of the firing rate of a CA3 cell is described by two
parts. The first part reflects the place field: the average firing rate
increases when the animal enters the place field, achieves its maximum at
the center of the place field, and decreases when the animal exits the place
field. We describe this ramp-like behavior of the firing rate with a Gauss-
ian function x(t) around the center tc of the place field as follows:

x�t� � exp� � �t � tc�
2

	2 � (2)

where 	 determines the place-field width (�3	). The second part of the
firing rate model is an oscillatory modulation that accounts for CA3
phase precession. The oscillatory modulation is determined as follows:

1 � C cos(�
t � �
) (3)

and is characterized by the angular frequency �
, where �
 � 2�f
 and f

is the frequency of the oscillation, the phase offset �
 with respect to the
reference theta LFP, and the modulation depth C. Multiplying this oscil-
latory modulation with the ramp x(t) in Equation 2, we find the firing-
rate model of the input of one CA3 cell to a CA1 cell as follows:


�t� � 
0�1 � C cos��
t � �
��x�t�, (4)

where 
0 is the average firing rate in the center of the field. The combined
firing rate from a population of N identical CA3 cells is then N
(t).

A

B

C

D

E

F

Figure 1. Computational model for inheritance of phase precession from CA3 to CA1. A, Model of the firing rate of a CA3 cell
during the traversal of a place field between 0 and 1 s time. The vertical gray shaded bars indicate half-theta periods (1/(2f�) �
62.5 ms) and the middle of each gray bar corresponds to 0° (�360°). Peaks of the firing rate occur at earlier and earlier theta
phases, which indicates phase precession. B, Raster plot of spike times of N � 200 CA3 cells. Spikes are generated by an inhomo-
geneous Poisson process using the rate in A. C, Contribution of 200 CA3 cells to the voltage in a CA1 cell. Each spike in B elicits an
EPSP (inset) and EPSPs are summed. D, The inhibitory contribution to the CA1 membrane potential is phase locked to the extra-
cellular LFP and is independent of place-field activity. E, Membrane potential of a CA1 cell obtained by adding the CA3 input in C to
the intracellular theta oscillation in D. F, Theta phase of peaks of the CA1 membrane voltage in E. Open dots indicate membrane-
potential peaks outside of the place field; filled dots, inside of the place field. Further model parameters (for details, see Materials and
Methods): C � 0.7, 	� 0.35 s, f
 � 8.5 Hz, �
 � 200°, 
0 � 10 spikes/s, �� 10 ms, �max � 0.15 mV, B � 1 mV, �� � 0°.

7716 • J. Neurosci., May 28, 2014 • 34(22):7715–7731 Jaramillo et al. • Inheritance of Phase Precession



To ensure that the oscillating, place-field like excitatory input 
(t) to a
CA1 pyramidal cell shows phase precession, we assume that f
 is greater
than the theta frequency f� � 8 Hz (Geisler et al., 2010); furthermore, we
require several oscillation cycles within a place field, that is, 3	 �� 1/f�;
typically 	 � 0.3 s corresponding to a place-field size of �1 s (Fig. 1A).

The rate 
(t) serves as a basis to generate the spiking input to a CA1
pyramidal cell. To model the variability of spiking input, we describe the
activity of a population of N CA3 cells by an inhomogeneous Poisson
process with time-dependent firing rate N
(t). We represent a spike at
time tf as a delta function 
(t 	 tf) centered at the time of firing. Com-
bining the spikes from all N input cells, we obtain the total neural re-
sponse function as follows:

R�t� � �
f


�t � tf� (5)

where tf is the fth spike time. An example is shown in Figure 1B. For the
analysis and the simulations, it is important at what times neurons in the
input population were active, but it is not important which particular
CA3 neuron actually fired. Therefore, we do not keep track of the CA3
neuron that fired.

To describe how an input spike affects the membrane potential of a
CA1 pyramidal cell, we assume that each spike elicits an EPSP that is
identical for all spikes and all input neurons. For simplicity, we model
EPSPs by an � function as follows:

��t� �
�max

�
t exp�1 �

t

�� (6)

where �max is the maximum amplitude obtained at t � � and � determines
both the rise time and decay time of the EPSP. We restrict the domain of
�(t) to positive time values, that is, t � 0, and we assume that �(t) � 0 for
t � 0. The CA3 contribution to the CA1 excitation vinput(t) for a Poisson
spiking model is then calculated as follows:

v input�t� � R�t� � ��t� (7)

� �
f

��t � tf� (8)

where � represents the operation of convolution. An example simulation
is shown in Figure 1C.

To model the time course of the subthreshold membrane potential of
a CA1 pyramidal cell during a place-field traversal, we add the inhibitory
component in Equation 1 and the excitatory component in Equation 8.
The total subthreshold membrane potential is calculated as follows:

vCA1�t� � V��t� � vinput�t� � Vrest (9)

where Vrest is the resting membrane potential, which is 	70 mV in the
simulations. The example simulation in Figure 1E shows that outside the
place field, that is, where excitatory input is negligible, the membrane
potential oscillates at theta frequency f� with amplitude B and peaks at
phase �� � 0° with respect to the LFP (i.e., peaks concurrently with the
LFP peaks).

Within the place field, inhibitory and excitatory input interfere. The
phases (again with respect to the LFP) of local maxima of the membrane
potential are plotted against time in Figure 1F.

Analytical expressions for the mean-field subthreshold membrane poten-
tial. To mathematically describe properties of the model of the mem-
brane potential of a CA1 pyramidal cell, we first derive expressions for the
mean field; that is, the trial-averaged membrane potential. The noise due
to the variable and discrete spiking activity of the CA3 neurons is char-
acterized at a later stage.

The mean-field expression for the excitatory input in Equation 8 is as
follows:

V input�t� � 
vinput�t�� (10)

� 
R�t�� � ��t� (11)

� N
�t� � ��t� (12)

where �.� indicates trial averaging. Note that we have used an uppercase V
to denote a mean-field voltage. To proceed, we consider the kernel �(t) as
a filter ��(�) :� F(�(t))(�) in the frequency domain where F denotes the
Fourier transform. The filter �� has magnitude 	��(�)	 � (e�max�)/(1 �
� 2� 2) and phase �(�) � arg(��(�)) � 2tan 	1(��) where arg denotes the
operation that yields the angle of a complex number. Using Equations 4
and 6, we can approximate Vinput(t) for � � �
 �� 1/	 as follows:

V input�t� 
 e N
0�max� � N
0C	�̃��
�	cos��
�t � ��� � �
�x�t � �g�

(13)

where �� � 	(��(�))/(��) is the phase delay and �g � 	�(�)/� is the
group delay (Haykin and Moher, 2009). For the time scales involved in
this integration problem (�
� � 1), we can approximate �� 
 �g 
 1.8�
and rewrite the above expression as follows:

V input�t� 
 e N
0�max��1 �
C

1 � �

2�2 cos��
�t � 1.8�� � �
��

� x�t � 1.8��. (14)

The excitatory contribution Vinput(t) to the CA1 membrane voltage is
therefore a scaled (by eN�max�), temporally shifted (by 1.8�), and filtered
(by 1/(1 � � 2


� 2)) version of the CA3 firing rate 
(t) in Equation 4. The
total mean-field membrane potential, including the ongoing theta oscil-
lation and the resting membrane potential, is as follows:

VCA1�t� � Vinput�t� � V��t� � Vrest


 e N
0�max��1 �
C

1 � �

2�2 cos��
�t � 1.8�� � �
��

� x�t � 1.8�� � B��1 � cos���t � ���� � Vrest. (15)

To further characterize the mean-field membrane potential VCA1 and
to be able to compare its properties to experimentally accessible
quantities, we assume that, in the center of the place field (where
x(t) 
 1), the oscillation of the membrane potential is mainly due to
the excitatory input from CA3, which means that the oscillation am-
plitude due to the ongoing inhibitory input can be neglected. In other
words, we assume that eCN
0�max� �� B. Using this approximation,
in the center of the place field the oscillation amplitude is calculated as
follows:

�Vosc �
eCN
0�max�

1 � �

2�2 . (16)

Furthermore, the CA1 membrane potential shows a mean depolarization
ramp that is calculated as follows:

�Vramp � eN
0�max�. (17)

We can readily calculate the modulation depth CVCA1
of the CA1 mem-

brane potential by taking the ratio of the oscillation amplitude �Vosc and
the average depolarization �Vramp as follows:

CV
CA1

:�
�Vosc

�Vramp
�

C

1 � �

2�2 (18)

where C is, as before, the modulation depth of the CA3 population activ-
ity. In other words, the modulation depth CVCA1

of the CA1 mean-field
membrane potential oscillation is a filtered (by 1/(1 � � 2


� 2)) version of
the modulation depth C of the CA3 firing rate.

Quantitative analysis of membrane-potential noise. The membrane
potential of the CA1 model cell shows fluctuations because the input
is described by discrete spikes and spike times are generated by a
Poisson process. Below, we perform a quantitative analysis of this
variability that is termed shot noise. The properties of this noise will
then be compared with the properties of the mean-field membrane
potential.
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One way of quantifying the effects of shot noise on the excitatory
contribution vinput(t) is by calculating its SD as follows:


v input � 

�vinput
2 � (19)

where �.� denotes, again, an average of realizations, or trials, of the Poisson
process. We note that this SD of the membrane potential does not take
into account the ongoing oscillations V�.

The second moment of the membrane potential in Equation 8 is de-
fined as follows:


v input
2 �t�� � ���

k

��t � tk��2� (20)

� ��
k

�
j

��t � tk� ��t � tj�� . (21)

The next step in the analysis is to separate the terms dependent on the
realization from those that are independent. For this, we partition the
spike train into time intervals Il � (tl, tl�1) of infinitesimal length �tl. We
introduce a function �(l ) that counts the number of events (i.e., spikes)
in the interval Il. We can thus write the second moment as follows:


v input
2 �t�� � ��

l��l

��t � tl���t � tl����l ���l�� � �
l

�2�t � tl��
2�l ��

(22)

where we have separately considered the cases l � l� and l � l�. Using the
definition of an inhomogeneous Poisson process (for example, see
Kempter et al., 1998), we perform an average of the functions � over
realizations to obtain ��(l )�(l�)� � N 2
(tl)�tl
(tl�)�tl� and �� 2(l )� �
N
l�tl. With these averages, we can express Equation 22 as a Riemann
sum that equates to two convolutions in the limit when �tl and �tl� tend
to zero:


v input
2 �t�� � �N
�t� � ��t��2 � N
�t� � �2�t�. (23)

Finally, using Equations 12 and 23, we can calculate the variance of the
membrane potential as follows:


�v input
2 �t�� � 
vinput

2 �t�� � 
vinput�t��
2 (24)

� N
�t� � �2�t�. (25)

To obtain a closed expression of the variance, we approximate the func-

tion �2�t� �
�max

2

�2 � t2 exp�2�1 �
t

���with a delta function as follows:

�2�t� 

e2

4
��max

2 
�t � �� (26)

where the factor
e2

4
��max

2 equals the integral�0
�dt �2�t�. Now the convo-

lution is easy to perform and the variance is as follows:


�v input
2 �t�� 


Ne2

4
��max

2 
�t � ��. (27)

The input firing rate 
(t 	 �) depends on time t, as does the variance
��v 2

input�. To obtain a time-independent estimate of the variance that
characterizes the noise within the place field, we replace the time-
dependent rate 
(t 	 �) by the average firing rate 
0 in the center of the
place field. A typical value of the SD 
vinput of the membrane potential,
then, is as follows:


v input �
e �max

2

N
0�. (28)

We can now construct a “quality parameter” � of the membrane poten-
tial that characterizes the relative strength of the oscillation amplitude
�Vosc with respect to the noise amplitude 
vinput as follows:

� :�
e

2

�Vosc


vinput

�
C

1 � �

2�2 
N
0�. (29)

The prefactor e/2, which is close to 1, was introduced to arrive at a simple
expression devoid of an irrelevant numerical prefactor. The contribu-
tions to the quality parameter � are therefore: the number N of active
CA3 cells projecting to a single CA1 cell, the time constant � of the EPSP,
the modulation depth C of the population rate oscillation at angular
frequency �
, and the mean firing rate 
0 in the center of the place field.
Using Equations 16 and 17, we can rewrite the above expression of the
quality parameter � in terms of experimentally measurable voltages
�Vramp, and �Vosc as follows:

� �
�Vosc


e �max�Vramp

. (30)

Furthermore, using Equation 16 for �Vosc, Equation 17 for �Vramp, and
Equation 29 for �, we can determine C, N, and �max. To obtain an explicit
expression for C, we use the ratio of �Vosc and �Vramp and rearrange the
terms as follows:

C �
�Vosc

�Vramp
�1 � �2� f
 ��2�. (31)

Using this result for C in Equation 29, we find:

N � ��Vramp

�Vosc
�2 �2


0 �
. (32)

Inserting this result for N in Equation 17, we obtain:

�max �
�Vosc

�2 � �Vosc

�Vramp
�. (33)

We are thus able to derive and predict values of the model parameters C,
N, and �max. To provide an estimate of the error of the prediction, for
example of N, based on known and measurable parameters as in Equa-
tion 32, we can use a rule of propagation of errors as follows:


N �


� �N

�Vramp
�2

�
�Vramp�
2 � � �N

�Vosc
�2

�
�Vosc�
2 � ��N

�
0
�2

�

0�
2 � ��N

���
2

�
��2,

(34)

where 
N is the (predicted) error of our estimate of N and 
�Vramp,

�Vosc, 

0, and 
� are SEMs obtained from previously published studies
(Magee and Cook, 2000; Harvey et al., 2009; Mizuseki et al., 2009, 2012).

Suprathreshold model of phase precession. To account for phase preces-
sion of spikes of CA1 cells, we used the two-compartment model that was
developed by Pinsky and Rinzel (1994) for CA3 cells and adapted to the
CA1 region by Kamondi et al. (1998). This particular model reproduces
bursting in CA1 pyramidal neurons. The voltages Vs and Vd are described
by the following differential equations:

Cm

dVs

dt
� �IL � INa � IK �

gc

p
�Vs � Vd� � Is/p (35)

Cm

dVd

dt
� �IL � INa

p
� IK

s
�

gc

1 � p
�Vd � Vs� � Id/�1 � p�

(36)
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where s and d are the somatic and dendritic compartments, respectively,
Cm is the membrane capacitance per unit area, IL is a (ohmic) leak current
density, INa is a sodium current density, IK is a potassium current density,
INap is a persistent sodium current density, IKs is a slow potassium current
density, gc is the coupling conductance between the two compartments (s
and d), p is the ratio of the somatic area to the total area, Is is the synaptic
current density applied to the soma, and Id is the synaptic current density
applied to the dendrite. The current densities INa, INap, IK, and IKs, are
described by the Hodgkin-Huxley formalism (Pinsky and Rinzel, 1994).
The values for the intrinsic conductances are taken from Kamondi et al.
(1998).

The synaptic current density Id in our model represents the phase-
precessing activity of the presynaptic CA3 cells and is modeled as a sum of
EPSCs in a similar fashion as for the subthreshold model, where the CA3
input was modeled as a sum of EPSPs. As for the subthreshold model, we
assume that spikes are generated via an inhomogeneous Poisson process
and we convolve the respective neural response function with an EPSC
kernel. A single EPSC (kernel) is represented by an � function (as in Eq.
6) as follows:

�I�t� �
�I

max

�I
t exp�1 �

t

�I
� (37)

where the subscript I indicates a current kernel. The convolution of the
EPSC kernel �I with the neural response function R(t), that is, the CA3
spike train generated via a Poisson process, is precisely the current den-
sity Id that is fed onto the dendrite as follows:

Id �
1

Ad
�I�t� � R�t� �

1

Ad
�I�t� � �

f


�t � tf� �
1

Ad
�

f

�I�t � tf�

(38)

where Ad is the area of the dendritic compartment. The synaptic current
density Is, which is fed onto the soma, models the effect of the ongoing
theta oscillation that is coherent with the extracellular LFP as follows:

Is � Is
max

cos���t � �I� (39)

where �I is a phase offset with respect to the theta LFP. Values of the
model parameters used for the simulations are specified in the caption of
Figure 3.

Model for place-selective responses. In previous analyses, we assumed
that the place fields of the cells of the CA3 population that project to a
single CA1 cell are identical. We now relax this assumption and consider
the case where the place fields of the input population are spatially dis-
tributed and partially overlapping. For this, we consider a virtual rat
running on a linear track of length L at a constant speed v, so that the time
to complete a run is Ttot � L/v. We assume that, along a particular
direction (e.g., from left to right), there are N active place cells with place
fields that overlap on the track. Furthermore, we assume that these cells
exhibit phase precession within their place fields. These N input cells
project to a single output cell that linearly integrates the inputs to pro-
duce a somatic voltage. We characterize the behavior of this output cell in
terms of place-field selectivity and phase precession.

The rate 
(t,Ti) of a place cell that is active on the linear track is as
follows:


�t,Ti� � 
0�1 � C cos�2�f
�t � �i��� exp��t � Ti�
2

	2 � (40)

where Ti is the center of the place field, f
 is the frequency of the oscilla-
tion modulating each cell, C is the firing-rate modulation depth, �i is the
theta-time scale shift of the oscillation, and 	 is proportional to the place
field’s size. Because we assume phase precession at the input, the fre-
quency of the oscillation is greater than the frequency of the theta LFP ( f

� f�). As shown in previous studies, the variables Ti and �i are correlated
so that one can write �i � kTi, where k is a constant, the compression
factor (Skaggs et al., 1996; Dragoi and Buzsáki, 2006; Geisler et al., 2010).

The population firing rate 
(t) is obtained through a sum over the N
cells as follows:


�t� � �
i�1

N


�t,Ti�. (41)

For N �� 1 and if Ti�1 	 Ti �� 	 @i, we can introduce the density p of
place field centers such that the population input rate is as follows:


�t� 
 � p�T�
�t,T�dT. (42)

For place-field centers within the interval ��
Ttot

2
,

Ttot

2 �, the normaliza-

tion condition is as follows:

�
	Ttot/ 2

Ttot/ 2

p�T�dT � N. (43)

Therefore, we can calculate the population activity 
(t) analytically once
we have defined the density p of place-field centers at the input. Here, we
consider four distributions, namely pD (delta), pG (Gaussian), pU (uni-
form), and pR (ramp) defined as follows:

pD�T� � N
�T�, (44)

pG�T� �
N


�	d

exp� � T2

	d
2 �, (45)

pU�T� �
N

Ttot
for �

Ttot

2
� T �

Ttot

2
and 0 otherwise, (46)

pR�T� �
2N

Ttot
2 �T �

Ttot

2 � for �
Ttot

2
� T �

Ttot

2
and 0 otherwise,

(47)

where 	d �� Ttot is the width of the Gaussian distribution. Finally, the cell’s
output activity, that is, its somatic voltage Vout(t), is calculated as follows:

Vout�t� � 
�t� � ��t� (48)

where �(t) is, as before, a kernel representing an EPSP. We have simulated
the results for Vout(t) for each of the above distributions in Figure 5A–D.
Here, we analytically derive 
(t) for the case of p � pG. In this case, the
integral for the population rate, Equation 42, becomes:


�t� 

N
0


�	d
�

	�

�

�1 � C cos�2�f
�t � kT���

� exp��t � T�2

	2 �exp� �T2

	d
2 �dT, (49)

where the limits at infinity are taken provided the size 	d of the place-
field center distribution pG is much smaller than Ttot. Solving the above
integral, we obtain:


�t� �
N
0


��	d
2 � 	2�

exp� � t2

	d
2 � 	2�

� �1 � C exp� ���f
k	d	�2

	d
2 � 	2 � cos�2�f
t�1 �

k	d
2

	d
2 � 	2���. (50)

The above expression represents an output place field with width (pro-
portional to) 	R and modulated with a frequency fR given as follows:

	R � 
	d
2 � 	2 (51)
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fR � f
�1 �
k	d

2

	d
2 � 	2� . (52)

Furthermore, the modulation depth Cout of the output cell is calculated
as follows:

Cout � C exp� ���f
k	d	�2

	d
2 � 	2 �. (53)

Now, we calculate the phase-precession range for this output place field.
The range �� is given as follows:

�� � 2�� fR � f��3	R (54)

� 2�� f
�1 �
k	d

2

	d
2 � 	2� � f
�1 � k��3
	d

2 � 	2 (55)

� 6�f
k
	2


	2 � 	d
2

(56)

where we have used the fact that f� � f
(1 	 k) (Geisler et al., 2010). In the
limit of a large place field distribution (	d �� 	), we recover the results
predicted for a uniform distribution p � pU at the input; that is, a theta
oscillation at the output with no place selectivity.

Grid-to-place phase-precession inheritance model. To study inheritance
from grid cells to place cells in the hippocampus, we consider the case of
phase precession in grid cells of the MEC, which project to pyramidal
cells in the hippocampus via the perforant path. Solstad et al. (2006)
modeled the grid-to-place transformation as a sum of periodic modes,
corresponding to the spacings of the grids, to produce a nonperiodic
place field. We extend these results and include an oscillatory modulation
of the input grid fields to account for phase precession.

To model the periodic modes, we focus on the one-dimensional case
such that the grid-field activity G is periodic along the x-axis as follows:

G�s, x� �
Gmax

2 �cos�2�

s
x� � 1�, (57)

where Gmax is the maximum firing rate within the field and s is the
grid-field spacing; that is, distance between two consecutive grid max-
ima. By linearly combining grid fields with different spacings s, we obtain
a target function P(x) that represents the activity of a place field and is
parametrized as follows:

P� x� � Pmax exp� �x2

	2 � (58)

where Pmax is the maximum firing rate and 	 determines the size of the
place field. We can decompose the even function P(x) into Fourier modes
as follows:

P� x� �
1


2��
	�

�

P̃�k�cos�kx�dk (59)

where k � 2�/s is the spatial frequency and

P̃�k� � Pmax

	


2
exp� �k2	2

4 � (60)

is the Fourier transform of P(x). In general, P̃�k� :�
1


2�
� P�x�eikxdx.

To relate the place-field activity P(x) to the grid-field activity G(s, x) in
Equation 57, we express the cosine term in Equation 59 in terms of the
grid functions as follows:

cos�2�

s
x� �

2

Gmax
G�s,x� � 1. (61)

The expression for P(x) in Equation 59 then reads:

P� x� � �
	�

� 2
�Pmax	

Gmaxs
2 exp� ��2	2

s2 ��G�s,x� �
Gmax

2 �ds

(62)

where s � 2�/k and ds � (	2�/k 2)dk. We can express the above equa-
tion as a Riemann sum by considering N �� 1 grid fields and by discretiz-
ing s as follows:

sn � smin � �n � 1� �
smax � smin

�N � 1�
(63)

where n � {1, 2, …, N} and smin and smax are the minimum and maxi-
mum spacings, respectively. Equation 62 can be approximated (includ-
ing a factor 2 to account for both positive and negative spatial
frequencies) as follows:

P� x� 
 �
n�1

N � smax � smin

N � 1 �4
�Pmax	

Gmaxsn
2 exp� ��2	2

sn
2 �

� A�sn, 	�

�G�sn,x�

�
Gmax

2 � (64)

where A(sn, 	) is the synaptic weight connecting a grid cell with grid field
activity G(sn, x) to the target place cell. We note that the weight A(sn, 	)
depends on both the spacing sn of the input grid functions and the size 	
of the target place field; see Figure 6E for an example of A(sn, 	) for 	 �
0.22 m, N � 50, smin � 0.1 m, and smax � 4 m.

To account for phase precession, we introduce an oscillatory modula-
tion Mn of the grid-cell firing rates G(sn, x) in a similar manner as we did
for CA3 cells in Equation 3. The time-dependent modulation Mn for a
grid cell with spacing sn is as follows:

Mn�t� � C cos��nt � �� � 1 (65)

where C � (0,1] is the modulation depth, �n is the angular frequency,
and � is a phase offset. The modulated grid activities GM(sn, x) are then:

GM�sn, x� � G�sn, x� Mn �x

v� (66)

where, as in previous sections of the manuscript, we assume that our
virtual animal is running at a constant speed v such that t � x/v.

Our requirements for choosing �n and � are: (1) that there is phase
precession per se (Hafting et al., 2008), (2) that the phase-precession
slope is inversely proportional to the size of the firing field (Brun et al.,
2008), and (3) that there is phase locking of the first spike(s) within the
field (Mizuseki et al., 2009). The first requirement is fulfilled if we take �n

� �� @n, where �� is the angular frequency of the theta LFP. The second
requirement is equivalent to demanding that the phase-precession range
� is constant and the same for all grid fields; that is, the range is inde-
pendent of the grid spacing. For this, we must first define the size of a
single grid firing field, which in our model is closely related to the spacing
sn. A firing rate �20% of the peak rate delineates the extent of a firing
field (Brun et al., 2008; Kjelstrup et al., 2008). Using this criterion and
Equation 57, we can deduce that the size of a grid firing field is 
 0.7sn,
and therefore 0.7sn/v is the time spent traversing a grid field. Therefore,
the phase-precession range � can be expressed as follows:

� � ��n � ��� �
0.7sn

v
, (67)

which implies that

�n �
�v

0.7 sn
� ��. (68)

The simplest way to model phase locking of the first spike within a grid
field and to fulfill our third requirement is to ensure that the theta phase
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at entry �entry is the same for two neighboring firing fields, which are
separated by the spacing sn. The difference between the entry phases
(with respect to theta LFP) of the two consecutive grid fields should be
2�. This condition is equivalent to the following:

��n � ��� �
sn

v
� 2�. (69)

Let us express the phase offset � in Equation 65 in terms of the experi-
mentally measured entrance phase �entry. Because of the phase-locking
condition, the entry phase �entry is the same for neighboring grid fields.
Therefore, the relationship between the entrance phase �entry and the
phase offset � can be determined for any firing field. Focusing on, for
example, the central grid field, the phase offset � is approximately the
phase measured at the center of the field; that is, near the origin at x � 0
(or t � 0) (see Eq. 65). Because the central grid field is symmetric about
the origin and the phase decreases linearly with position, the phase at
grid-field entrance �entry is related to � (for any spacing sn) as follows:

� 
 �entry �
�

2
. (70)

With these requirements for �n and � in Equations 68 and 70, respec-
tively, we can write Mn in Equation 65 as follows:

Mn�x

v� � C cos� �x

0.7sn
� ��

x

v
� �entry �

�

2� � 1. (71)

Extending Equation 64, the final expression for the modulated place field
PM(x) is as follows:

PM� x� 
 �
n�1

N

A�sn, 	��G�sn, x� Mn�x

v� �
Gmax

2 �. (72)

Note that we have used the same synaptic weight function A(sn, 	) as for
the nonmodulated case in Equation 64. To obtain the membrane poten-
tial of the output cell, we perform the convolution between PM(x) and an

EPSP kernel ��t� � ��x

v� as follows:

Vout�x� � PM�x� � ��x

v�. (73)

This is plotted in Figure 6D, top (normalized). The peaks of Vout(x),
which are shown in Figure 6D, bottom, exhibit phase precession.

To derive an approximation for the phase-precession range of the
output place field, we focus on the fast oscillatory component, which is
determined by Mn in Eqs. 71 and 72. The (angular) spatial frequency of
the modulation (coefficient of x in Eq. 71) is as follows:

�

0.7sn
�

��

v
(74)

where the term �/0.7sn denotes the spatial slope of phase recession of a
grid cell with spacing sn. Note that because phase decreases with position,
the true slope is negative; that is, 	�/0.7sn.

The slope of the output place field can be obtained from the mean
modulation �Mn� with respect to the synaptic weight distribution A(sn, 	).
We can also estimate the phase-precession slope of the output place field
by simply considering the mean spatial slope �sn� at the input. This ap-
proximation corresponds to the first term of a Taylor expansion of �Mn�.
The phase-precession slope of the output place field is thus �/(0.7 � �sn�),
where the mean spacing is as follows:


sn� �
�
n�1

N

snA�sn,	�

�
n�1

N

A�sn,	�

 6.5	. (75)

The mean slope of phase precession at the output is then �/(0.7 � 6.5	).
With the size 3	 of the output place field and the corresponding slope

�/(0.7 � 6.5	), we can calculate the phase-precession range �� at the
output as follows:

�� �
�

0.7 � 6.5	
� 3	 
 0.66�. (76)

Note that the output range �� 
 0.66� is smaller than the input range
�, which means that range is reduced in the grid-to-place transforma-
tion, and that �� is independent of the size 	 of the output place field,
which means that slope-size matching is conserved from the MEC grid
fields to the hippocampal place fields. For an input range of � � 250° (see
Fig. 6A–C), the value of the phase-precession range at the output is �� 

0.66 � 250° 
 165°, and this value matches the numerically obtained
phase-position plot in Figure 6D, bottom.

Results
Using a minimal computational model, we investigate inheri-
tance of phase precession; that is, the unidirectional transmission
of phase precession from one region to another, for example, in
the hippocampal formation. To this end, we consider a popula-
tion of phase-precessing neurons in one region projecting to a
single output cell in another region.

Phase precession in a CA3-CA1 network model
As a particular example, we first focus on the CA3-CA1 network
of the rodent hippocampus. Can phase precession in a CA1 cell be
explained by phase precession observed in a population of CA3
cells? To study this case, we consider N CA3 place cells with
identical place fields that project to a single CA1 cell and model
the average firing rate of the CA3 pyramidal cells during the
traversal of a place field (Fig. 1A). This population firing rate,
here as a function of time, reflects the activity of cells that phase
precess because this rate oscillates at a frequency (here 8.5 Hz)
that is slightly larger than the theta frequency (here 8 Hz). Peak
firing rates are about 15 spikes/s in the center of the simulated
place field and rates decay to zero outside the field. Using such a
firing-rate profile, we generate spike times by means of an inho-
mogeneous Poisson process. The spike times of N � 200 statisti-
cally independent, but otherwise identical, simulated CA3
pyramidal cells are shown in the raster plot in Figure 1B. Further-
more, each input spike is assumed to elicit an EPSP (Fig. 1C,
inset) in a target CA1 cell. The depolarization received by a CA1
cell is thus the sum of many EPSPs reflecting a transient excit-
atory CA3 input (Fig. 1C). This contribution to the membrane
potential of the simulated CA1 cell is noisy (due to the Poisson
process) and is delayed and scaled (due to filtering by the EPSP)
with respect to the firing rate of the CA3 cell shown in Figure 1A.
To simulate the full subthreshold membrane potential of a CA1
cell that receives transient excitatory phase-precessing input from
CA3 place cells, we add an ongoing intracellular oscillation at
theta frequency, and this oscillation rides on top of a resting
membrane potential at 	70 mV (Fig. 1D). This ongoing intra-
cellular oscillation is assumed to be: (1) typically smaller in am-
plitude than the maximum amplitude of the excitatory
component, (2) present independent of any place-field activity,
and (3) phase locked to the extracellularly recorded LFP in the
theta band. This ongoing intracellular oscillation could be gener-
ated by inhibitory input.

By summing the ongoing inhibitory and the transient excit-
atory input, we obtain the oscillatory membrane potential of the
CA1 model neuron as shown in Figure 1E. To determine whether
this subthreshold membrane potential reflects phase precession,
we investigated the local maxima and assigned an LFP phase to
each peak. The peak phases are plotted as a function of time in
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Figure 1F. Within the place field, there is clear phase precession;
that is, there is a strong correlation between phase and time, and
the slope is negative because the peak phases are mainly deter-
mined by the phase-precessing excitatory input from CA3. Out-
side of the place field, the phase of the peaks is constant at �360°
because peaks are determined by the inhibitory input that is
locked to the LFP theta oscillation.

Subthreshold signatures of phase precession in CA1
pyramidal cells can be explained by inheritance
The simulated subthreshold membrane potential of a CA1 pyra-
midal cell (Fig. 1E,F) exhibits three key features, as observed in in
vivo whole-cell recordings in awake animals that cross a place
field. First, the mean membrane potential rises and falls in a
ramp-like manner, which is reminiscent of the CA1 (subthresh-
old) place field (Lee et al., 2006; Harvey et al., 2009; Epsztein et al.,
2011). In our model, the subthreshold place field in CA1 is a
result of the CA3 place-field mean activity, which depolarizes the
membrane potential. The place field in CA1 is thus inherited
from a population of CA3 cells that have overlapping place fields.
Second, the amplitude and the frequency of the oscillations of the
membrane potential are larger within the place field than outside
(Harvey et al., 2009). To explain the larger amplitude using our
model, we assumed that the amplitude of the oscillatory contri-
bution of the excitatory input from CA3 is larger than the ampli-
tude of the ongoing inhibitory oscillation, a constraint that we
will later use to estimate parameters of the model. To explain the
higher frequency, we note that the excitatory contribution origi-
nates from CA3 phase-precessing cells that are oscillating at a
frequency higher than LFP theta oscillations, and are thus higher
than the ongoing inhibitory oscillation, which was assumed to
have the same frequency as the theta LFP. Third, peaks of the
subthreshold membrane potential show phase precession (Har-
vey et al., 2009). In the computational model, phase precession in
the CA1 membrane potential is inherited from phase precession
of the inputs from CA3. Overall, the simulation results suggest
that CA3 excitatory input and an ongoing inhibitory oscillation
are sufficient to explain the main subthreshold features of the
membrane potential of CA1 pyramidal cells that show phase pre-
cession (Harvey et al., 2009).

Parametrization of the computational model
How are the subthreshold features of phase precession related to
the parameters of the computational model of a CA3-CA1 net-
work? Let us first briefly describe the model in mathematical
terms (for details, see Materials and Methods). The input from
CA3 is described by the time-dependent firing rate 
(t) � 
0[1 �
C cos(2�f
t 	 �
)]x(t) (see also Eq. 4) with mean firing rate 
0 in
the center of the place field, modulation depth C of the oscillatory
component of the firing-rate oscillation at frequency f
 and phase
�
. The Gaussian function x(t), with maximum value 1 and size
	, describes the temporal extent of a CA3 place field (Fig. 1A).
This firing-rate model is used to generate spikes, each spike
evokes an EPSP, and EPSPs are linearly integrated. An EPSP is
described by an � function with amplitude �max and time con-
stant � (Fig. 1C, inset). A further important model parameter is
the number N of CA3 cells that provide input to a single CA1 cell.
The ongoing theta oscillation of the CA1 membrane voltage (Fig.
1D) is quantified by the amplitude B, the theta frequency f�, and
the phase �� (with respect to the extracellular theta LFP): V�(t) �
B[cos(2�f�t 	 ��) 	 1] (see also Eq. 1).

Some model parameters are constrained by experimental data
(mean � SE): 
0 � 12.4 � 4 spikes/s (estimated from main text

and Fig. 7H in Mizuseki et al., 2012), f
 � 8.6 � 0.3 Hz (estimated
from Fig. 14A in Mizuseki et al., 2012), �
 � 190 � 30° (esti-
mated from Fig. 2D in Harris et al., 2002), f� � 8.1 � 0.2 Hz
(estimated from Figs. 1–5 in Geisler et al., 2010), B � 0.7 � 0.1
mV (estimated from Fig. 5C in Harvey et al., 2009), and � � 10 �
3 ms (estimated from Fig. 3D in Magee and Cook, 2000). Note
that � 
 �d/2 where �d is the decay constant in Magee and Cook
(2000). However, other parameters are not easily accessible. In
particular, the phase �� of ongoing intracellular theta oscillations
outside of the place field (with respect to theta LFP recorded in
the CA1 pyramidal layer) is unclear in awake, behaving animals.
Furthermore, for the input from CA3 to CA1, the modulation
depth C of the population firing rate is not available. Finally, the
number N of CA3 cells that drive one CA1 cell and the in vivo
EPSP amplitude �max are, so far, free parameters of the model. In
what follows, we constrain these parameters by comparing the
computational model with available data on the properties of
place fields and phase precession, including an analysis of the
noise in the membrane potential.

Subthreshold features of phase precession constrain
model parameters
While an animal traverses a place field, CA3 neurons fire se-
quences of spikes, and the spikes evoke EPSPs that contribute to
the membrane voltage of a CA1 neuron. This sum of EPSPs is
variable in each run because the activity of CA3 neurons is vari-
able. To account for such variability in the inheritance model,
spikes are generated in each CA3 neuron by means of an inho-
mogeneous Poisson process. The variability of the membrane
voltage due to such “shot noise” critically depends on the number
N of CA3 cells that generate the place-field response in the CA1
cell. Intuitively, we expect a more faithful representation of the
CA3 population activity in a CA1 cell for an increasing number N
of CA3 neurons. In Figure 2, we show results of numerical simu-
lations of CA1 membrane potential traces for values of N between
30 and 260. Note that, here, we only consider the phase precess-
ing—that is, excitatory— contribution to the membrane poten-
tial. To allow for an easy comparison of membrane-potential
traces associated with values of N that span one order of magni-
tude, we scale EPSP amplitudes proportional to 1/N. The appear-
ance of a simulated CA1 membrane-voltage trace also depends
on the modulation depth C of the oscillatory firing rate of the
simulated CA3 cells. Figure 2 shows that increasing C from 0.3 to
0.7 (for fixed N) enhances the oscillatory component of voltage
traces.

The simulated voltage traces in Figure 2 show that the model
parameters N and C have a major impact on the shape of the CA1
membrane potential. However, there is a trade-off between N
and C. Indeed, the oscillations of voltage traces on the diagonal
from top-left to bottom-right in Figure 2 are similar. To quantify
differences and similarities in the appearance of voltage traces,
which is essential to constrain the ranges of the model parameters
N and C, we introduce a signal-to-noise ratio. The signal-to-noise
ratio � is defined as the average amplitude of the membrane
potential oscillation divided by the average amplitude of the shot
noise in the center of the place field (for details, see Materials and
Methods, Eq. 29):

� �
C 
N 
0 �

1 � �2� f
 ��2. (77)

We note that � is independent of the EPSP amplitude, which
justifies the voltage scaling of the traces in Figure 2. The larger the
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�, the greater the amplitude of the oscillations compared with the
shot noise or, more qualitatively, the clearer the oscillatory struc-
ture of the CA1 voltage trace. For example, the voltage trace for
N � 30 and C � 0.3 shows a membrane-potential trace for which
the oscillations are barely distinguishable from the noise, which is
described by a rather low value � � 0.7. In Figure 2, the signal-
to-noise ratio � increases from bottom left (� � 0.7) to top right
(� � 6.5) because both N and C are increased. On the diagonal
from top left to bottom right, the signal-to-noise ratio is constant
(� � 2.2) because of the particular choices of N and C. These
traces are most similar to the CA1 voltage traces recorded by
Harvey et al. (2009) in awake, behaving mice.

So far, the signal-to-noise ratio suggested by experimental
data (e.g., � � 2.2) constrains the model parameters N and C, but
does not lead to particular values. Moreover, the EPSP amplitude
�max cannot yet be determined. We therefore need to relate fur-
ther properties of experimental subthreshold membrane voltage
traces to the computational model. Characteristic quantities that
can be extracted from the data are, for example, the oscillation
amplitude �Vosc and the mean depolarization ramp �Vramp in
the center of the field. Harvey et al. (2009) found that �Vosc �
1.3 � 0.4 mV and �Vramp � 2.7 � 0.4 mV.

A thorough theoretical analysis of our inheritance model re-
veals a direct relationship between model parameters and the
oscillation amplitude �Vosc and the mean depolarization ramp
�Vramp (for details, see Materials and Methods, Eqs. 16 and 17):

�Vosc 

e C N 
0 � �max

1 � �2� f
 ��2 (78)

and

�Vramp 
 e N 
0 � �max (79)

where e � exp(1) 
 2.71828 is Euler’s number. Both equations
are excellent approximations if the amplitude B of ongoing oscil-
lations is smaller than the oscillation amplitude �Vosc of the tran-
sient component in the center of the field.

Equation 77 for �, Equation 78 for �Vosc, and Equation 79 for
�Vramp are sufficient to determine the three free model parame-
ters C, N, and �max (for details, see Materials and Methods, Eqs.
31, 32, and 33):

C �
�Vosc

�Vramp
�1 � �2� f
 ��2�, (80)

N � ��Vramp

�Vosc
�2 �2


0 �
(81)

�max �
�Vosc

�2 � �Vosc

�Vramp
�. (82)

Furthermore, we use standard rules of error propagation applied
to Equations 80, 81, and 82 and the experimental values for �,

Figure 2. Signal-to-noise ratio � of simulated CA1 membrane voltage traces during place-field traversals. Voltage traces (black) depict the contribution of the excitatory input from CA3 to the CA1
membrane potential; gray traces are high-pass filtered (�4 Hz) to suppress the slow depolarization ramp. Each voltage trace provides an example for some number N � {30, 50, 100, 260} of CA3
neurons and for some firing-rate modulation depth C� {0.3, 0.5, 0.7, 0.9}. The number at the upper right side of each trace denotes the corresponding quality parameter � from Equation 77. Voltage
traces along the diagonal from top left to bottom right all have the same quality parameter, ��2.2, and the oscillatory components and the noise are similar. Further model parameters: 	�0.35 s,

0 � 10 spikes/s, f
� 8.5 Hz, and �� 10 ms. The EPSP amplitude �max is varied between 0.1 mV and 2.6 mV across voltage traces such that the expected oscillation amplitudes (Eq. 16) are similar,
which allows for an easy comparison of shapes across a large range of model parameters N and C.
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�Vosc, �Vramp, f
, 
0, and � to estimate the
mean and error (i.e., SEM) of model pa-
rameters C, N, and �max as follows:

C � 0.6 � 0.1, (83)

N � 208 � 120, and (84)

�max � 0.13 � 0.035 mV. (85)

To summarize, using the computational
model and salient features of subthresh-
old voltage data, we are able to explicitly
predict values for the model parameters
C, N, and �max. The value for �max is com-
parable to the values of EPSPs (
0.2 mV)
recorded in vitro (Magee and Cook, 2000).
An estimate for the modulation depth C
from the literature requires recordings of
the activity of a population of CA3 cells
with overlapping place fields during a sin-
gle place-field traversal. Such data are not
available. A preliminary estimate, how-
ever, can be obtained from the averaged
(across multiple traversals) firing rates of
CA1 cells. From Skaggs et al. (1996, their
Fig. 3A), we estimated C 
 0.5, which
matches our prediction in Equation 83.
We note that the prediction in Equation
84 for the number N of presynaptic CA3
cells constitutes a lower bound. To arrive
at this estimate, we neglected other
sources of noise and variability and also
correlations in the input, which typically
increase N (see Discussion for details).

Phase precession in a bursting
model neuron
We have shown that the inheritance
model can account for subthreshold fea-
tures of phase precession. Phase preces-
sion, however, is also a suprathreshold
phenomenon in which spikes of place cells shift to earlier phases
relative to theta LFP. Therefore, in the context of a spiking model
neuron, we investigated whether the input from CA3 cells that
exhibit phase precession is sufficient to produce phase precession
of spikes of a CA1 cell. For this purpose, we use a two-
compartment model to: (1) segregate inhibitory input onto the
perisomatic compartment from excitatory input onto the den-
dritic compartment, (2) include effects of active conductances
in dendrites, and (3) account for bursting. We therefore use
the model developed by Pinsky and Rinzel (1994) for CA3
neurons and adapted for CA1 neurons by Kamondi et al.
(1998). A schematic is shown in Fig. 3A (for details, see Mate-
rials and Methods).

The two inputs to the CA1 model neuron are dendritic (Id)
and somatic (Is) current densities (�A/cm 2), referred to hereafter
simply as currents. The dendritic current Id represents the total
phase-precessing signal coming from CA3. More precisely, each
input spike elicits an EPSC. The current Id is thus a sum of EPSCs
and this summed current is applied to the dendritic compart-
ment of the model neuron. The somatic current Is represents an
inhibitory oscillation that is phase locked to the LFP (Kamondi et
al., 1998) and is applied to the somatic compartment.

Figure 3B shows an example of the time courses of both cur-
rents and the CA1 membrane potential for one traversal of the
place field. The two-compartment model generates isolated ac-
tion potentials and bursts, and the spiking activity shows phase
precession, here with respect to time, similar to CA1 pyramidal
cells in vivo (O’Keefe and Recce, 1993; Pastalkova et al., 2008;
Schmidt et al., 2009). Simulated membrane potentials for several
traversals through the CA1 virtual place field are shown in Figure
3C and the pooled spike phase versus time plot in Figure 3D again
demonstrates phase precession.

In the spiking model, the intrinsic ionic currents in the dendrite
and soma are responsible for the bursting dynamics. However, the
phase precession in the CA1 model cell is essentially due to the input
from CA3 phase-precessing cells. Indeed, the spikes and bursts occur
at the maxima of the underlying oscillations of the membrane po-
tential, as shown in Figure 3C. This means that the subthreshold
membrane potential peaks are a good predictor of suprathreshold
behavior, which is consistent with data from Harvey et al. (2009),
Domnisoru et al. (2013), and Schmidt-Hieber and Häusser (2013).
Because of this tight link between subthreshold and suprathreshold
phase precession in our model, hereafter we restrict the analyses to
the subthreshold dynamics only.

A

B

C

D

Figure 3. A two-compartment spiking model reproduces phase precession in a CA1 cell as predicted by inheritance. A, Structure
of the two-compartment model (Pinsky and Rinzel, 1994; Kamondi et al., 1998) where VCA1 is the membrane potential of the
somatic compartment. B, Top, Dendritic input current (gray, from CA3) and somatic input current (black, reflecting ongoing theta
oscillations) contribute to the CA1 voltage. Dendritic input is generated as a sum of EPSCs of amplitude �Imax

� 15 pA and time
constant �I � 4 ms. Somatic input is characterized by an amplitude Ismax

� 0.3�A/cm 2 and �I � 0°. Middle, Membrane-voltage
VCA1 during the traversal of a virtual CA1 place field. Bottom, Theta phase of VCA1 spikes as a function of time. C, Six membrane
potential traces for different traversals through the place field. The phase at field entry is random. Note that the spikes lie on top of
the peaks of the subthreshold oscillations. D, Phase-time plot for 12 traversals of the place field. Further model parameters are as
in Figure 1
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Intracellular theta oscillations modulate phase precession of
CA1 model cells
In the previous sections, we examined in detail the role of excit-
atory input from CA3 phase-precessing cells but largely neglected
the influence of the ongoing intracellular theta oscillations in
CA1, which are phase locked to the extracellular theta LFP. Now,
we elucidate the role of these ongoing oscillations, which may be
mediated by somatic inhibitory input into CA1 pyramids. To this
end, we vary the phase �� and the amplitude B of the ongoing
theta oscillations in our model while the excitatory input is kept
fixed (Fig. 4). We restrict the analysis to a mean-field model; that
is, we neglect the shot noise. The excitatory input is therefore the
firing rate of a population of CA3 cells convolved with an EPSP.

To evaluate the influence of an ongoing, putatively inhibitory,
theta oscillation of the membrane potential on phase precession
in CA1, we compare this more involved case with the simpler case
without such ongoing oscillations (Fig. 4, red); we note that there
is clear phase precession in CA1 in the case without ongoing
oscillations.

We begin by studying the impact of the
phase �� on phase precession while the
amplitude B � 1 mV is fixed (Fig. 4,A,B).
To demonstrate how the range and the
overall shape of phase precession depends
on the phase �� of ongoing somatic inhib-
itory input, we first consider the case of ��


 0 � 360°. In this case, the peak phases of
the ongoing somatic oscillation are in
phase with the peaks of the extracellular
LFP. Interestingly, for �� 
 0°, the slope,
range, and entry phase of phase precession
are larger than for the standard case with
no ongoing theta oscillations. For �� 
 0°,
the phases of the CA1 membrane voltage
peaks at field entry are 
300° (Skaggs et
al., 1996; Mizuseki et al., 2009, 2012),
which can be explained by the entrance
phase of CA3 firing (
200°, Harris et al.,
2002), a subsequent phase delay due to
synaptic filtering of the EPSP (
50° �
1.8� � f� � 360°; Eq. 14), and a delay due to
the inhibitory oscillation (
50°, esti-
mated from Fig. 4B). Oscillatory inhibi-
tory input therefore can explain why the
range of phase precession in CA1 is larger
than in CA3 (Harris et al., 2002; Mizuseki
et al., 2009, 2012). Overall, the case �� 

0° matches in vivo data well. In contrast,
for other phases of the ongoing somatic
oscillation, for example, �� 
 120° and ��


 240°, phase precession does not match
in vivo data: the slope and the range of
phase precession are reduced and, at field
entry, the phase is smaller compared with
the standard case of pure CA3 excitatory
input.

To study the influence of the ampli-
tude of the ongoing intracellular theta os-
cillations on phase precession, we fix the
phase at the value �� 
 0°, which matches
in vivo data on phase precession best, and
vary the amplitude B (Fig. 4C,D). Phase
precession strongly depends on the ampli-

tude B of ongoing somatic inhibitory input. The range of phase
precession is largest for moderate values of B, for example, B � 1
mV (as in Fig. 4A,B) and B � 2 mV. In contrast, for B � 5 mV,
phase precession practically disappears because the ongoing in-
tracellular oscillation at theta frequency dominates the transient
excitatory component. Conversely, for B � 0, that is, excitation
only, and 0.5 mV, the range of phase precession is reduced com-
pared with the case B � 1 mV.

The detailed phase relation of the traces for B � 0 and B � 1
mV in Figure 4D is even consistent with data from Royer et al.
(2012): for �� 
 0°, a reduction of the amplitude of inhibition
leads to smaller phases near field entry (phase advance), whereas
toward field exit phases are larger (phase delay). The assertion
that �� 
 0° is also consistent with the following data. In awake
animals during the theta state, parvalbumin-expressing (PV) in-
terneurons preferentially fire before the trough of the theta LFP,
at �130° (Royer et al., 2012; Varga et al., 2012), and project to the
perisomatic region of CA1 pyramidal neurons. Because of the
inhibitory nature of this projection and a small delay mainly due

A C

B D

Figure 4. Amplitude and phase of intracellular theta oscillations modulate phase precession. A, Membrane potential traces for
different phases of inhibition. The vertical gray shaded bars indicate half-theta periods (1/(2f�) � 62.5 ms) and the middle of each
gray bar corresponds to 0° (� 360°). The phase and amplitude of excitation (red, top) are fixed and correspond to the mean-field
version of Figure 1C. Three different phases of inhibition (black lines) are used to calculate corresponding CA1 voltage traces: 240°
(top, brown), 120° (middle, green), and 0° (bottom, blue). The amplitude of inhibition is fixed at 1 mV (black lines). B, Theta phase
of peaks in A as a function of time since field entry. Peaks of the colored voltage traces are marked by circles. Colored lines connect
the dots within the place field. C, Membrane potential traces for varying amplitudes of inhibition. Vertical gray shaded bars indicate
half-theta periods as in A. The phase and amplitude of excitation (red, top) are fixed as in A. The phase of inhibition is fixed at 0°,
whereas the amplitude is variable: 0.5 (green), 1 (blue), 2 (cyan), and 5 (brown) mV. D, Theta phase of peaks in C as a function of
time since field entry. Peaks of the colored voltage traces are marked by circles. Colored lines connect the dots within the place field.
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to synaptic filtering, the evoked oscilla-
tion of the membrane potential in CA1
pyramids can be assumed to have minima
at �180° and, therefore, maxima at �0°,
as predicted.

In summary, the inheritance model of
phase precession predicts that the ongo-
ing intracellular theta oscillation in CA1
pyramidal cells is not necessary for phase
precession. Phase precession remains
without such intracellular theta oscilla-
tions because phase precession is inher-
ited from the excitatory input from CA3.
However, the interaction of a specific
ongoing oscillation, possibly due to inhib-
itory interneurons, and transient excit-
atory oscillations from CA3 pyramids can
modulate phase precession in CA1 in a
characteristic way. For �� 
 0°, the range
and entry phase of phase precession are
reduced if inhibitory input is suppressed,
which is supported by data from Royer et
al. (2012). Therefore, the inheritance
model of phase precession predicts that
the ongoing intracellular theta oscillation
in CA1 pyramidal cells is in phase with the
extracellular LFP theta oscillation; that is,
�� 
 0°.

Inheritance explains phase precession
for a variety of place-selective responses
So far, we have examined a CA1 place cell
that inherits phase precession from a sub-
set of CA3 cells that share a common place
field; that is, the input corresponded to
identical place fields of many different
CA3 cells. We now relax this strong as-
sumption and study a more general case
of inheritance in which the place fields at
the input are allowed to be spatially dis-
tributed. This case is equivalent to place
fields at the input that are distributed uni-
formly but the respective synaptic weights
in the target cell are distributed spatially
(Malhotra et al., 2012).

To study spatially distributed inputs in
the inheritance model, we still assume that
each input cell shows phase precession
within its place field; that is, input place
fields are characterized by a common fre-
quency f
 of modulatory activity ( f
 � f�).
Moreover, input place fields all have the
same size, which is parameterized by the
width 	. Furthermore, pairs of overlapping input place fields are
aligned such that the theta-time scale delay between firing-rate
peaks is correlated to the distance between place-field centers
(Dragoi and Buzsáki, 2006; Geisler et al., 2010; for details see
Materials and Methods). Here, we neglect the ongoing inhibitory
oscillations, which were argued to be modulatory. As in earlier
sections, we assume that an output neuron linearly integrates the
excitatory input, producing a somatic voltage as a response.

To connect the analysis of phase precession for spatially dis-
tributed place-field centers to analyses already discussed, we first

consider again the case of identical input place-field centers (Fig. 5A,
top); that is, all input place fields are perfectly overlapping. This
simplified scenario corresponds to the topology of our previous re-
sults regarding the CA3-CA1 system and serves as a reference for the
other distributions of input fields in Figure 5. By summing the de-
polarization provided by the identical input place fields, we obtain
an output place field (Fig. 5A, middle) that is essentially the same as
the input place field. As expected, there is phase precession through-
out the output place field, as evidenced by the negative slope of the
corresponding phase-position plot (Fig. 5A, bottom).

C

B

A

D

Figure 5. Phase precession for different distributions of place-field centers in the input. For 4 different scenarios, we show the
spatially distributed firing rates of N � 20 identical place fields (	� 0.3) at the input (top), the normalized membrane voltage of
the output cell (middle), and the phase-position plot of the output cell (bottom). The following input distributions of place-field
centers are considered: delta distribution (A), Gaussian distribution with width 	d � 0.45 (B), uniform distribution (C), and ramp
distribution (D).
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Next, we consider a Gaussian distribution of the centers of
input place fields; the width of this distribution is characterized
by 	d (Fig. 5B). Adding such distributed input place fields, we
obtain an output place field that is larger than each individual
input place field (as in Fig. 5A), and the size 	R � 
	d

2 � 	2 of
the output place field is determined by both the size 	 of the input
place fields and by the width 	d of the distribution of field centers
(Eq. 51). This scenario can explain why, on average, the size of
place fields increases from CA3 to CA1 and to the subiculum
(Kim et al., 2012; Mizuseki et al., 2012). Moreover, the slope of
the phase-position plot at the output is shallower than at the input,
although the range of phase precession is similar. Therefore, the
inheritance model can explain why the phase-precession slope is
inversely proportional to the field size (Huxter et al., 2003; Terrazas
et al., 2005; Dragoi and Buzsáki, 2006; Kim et al., 2012).

Another interesting case is a spatially uniform distribution of
the place-field centers (Fig. 5C). This case might correspond, for
example, to the input of a basket cell in CA1. Adding such uni-
formly distributed inputs, we observe an oscillation of the mem-
brane potential of the output cell, but there is no spatial
preference. The corresponding phase-position plot indicates that
peaks of the membrane potential do not show phase precession.
The phase of the peaks of the membrane potential oscillation is at
�130° and the membrane potential is oscillating precisely at
theta frequency f�, although the phase-precessing input cells were
oscillating at a frequency f
 � f� (see also Geisler et al., 2010). This
behavior of the output cell is reminiscent of the activity of basket
cells in the hippocampus, which receive excitatory input from
place cells. Basket cells fire phase locked to theta, the preferred
firing phase is �130° (Varga et al., 2012), and there is little spatial
preference (Frank et al., 2001).

Next, we consider a ramp-like distribution of place-field cen-
ters (Fig. 5D) in which the density of place fields at the input (or,
equivalently, the synaptic weights) increases linearly along a spec-
ified axis. The resulting output place field is, not surprisingly, also
ramp like: the mean depolarization increases steadily and falls off
abruptly. Furthermore, this ramp-like depolarization is modu-
lated by an oscillation that shows a characteristic shape of phase
precession, with an initially shallow slope, some plateau �180°,
and, finally, some steeper phase precession. Such ramp-like neu-
rons are found in the ventral striatum (van der Meer and Redish,
2011) and, remarkably, the observed shape of the phase preces-
sion resembles the shape generated by our model.

Finally, we test whether hippocampal phase precession can be
inherited from the MEC. Principal cells in the MEC fire in a
grid-like manner in open environments (Hafting et al., 2005) and
exhibit phase precession, even after inactivation of the hip-
pocampus (Hafting et al., 2008). Furthermore, grid cells project
to the hippocampus (Zhang et al., 2013). Is it possible to obtain a
phase-precessing place cell from a population of phase-
precessing grid cells? Analogous to our derivations concerning
place-field distributions, we assume an input layer of phase-
precessing grid cells projecting to a single output hippocampal
cell. In the context of our previous results regarding inheritance
of phase precession to CA1, the input grid cells could correspond
to cells from MEC layer III that project to a cell in CA1.

In the one-dimensional case we study here, the grid-field ac-
tivity is periodic along the axis where the virtual rat is running
(Brun et al., 2008). Following our previous approach for CA3-
CA1 inheritance (Fig. 1), we implemented phase precession
within grid fields through a time-dependent firing-rate modula-
tion (Fig. 6A–C). In our simulations, grid cells have different field

spacings, and the size of the firing field, which is defined by a 20%
threshold (Brun et al., 2008), is �0.7 times the grid spacing. Grid
cells also have phase-precession slopes that are inversely propor-
tional to the field size, with a constant phase-precession range of
�250° (Hafting et al., 2008; Reifenstein et al., 2012a) and the
spike phase at field entry is �200° (Climer et al., 2013; Reifenstein
et al., 2012b).

The synaptic weights of the projection from MEC layer III to
CA1 are calculated as Fourier coefficients such that a linear com-

A

B
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D

E

Figure 6. Phase-precessing grid cells can generate a phase-precessing place cell. A–C, Firing
rate as a function of position of three example grid cells with different spacing (s�0.6 m, 1.4 m,
2.1 m) on a linear track (top) and theta phase of firing-rate peaks (bottom). The phase-
precession slope is inversely proportional to the grid-field size, whereas the range (
250°) and
entry phase (
200°) are constant. D, The sum of the firing rates of 50 grid fields with equidis-
tant spacing s � [0.1 m, 4 m] (gray trace) is filtered by an EPSP kernel, which results in the
membrane voltage (black trace). The box around the resulting place field (width 3	
 0.66 m)
is enlarged below (arrow). Peaks of the voltage trace inside the place field show phase preces-
sion (bottom, black dots). An unfiltered trace with the corresponding phase-position plot is
shown in gray. A threshold of 20% (dashed line) delineates the extent of the place field. E,
Weights of 50 synapses between the grid cells and the place cell in D as a function of the grid
spacing s. Arrows indicate the width 3	 of the output place field (solid) and the mean grid
spacing 6.5	 (dashed). Colored asterisks indicate the example grid cells in A–C.
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bination of periodic grid fields produces a nonperiodic place field
at the output (for details, see Materials and Methods and Solstad
et al., 2006 for the original derivation in two dimensions). The
resulting synaptic weight distribution in Figure 6E is asymmetric
with a steeper rise and shallower decay. For the inheritance
model, we used a uniform distribution of grid spacings, although
recent studies (Stensola et al., 2012; Kitamura et al., 2014; Ray et
al., 2014) have highlighted the existence of discrete modules or
clusters in the MEC that reflect a degree of anatomical spatial
organization. Including the effect of such clusters in our model
would result in a coarser discretization of the grid spacing of the
synaptic weight distribution without affecting the main results.

The membrane potential of the output cell reflects a single
place field of width 3	 � 0.66 m (Fig. 6D), a value that is close to
the smallest grid spacing s with a significant synaptic weight (Fig.
6E). The membrane potential peaks of the output place field
exhibit phase precession (Fig. 6D, bottom); however, the range of
phase precession is only �145°. This small range, which is the
product of the size and the phase-precession slope of the output
field, can be explained by the grid-to-place inheritance. The size
�3	 of the output field is related to the shape, for example, the
steep rise, of the synaptic weight distribution in Figure 6E (solid
arrow). The phase-precession slope of the output field, however,
is largely determined by the mean slope of the input grid fields
and this mean slope is related to mean grid spacing of the input
population. Figure 6E (dashed arrow) indicates that the mean
grid spacing of the input population is �6.5	 � 1.4 m (Eq. 75)
and therefore the mean grid-field size is �0.7 � 1.4 m � 1 m.
Accordingly, the mean slope of phase precession in the input is
�250°/1 m � 250°/m. Using this slope and the obtained size of
the output place field (3	 � 0.66 m), we estimated the range of
phase precession as 250°/m � 0.66 m � 165° (see also Materials
and Methods, Eq. 76). This estimation assumed a linear phase-
position relation, although the phase-position relation in Figure
6D is actually sigmoidal. Therefore, the numerically obtained
phase range of �145° is smaller. The saturation of the phase at the
borders of the field indicates the transition to a constant phase of
membrane-voltage peaks outside the place field, a behavior that is
similar to Figure 5C.

The phase of the first spike (entry phase) in the modeled out-
put place field in Figure 6D is �200°, which is equal to the entry
phase 200° of the input grid fields. This seemingly paradox zero
phase difference, however, must not be interpreted as a zero
transmission delay between the two regions, but rather can be
explained by the cancellation of two effects. The �100° reduction
of the phase range from input to output leads to an �50° advance
of the onset phase because of the symmetry of the place field
around its center. Conversely, there is a phase delay due to syn-
aptic filtering of the EPSP and axonal transmission, which is also
�50° (
1.8� � f� � 360°; see Eq. 14).

Phase precession can thus be propagated from MEC layer III
to CA1. Interestingly, the resulting phase-position relations due
to input from MEC or from CA3 significantly overlap within a
theta cycle (cf. Fig. 5A for CA3, Fig. 6D for MEC layer III). There-
fore, our model predicts that both MEC layer III and CA3 can
contribute to the phase precession observed in CA1. More gen-
erally, a grid-to-place transformation is sufficient to account for
inheritance of phase precession from entorhinal cortex to the
hippocampus and can explain the observed reduction of the
range of phase precession (Harris et al., 2002; Mizuseki et al.,
2009; Schmidt et al., 2009; Reifenstein et al., 2012a).

Overall, inheritance of phase precession can explain a variety
of subthreshold and suprathreshold responses in the hippocam-

pus and related structures in terms of place selectivity and pres-
ence of phase precession.

Discussion
We developed a computational model that explains inheritance
of phase precession. Our main findings are as follows: (1) phase
precession in a small subset of CA3 or MEC principal cells is
sufficient to explain phase precession in a CA1 pyramidal cell; (2)
inhibitory input to the CA1 cell is not necessary to generate phase
precession, but inhibition can increase the slope and enlarge the
range of phase precession; and (3) the spatial distribution of field
centers and the width of fields of the input population determine
not only the spatial selectivity, but also the phase-precession
characteristics of the target cell.

According to this inheritance model, the subthreshold signa-
tures of phase precession in a CA1 cell (Harvey et al., 2009) reflect
the firing-rate characteristics of phase-precessing input cells. Par-
ticularly, the mean depolarization (
4 mV) of a CA1 cell in the
center of a place field (i.e., the subthreshold place field) is the
result of increased excitatory drive; the oscillatory component of
the CA1 membrane potential (
2 mV amplitude in the field’s
center) is due to phase-precessing feedforward input; and voltage
traces are noisy due to variable spiking input, but the oscillation
amplitude in the theta frequency range is larger than the SD of the
noise in single runs through a place field. Finally, we showed that
peaks of the modeled subthreshold oscillations show phase pre-
cession (Harvey et al., 2009; Domnisoru et al., 2013; Schmidt-
Hieber and Häusser, 2013) and, using a spiking model neuron,
we confirmed that the peaks predict phase precession of action
potentials.

To generate phase precession in a CA1 pyramidal cell, the
experimental constraints outlined above imply that we need N �
200 active input cells, with a population firing rate with a modu-
lation depth C � 0.6. To arrive at these predictions, we assumed
that peak firing rates of CA3 cells are the same although they are
variable (Leutgeb et al., 2006) and we assumed identical synaptic
weights and transmission probabilities for individual projec-
tions. Furthermore, our CA3 population firing-rate model did
not include correlations that arise, for example, from task-
dependent switching of reference frames (Jackson and Redish,
2007) or from assembly-level organization (Foster and Wilson,
2007). Such correlations hint at the importance of network-level
interactions during phase precession (Lisman and Redish, 2009).
Such additional variability and correlations of the input, which
are not included in our Poisson model, typically increase the
noise in the membrane voltage of a CA1 cell. Our model thus
underestimates the true values of N and C, and our predictions
are therefore lower bounds. Importantly, our CA3 population
firing-rate model is not specific to any theory of how phase pre-
cession is generated de novo.

We simulated the inhibitory input to a CA1 cell by an ongoing
oscillation of the membrane potential that is coherent with the
theta LFP but is independent of place-specific activity (Harvey et
al., 2009; Epsztein et al., 2011). In our model, this oscillation was
parametrized by the phase �� of peaks with respect to the theta-
LFP peaks and by its amplitude B. Only for �� 
 0 and ampli-
tudes B � 1 mV, which are smaller but comparable in magnitude
to the maximum oscillation amplitude (
2 mV) due to the in-
coming excitation, does the inhibition increase the range and the
slope of phase precession of a CA1 cell compared with the case in
which the CA1 cell receives excitation only. That inhibition only
modulates phase precession, but is not necessary for its genera-
tion, receives support from Royer et al. (2012), who showed that

7728 • J. Neurosci., May 28, 2014 • 34(22):7715–7731 Jaramillo et al. • Inheritance of Phase Precession



transiently silencing PV interneurons reduced range and slope of
phase precession of neighboring pyramidal cells in a characteris-
tic way, which is reproduced in detail by the inheritance model.

The specific prediction �� 
 0 of the inheritance model dis-
tinguishes it, for example, from the somatodendritic interference
model (SDI) of phase precession (Kamondi et al., 1998; Magee,
2001; Harris et al., 2002; Mehta et al., 2002), which requires max-
ima of the inhibition at �� 
 180°. In the SDI model, phase
precession within a single neuron arises from the interference
between a slow, ramp-like excitatory input to dendrites and an
oscillating, inhibitory input to the soma. Phases of spikes of a CA1
pyramidal cell at the entrance of a place field then occur at 
 0°
because, at this phase, the excitation just exceeds the minima of
the inhibitory oscillation. Spike phases then precess because of
increasing excitatory input. For decreasing excitatory input to-
ward the end of the place field, some additional adaptation of
CA1 cells or asymmetric excitation suppresses phase “recession.”
The SDI model is therefore in stark contrast to the inheritance
model. Experiments that determine the theta phase of oscillations
evoked by inhibitory input in vivo could reject one of them.

In general, a difference between the inheritance model and
previous models of phase precession is that the latter can explain
how phase precession is generated ab initio. Network models, for
example, require considerable recurrent connectivity within the
local network (Jensen and Lisman, 1996; Tsodyks et al., 1996;
Wallenstein and Hasselmo, 1997; Navratilova et al., 2012). These
models are therefore more consistent with the denser recurrent
connectivity of CA3 or EC than that of CA1 (Amaral and Witter,
1989; Couey et al., 2013; Pastoll et al., 2013). However, even in
CA3 recurrent connectivity may not be necessary to explain
phase precession, which could alternatively arise from facilitation
of the mossy fiber synapse (Thurley et al., 2008) or inheritance
from the dentate gyrus and/or EC (Molter and Yamaguchi,
2008).

We showed that CA3 input is sufficient to generate phase
precession in CA1, but CA1 receives excitatory input also from
layer III of the MEC, which can generate place-specific activity in
CA1 (Brun et al., 2002; Nakashiba et al., 2008). Furthermore, cells
in MEC layer III exhibit phase precession (Hafting et al., 2008;
Reifenstein et al., 2012b; Climer et al., 2013; but see Mizuseki et
al., 2009). We showed that the contributions from CA3 and from
MEC layer III generate similar phase-position relations, so both
pathways can contribute to the phase precession observed in
CA1. Once the mechanism(s) for phase precession in CA3 and
MEC are established, they will be sufficient to explain phase pre-
cession in CA1 through inheritance (Skaggs et al., 1996; Yamagu-
chi et al., 1998, 2007).

The specific results of the CA3-CA1 inheritance model can be
generalized to other pathways. We found that the spatial distri-
bution of centers of phase-precessing cells of an input population
determines not only the place-field selectivity, but also the phase-
precession characteristics of an output neuron. Therefore, the
inheritance model can account for several further features of
phase precession (Figs. 5, 6). First, the phase-precession slope
matches the size of the place field so that the range remains ap-
proximately constant (Huxter et al., 2003; Dragoi and Buzsáki,
2006). Second, place-field sizes in the input population are
smaller than those downstream (Jung and McNaughton, 1993;
Kim et al., 2012; Mizuseki et al., 2012; but see Lee et al., 2004).
Third, putative basket cells show little spatial preference and have
a preferred firing phase of �130° (Skaggs et al., 1996; Lapray et
al., 2012; Royer et al., 2012; Varga et al., 2012), which can be
explained by inputs from place cells with place-field centers that

are evenly distributed in space (Geisler et al., 2010). Some weak
phase precession in interneurons (Maurer et al., 2006a; Ego-
Stengel and Wilson, 2007; Geisler et al., 2007) may be due to
spatially uneven excitatory input. Fourth, phase precession in the
ventral striatum (van der Meer and Redish, 2011) has a charac-
teristic shape and there is a ramp-like activity of neurons, which is
explained by inheritance from hippocampal place fields with in-
creasing density of fields when the animal is approaching a goal
location (Hetherington and Shapiro, 1997). Fifth, CA1 cells can
have two or more overlapping place fields and, in each subfield,
there is phase precession (Maurer et al., 2006b). This spatial over-
lap of phase precession in a single CA1 cell can be explained by
two or more sufficiently synchronously phase-precessing input
assemblies (see also Jones and Wilson, 2005, for phase precession
in the prefrontal-cortex). Finally, the “grid-to-place” transfor-
mation (McNaughton et al., 2006; Rolls et al., 2006; Solstad et al.,
2006; Gorchetchnikov and Grossberg, 2007; Blair et al., 2008; de
Almeida et al., 2009; Savelli and Knierim, 2010; Cheng and Frank,
2011) can also account for the inheritance of phase precession.

In summary, our results predict that the spatial distribution of
field centers (or, equivalently, a corresponding distribution of
synaptic weights; Malhotra et al., 2012) and the field widths of a
population of phase-precessing cells determine the phase preces-
sion of a downstream cell that receives this input. Such distribu-
tions may be shaped through synaptic plasticity, which is an
interesting topic for future theoretical and experimental work.

To conclude, phase precession can be a result of network,
cellular, and inheritance effects combined. Inheritance in partic-
ular might help to explain why phase precession is observed in
many parts of the brain.
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Mizuseki K, Royer S, Diba K, Buzsáki G (2012) Activity dynamics and be-

7730 • J. Neurosci., May 28, 2014 • 34(22):7715–7731 Jaramillo et al. • Inheritance of Phase Precession

http://dx.doi.org/10.1016/j.neuroscience.2011.09.002
http://www.ncbi.nlm.nih.gov/pubmed/21963867
http://dx.doi.org/10.1111/ejn.12256
http://www.ncbi.nlm.nih.gov/pubmed/23718553
http://dx.doi.org/10.1038/nn.3310
http://www.ncbi.nlm.nih.gov/pubmed/23334580
http://dx.doi.org/10.1002/hipo.21002
http://www.ncbi.nlm.nih.gov/pubmed/22252986
http://dx.doi.org/10.1523/JNEUROSCI.6048-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19515918
http://dx.doi.org/10.1038/nature11973
http://www.ncbi.nlm.nih.gov/pubmed/23395984
http://dx.doi.org/10.1016/j.neuron.2006.02.023
http://www.ncbi.nlm.nih.gov/pubmed/16600862
http://dx.doi.org/10.1002/hipo.22231
http://www.ncbi.nlm.nih.gov/pubmed/24638961
http://dx.doi.org/10.1002/hipo.20253
http://www.ncbi.nlm.nih.gov/pubmed/17183531
http://dx.doi.org/10.1016/j.neuron.2011.03.006
http://www.ncbi.nlm.nih.gov/pubmed/21482360
http://dx.doi.org/10.1002/hipo.20345
http://www.ncbi.nlm.nih.gov/pubmed/17663452
http://www.ncbi.nlm.nih.gov/pubmed/11600659
http://dx.doi.org/10.1073/pnas.0610121104
http://www.ncbi.nlm.nih.gov/pubmed/17470808
http://dx.doi.org/10.1073/pnas.0912478107
http://www.ncbi.nlm.nih.gov/pubmed/20375279
http://dx.doi.org/10.1016/j.neunet.2006.11.007
http://www.ncbi.nlm.nih.gov/pubmed/17222533
http://dx.doi.org/10.1038/nature03721
http://www.ncbi.nlm.nih.gov/pubmed/15965463
http://dx.doi.org/10.1038/nature06957
http://www.ncbi.nlm.nih.gov/pubmed/18480753
http://dx.doi.org/10.1038/nature00808
http://www.ncbi.nlm.nih.gov/pubmed/12066184
http://dx.doi.org/10.1038/nature08499
http://www.ncbi.nlm.nih.gov/pubmed/19829374
http://dx.doi.org/10.1002/hipo.20512
http://www.ncbi.nlm.nih.gov/pubmed/19021258
http://dx.doi.org/10.1037/0735-7044.111.1.20
http://www.ncbi.nlm.nih.gov/pubmed/9109621
http://dx.doi.org/10.1038/nature02058
http://www.ncbi.nlm.nih.gov/pubmed/14574410
http://dx.doi.org/10.1002/hipo.20359
http://www.ncbi.nlm.nih.gov/pubmed/17764083
http://dx.doi.org/10.1101/lm.3.2-3.279
http://www.ncbi.nlm.nih.gov/pubmed/10456097
http://www.ncbi.nlm.nih.gov/pubmed/10805660
http://dx.doi.org/10.1002/hipo.20119
http://www.ncbi.nlm.nih.gov/pubmed/16149084
http://dx.doi.org/10.1002/hipo.450030209
http://www.ncbi.nlm.nih.gov/pubmed/8353604
http://dx.doi.org/10.1002/(SICI)1098-1063(1998)8:3<244::AID-HIPO7>3.0.CO;2-J
http://www.ncbi.nlm.nih.gov/pubmed/9662139
http://dx.doi.org/10.1162/089976698300016945
http://www.ncbi.nlm.nih.gov/pubmed/9804669
http://dx.doi.org/10.1523/JNEUROSCI.5942-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22915100
http://dx.doi.org/10.1126/science.1244634
http://www.ncbi.nlm.nih.gov/pubmed/24457215
http://dx.doi.org/10.1126/science.1157086
http://www.ncbi.nlm.nih.gov/pubmed/18599792
http://dx.doi.org/10.1038/nn.3176
http://www.ncbi.nlm.nih.gov/pubmed/22864613
http://dx.doi.org/10.1016/j.neuron.2006.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16908406
http://dx.doi.org/10.1016/j.neuron.2004.05.010
http://www.ncbi.nlm.nih.gov/pubmed/15182719
http://dx.doi.org/10.1002/hipo.10116
http://www.ncbi.nlm.nih.gov/pubmed/12962315
http://dx.doi.org/10.1523/JNEUROSCI.0586-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21865471
http://dx.doi.org/10.1002/hipo.20201
http://www.ncbi.nlm.nih.gov/pubmed/16888744
http://dx.doi.org/10.1098/rstb.2008.0316
http://www.ncbi.nlm.nih.gov/pubmed/19528000
http://www.ncbi.nlm.nih.gov/pubmed/11431530
http://dx.doi.org/10.1038/78800
http://www.ncbi.nlm.nih.gov/pubmed/10966620
http://dx.doi.org/10.1515/revneuro-2011-0064
http://www.ncbi.nlm.nih.gov/pubmed/22718612
http://dx.doi.org/10.1016/j.tins.2007.05.002
http://www.ncbi.nlm.nih.gov/pubmed/17532482
http://dx.doi.org/10.1523/JNEUROSCI.2882-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17192431
http://dx.doi.org/10.1002/hipo.20202
http://www.ncbi.nlm.nih.gov/pubmed/16921501
http://dx.doi.org/10.1038/nrn1932
http://www.ncbi.nlm.nih.gov/pubmed/16858394
http://dx.doi.org/10.1038/nature00807
http://www.ncbi.nlm.nih.gov/pubmed/12066185
http://dx.doi.org/10.1016/j.neuron.2009.08.037
http://www.ncbi.nlm.nih.gov/pubmed/19874793


havioral correlates of CA3 and CA1 hippocampal pyramidal neurons.
Hippocampus 22:1659 –1680. CrossRef Medline

Molter C, Yamaguchi Y (2008) Entorhinal theta phase precession sculpts
dentate gyrus place fields. Hippocampus 18:919 –930. CrossRef Medline

Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S (2008) Trans-
genic inhibition of synaptic transmission reveals role of CA3 output in
hippocampal learning. Science 319:1260 –1264. CrossRef Medline

Navratilova Z, Giocomo LM, Fellous JM, Hasselmo ME, McNaughton BL
(2012) Phase precession and variable spatial scaling in a periodic attrac-
tor map model of medial entorhinal grid cells with realistic after-spike
dynamics. Hippocampus 22:772–789. CrossRef Medline

O’Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal
place cells: theoretical significance and relationship to entorhinal grid
cells. Hippocampus 15:853– 866. CrossRef Medline

O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place
units and the EEG theta rhythm. Hippocampus 3:317–330. CrossRef
Medline

Pastalkova E, Itskov V, Amarasingham A, Buzsáki G (2008) Internally gen-
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Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navi-
gation in the medial entorhinal cortex. Nat Neurosci 16:325–331.
CrossRef Medline

Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase
precession in hippocampal neuronal populations and the compression of
temporal sequences. Hippocampus 6:149 –172. CrossRef Medline

Solstad T, Moser EI, Einevoll GT (2006) From grid cells to place cells: a
mathematical model. Hippocampus 16:1026 –1031. CrossRef Medline

Stensola H, Stensola T, Solstad T, Frøland K, Moser MB, Moser EI (2012)
The entorhinal grid map is discretized. Nature 492:72–78. CrossRef
Medline

Terrazas A, Krause M, Lipa P, Gothard KM, Barnes CA, McNaughton BL
(2005) Self-motion and the hippocampal spatial metric. J Neurosci 25:
8085– 8096. CrossRef Medline

Thurley K, Leibold C, Gundlfinger A, Schmitz D, Kempter R (2008) Phase
precession through synaptic facilitation. Neural Comput 20:1285–1324.
CrossRef Medline

Thurley K, Hellmundt F, Leibold C (2013) Phase precession of grid cells in a
network model without external pacemaker. Hippocampus 23:786 –796.
CrossRef Medline

Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL (1996) Population
dynamics and theta rhythm phase precession of hippocampal place cell
firing: a spiking neuron model. Hippocampus 6:271–280. CrossRef
Medline

van der Meer MA, Redish AD (2011) Theta phase precession in rat ventral
striatum links place and reward information. J Neurosci 31:2843–2854.
CrossRef Medline

Varga C, Golshani P, Soltesz I (2012) Frequency-invariant temporal order-
ing of interneuronal discharges during hippocampal oscillations in awake
mice. Proc Natl Acad Sci U S A 109:E2726 –E2734. CrossRef Medline

Wallenstein GV, Hasselmo ME (1997) GABAergic modulation of hip-
pocampal population activity: sequence learning, place field develop-
ment, and the phase precession effect. J Neurophysiol 78:393– 408.
Medline

Yamaguchi Y, McNaughton BL (1998) Nonlinear dynamics generating
theta phase precession in hippocampal closed circuit and generation of
episodic memory. In: ICONIP’98 The Fifth International Conference on
Neural Information Processing Joined with JNNS’93 The 1998 Annual
Conference of the Japanese Neural Network Society, Vol. 2 (Usui S, Burke
OT, eds.), pp 781–784. Amsterdam: IOS.

Yamaguchi Y, Sato N, Wagatsuma H, Wu Z, Molter C, Aota Y (2007) A
unified view of theta phase coding in the entorhinal hippocampal system.
Curr Opin Neurobiol 17:197–204. CrossRef Medline

Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, Moser MB,
Moser EI (2013) Optogenetic dissection of entorhinal-hippocampal
functional connectivity. Science 340:1232627. CrossRef Medline

Jaramillo et al. • Inheritance of Phase Precession J. Neurosci., May 28, 2014 • 34(22):7715–7731 • 7731

http://dx.doi.org/10.1002/hipo.22002
http://www.ncbi.nlm.nih.gov/pubmed/22367959
http://dx.doi.org/10.1002/hipo.20450
http://www.ncbi.nlm.nih.gov/pubmed/18528856
http://dx.doi.org/10.1126/science.1151120
http://www.ncbi.nlm.nih.gov/pubmed/18218862
http://dx.doi.org/10.1002/hipo.20939
http://www.ncbi.nlm.nih.gov/pubmed/21484936
http://dx.doi.org/10.1002/hipo.20115
http://www.ncbi.nlm.nih.gov/pubmed/16145693
http://dx.doi.org/10.1002/hipo.450030307
http://www.ncbi.nlm.nih.gov/pubmed/8353611
http://dx.doi.org/10.1126/science.1159775
http://www.ncbi.nlm.nih.gov/pubmed/18772431
http://dx.doi.org/10.1016/j.neuron.2012.11.032
http://www.ncbi.nlm.nih.gov/pubmed/23312522
http://dx.doi.org/10.1007/BF00962717
http://www.ncbi.nlm.nih.gov/pubmed/8792224
http://dx.doi.org/10.1126/science.1243028
http://www.ncbi.nlm.nih.gov/pubmed/24457213
http://dx.doi.org/10.1073/pnas.1109599109
http://www.ncbi.nlm.nih.gov/pubmed/22474395
http://dx.doi.org/10.1080/09548980601064846
http://www.ncbi.nlm.nih.gov/pubmed/17162463
http://dx.doi.org/10.1038/nn.3077
http://www.ncbi.nlm.nih.gov/pubmed/22446878
http://dx.doi.org/10.1152/jn.00932.2009
http://www.ncbi.nlm.nih.gov/pubmed/20357069
http://dx.doi.org/10.1523/JNEUROSCI.2270-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19846711
http://dx.doi.org/10.1038/nn.3340
http://www.ncbi.nlm.nih.gov/pubmed/23396102
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
http://www.ncbi.nlm.nih.gov/pubmed/8797016
http://dx.doi.org/10.1002/hipo.20244
http://www.ncbi.nlm.nih.gov/pubmed/17094145
http://dx.doi.org/10.1038/nature11649
http://www.ncbi.nlm.nih.gov/pubmed/23222610
http://dx.doi.org/10.1523/JNEUROSCI.0693-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16135766
http://dx.doi.org/10.1162/neco.2008.07-06-292
http://www.ncbi.nlm.nih.gov/pubmed/18085985
http://dx.doi.org/10.1002/hipo.22133
http://www.ncbi.nlm.nih.gov/pubmed/23576429
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.3.CO;2-Q
http://www.ncbi.nlm.nih.gov/pubmed/8841826
http://dx.doi.org/10.1523/JNEUROSCI.4869-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21414906
http://dx.doi.org/10.1073/pnas.1210929109
http://www.ncbi.nlm.nih.gov/pubmed/23010933
http://www.ncbi.nlm.nih.gov/pubmed/9242288
http://dx.doi.org/10.1016/j.conb.2007.03.007
http://www.ncbi.nlm.nih.gov/pubmed/17379502
http://dx.doi.org/10.1126/science.1232627
http://www.ncbi.nlm.nih.gov/pubmed/23559255

	Modeling Inheritance of Phase Precession in the Hippocampal Formation
	Introduction
	Materials and Methods
	Results
	Phase precession in a CA3-CA1 network model
	Parametrization of the computational model
	Subthreshold features of phase precession constrain model parameters
	Phase precession in a bursting model neuron
	Discussion

	References

