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An RNA-Sequencing Transcriptome and Splicing Database
of Glia, Neurons, and Vascular Cells of the Cerebral Cortex
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The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the
functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons,
astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells,
and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used
a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell
type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and
insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to
dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic
enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain.
To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/
brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell

classes in the brain.
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Introduction

Together with neurons, glia (astrocytes, oligodendrocytes, and
microglia) and vascular cells (endothelial cells and pericytes) are
essential for the development and function of the nervous system
(Allen and Barres, 2009; Molofsky et al., 2012). Each of these
major cell types express a distinct repertoire of genes, and to-
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gether these transcriptomes provide fundamental insights into
the development and function of the brain. A transcriptome da-
tabase of purified brain cell types has a variety of potential uses,
including identifying cell type-specific markers, helping to de-
velop tools that allow cell type-specific genetic manipulations
(e.g., cell ablation, gene silencing, and optogenetic manipula-
tions), revealing the metabolic division of labor between different
cell types and suggesting novel cell-specific functions.

Previous groups have performed transcriptome studies of one
or more purified cell types in the brain (Dugas et al., 2006; Ross-
ner et al., 2006; Lovatt et al., 2007; Cahoy et al., 2008; Doyle et al.,
2008; Lau et al., 2008; Daneman et al., 2010; Wylie et al., 2010;
Bracko et al., 2012; Friedrich et al., 2012; Lerch et al., 2012; Ban-
dyopadhyay et al., 2013; Beutner et al., 2013; Chiu et al., 2013;
Orre et al., 2014), but because of the technical complexity in-
volved in purifying numerous cell types and varying foci of pre-
vious studies, a complete transcriptome dataset that allows direct
comparison of gene expression across all of the major glial and
vascular brain cell types is lacking. Moreover, the majority of
previous transcriptome studies were performed using microar-
rays, in which transcript abundance is indirectly deduced from
fluorescence signal intensities.
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RNA sequencing (RNA-Seq) is a method that profiles the
transcriptome by deep sequencing of isolated RNAs. Transcript
abundance is directly proportional to the number of sequencing
reads that map to a specific transcript, resulting in lower false-
negative and false-positive discovery rates in addition to a greater
linear range (Bainbridge et al., 2006; Cloonan et al., 2008; Mari-
oni et al., 2008; Mortazavi et al., 2008; Nagalakshmi et al., 2008;
Sultan et al., 2008; Wilhelm et al., 2008; Trapnell et al., 2010; Wu
etal.,2010). Direct sequencing of RNA libraries also provides the
opportunity to explore alternative splicing, a key mechanism that
contributes to transcriptome diversity (Pan et al., 2008; Wang et
al., 2008). Aberrant alternative splicing has been implicated in
many neurological diseases (Buckanovich etal., 1996; Yang et al.,
1998), yet the complex landscape of differential splicing among
glia, neurons, and vascular cells has not been investigated.

In this study, we purified neurons, astrocytes, microglia, en-
dothelial cells, pericytes, and various maturation states of oligo-
dendrocytes from mouse cortex and used RNA-Seq to generate a
high-resolution transcriptome database of >22,000 genes. We
identified thousands of novel cell type-enriched genes and devel-
oped a library of thousands of cell type-specific splicing events.
To ensure the widespread distribution of these datasets, we have
created a user-friendly website (http://web.stanford.edu/group/bar
res_lab/brain_rnaseq.htm]l)thatprovides readily accessible
platforms for analyzing and comparing transcription and alternative
splicing profiles for various cell classes in the brain.

Materials and Methods

Purification of glia, neurons, and vascular cells

All procedures involving animals were conducted in conformity with
Stanford University guidelines that are in compliance with national and
state laws and policies. The purification procedures are modified from
previously described dissociation, immunopanning, and fluorescence-
activated cell sorting (FACS) purification protocols (Dugas et al., 2006;
Cahoy et al., 2008; Daneman et al., 2010; Foo et al., 2011).

Purification of astrocytes. To purify astrocytes, we used a bacterial arti-
ficial chromosome (BAC) transgenic mouse line expressing EGFP under
the control of regulatory sequences in Aldh111-BAC (Heintz, 2004). This
line has been characterized previously to have complete astrocyte-
specific labeling throughout the brain (Cahoy et al., 2008). For all cell
types, one biological replicate consists of pooled cells from a litter of 3-12
mice. The cortices were dissected out, and the meninges were removed.
The tissue was enzymatically dissociated to make a suspension of single
cells as described previously (Dugas et al., 2006; Cahoy et al., 2008).
Briefly, the tissue was incubated at 33°C for 45 min in 20 ml of a papain
solution containing Earle’s balanced salt solution (EBSS; catalog #E7510;
Sigma), p(+)-glucose (22.5 mm), NaHCO; (26 mm), DNase (125 U/ml;
catalog #1.5002007; Worthington), papain (9 U/ml; catalog #LS03126;
Worthington), and L-cysteine (1 mwm; catalog #C7880; Sigma). The pa-
pain solution was equilibrated with 5% CO, and 95% O, gas before and
during papain treatment. After papain treatment, the tissue was washed
three times with 4.5 ml of inhibitor buffer containing BSA (1.0 mg/ml;
catalog #A-8806; Sigma) and ovomucoid (also known as trypsin inhibi-
tor; 1.0 mg/ml; catalog #109878; Roche Diagnostics) and then mechani-
cally dissociated by gentle sequential trituration using a 5 ml pipette.
Dissociated cells were layered on top of 10 ml of a high-concentration
inhibitor solution with 5 mg/ml BSA and 5 mg/ml ovomucoid and
centrifuged at 130 X g for 5 min. The cell pellet was then resuspended
in 12 ml of Dulbecco’s PBS (DPBS; catalog #14287;Invitrogen) con-
taining 0.02% BSA and 12.5 U/ml DNase and filtered through a 20
um Nitex mesh (Lab Pak 03-20/14; Sefar America) to remove undis-
sociated cell clumps. Cell health was assessed by trypan blue exclu-
sion. Only single-cell suspensions with >85% viability were used for
purification experiments.

Propidium iodide (PI; 1 pg/ml; catalog #P4864;Sigma) was added to
the single-cell solution to label dead cells. Cells were sorted on a BD Aria
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II cell sorter (BD Bioscience) with a 70 wm nozzle. Dead cells and debris
were gated first by their low forward light scatter and high side light
scatter and second by high PI staining. Doublets were removed by high
side light scatter. Cell concentration and flow rate were carefully adjusted
to maximize purity. Astrocytes were identified based on high EGFP flu-
orescence. FACS routinely yielded >99% purity based on reanalysis of
sorted cells. Purified cells were harvested by centrifugation at 2000 X g
for 5 min. The cell pellet was then used for RNA extraction.

Purification of endothelial cells. To purify endothelial cells, we used
Tie2-EGFP transgenic mice available from The Jackson Laboratory.
These mice express EGFP under the pan-endothelial Tie2 promotor
(Motoike et al., 2000; Daneman et al., 2010). Single-cell suspensions and
FACS were performed as described above.

Preparation of panning plates. To prepare panning plates for immuno-
panning, Petri dishes (150 X 15 mm; catalog #351058; BD Biosciences)
were incubated with 22 ml of Tris-HCI buffer solution (50 mm, pH 9.5)
and 150 pg secondary antibody overnight at 4°C. Each dish was then
washed three times with 10-20 ml of DPBS and incubated with the
corresponding primary antibodies diluted in 12 ml of DPBS/0.2% BSA
solution per dish for at least 2 h at room temperature. Lectin-coated
panning plates were prepared by adding 22 ml of DPBS and 50 g of
Banderiaea simplicifolia lectin 1 (BSL-1; catalog #L-1100; Vector Labora-
tories) and incubating at 4°C overnight. All panning dishes were washed
three times with 10—20 ml of DPBS immediately before use. The second-
ary antibodies (Jackson ImmunoResearch) we used included affinity-
purified goat anti-mouse IgG + IgM [heavy and light (H + L) chain;
catalog #115-005-044], goat anti-mouse IgM w-chain (catalog #115-005-
02), and goat anti-rat IgG (H + L chain; catalog #112-005-167). All
immunopanning was performed at room temperature.

Purification of neurons. To purify neurons, a single-cell suspension was
prepared as described above and incubated at 34°C for 1 h to allow
expression of cell-surface protein antigens digested by papain and then
incubated on two sequential panning plates coated with BSL-1 to deplete
endothelial cells (10 min each), followed by a 30 min incubation on a
plate coated with mouse IgM anti-O4 hybridoma (Bansal et al., 1989; 4
ml of hybridoma supernatant diluted with 8 ml of DPBS/0.2% BSA) to
deplete oligodendrocyte precursor cells (OPCs), and then incubated for
20 min on a plate coated with rat anti-mouse cluster of differentiation 45
(CD45) (catalog #550539; BD Pharmingen; 1.25 ug in 12 ml of DPBS/
0.2% BSA) to deplete microglia and macrophages. Finally, cells were
added to a plate coated with rat anti-mouse L1 neural cell adhesion
molecule (LICAM; 30 ug in 12 ml of DPBS/0.2% BSA; catalog
#MAB5272; Millipore) to bind neurons. The adherent cells on the
L1CAM plate were washed eight times with 10—20 ml of DPBS to remove
all antigen-negative nonadherent cells and then removed from the plate
by treating with trypsin (1000 U/ml; catalog #T-4665; Sigma) in 8 ml of
Ca?*and Mg?" free EBSS (catalog #9208; Irvine Scientific) for 3-10 min
at37°Cina 10% CO, incubator. The trypsin was then neutralized with 20
ml of fetal calf serum (FCS) solution containing 30% FCS (catalog
#10437-028; Gibco), 35% DMEM (catalog #11960-044; Invitrogen), and
35% Neurobasal (catalog #21103-049; Gibco). The cells were dislodged
by gentle squirting of FCS solution over the plate and harvested by cen-
trifugation at 200 X g for 10 min.

Purification of microglia and oligodendrocyte-lineage cells. Both micro-
glia and peripheral macrophages express the surface protein CD45.
Therefore, macrophages are potential contaminants in the microglia
preparation isolated with anti-CD45 antibody. To minimize macro-
phage contamination, we first perfused the mice with 10 ml of PBS to
wash away blood from the brain. A single-cell suspension was then pre-
pared as described above and incubated 20 min on a plate coated with rat
anti-mouse CD45 (1.25 ugin 12 ml of DPBS/0.2% BSA; catalog #550539;
BD Pharmingen) to harvest microglia. To purify oligodendrocyte-
lineage cells, we then incubated cells not bound to the anti-CD45
antibody-coated plate sequentially on four BSL-1-coated plates (8 min
each) to deplete endothelial cells and remaining microglia. The remain-
ing cells were next incubated for 30 min on a rat anti-PDGF receptor o
(PDGFRa; 10 ugin 12 ml of DPBS/0.2% BSA; catalog #10R-CD140aMS;
Fitzgerald) coated plate to harvest OPCs and then incubated on an addi-
tional PDGFRa plate and mouse A2B5 monoclonal antibody ascites
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(American Type Culture Collection) coated plate for 30 min each to
deplete remaining OPCs. The cell suspension was next incubated on an
anti-myelin oligodendrocyte glycoprotein (MOG) hybridoma-coated
plate for 30 min to harvest myelinating oligodendrocytes (MOs), fol-
lowed by an additional anti-MOG hybridoma-coated plate for 30 min to
deplete any remaining MOs. Finally, the cell suspension was incubated
on an anti-GalC hybridoma-coated plate for 30 min to harvest newly
formed oligodendrocytes (NFOs). For purification of RNA, the cells were
lysed while still attached to the panning plate with Qiazol reagent (catalog
#217004; Qiagen), and total RNA was purified as described below.

Purification of pericytes. To purify pericytes, a single-cell suspension
was prepared as described above and incubated at 34°C for 1 h to allow
expression of cell-surface protein antigens digested by papain. The cells
were incubated on three sequential panning plates coated with anti-
CD45 (1.25 pgin 12 ml of DPBS/0.2% BSA) antibody to deplete micro-
glia and macrophages (30 min each) and then incubated 30 min on a
panning plate coated with anti-CD31 antibody (6 ug in 12 ml of DPBS/
0.2% BSA; catalog #10RCD31gRT; Fitzgerald) to deplete endothelial
cells. The cells were finally incubated 45 min on a panning plate coated
with anti-PDGFR antibody (20 pgin 12 ml of DPBS/0.2% BSA; catalog
#ab91066; Abcam) to harvest pericytes. Cells were removed from the
plate by trypsin digestion as described above.

RNA library construction and sequencing

The polyadenylated fraction of RNA isolated from brain cell types was
used for 100 bp paired-end RNA-Seq. Total RNA was extracted using the
miRNeasy kit (Qiagen) under the protocols of the manufacturer. The
quality was accessed by Bioanalyzer. Samples with high RNA integrity
number (>8) were used for library construction. One hundred nano-
grams of total RNAs were used for each sequencing library. We used the
TruSeq RNA Sample Prep Kit (Illumina) to construct poly(A) selected
paired-end sequencing libraries following the instructions in the TruSeq
RNA Sample Preparation V2 Guide (Illumina). All libraries were then
sequenced using the Illumina HiSeq 2000 Sequencer. Two replicates of
pooled animals for each cell type were sequenced. To minimize batch
effects in library preparation and sequencing, samples were collected and
sequenced in the largest feasible group size and performed by the same
individuals.

Read mapping, transcript assembly, and expression

level estimation

Mapping of Illumina 100 bp paired-end reads to the mouse reference
genome [University of California, Santa Cruz (UCSC) Genome Browser
version mm9] was performed using TopHat software (version 1.3.3;
Trapnell et al., 2010), which invokes Bowtie (version 0.12.7) as an inter-
nal read mapper (Langmead et al., 2009). TopHat was designed to align
reads from an experiment to a reference genome without relying on
known splice sites and can be used to identify novel splice variants of
genes. Read mapping (TopHat) was run with default settings and -G
option, which supplies TopHat with gene model annotation of known
transcripts (Illumina iGenome UCSC mm9.gtf annotation file; down-
loaded from http://cufflinks.cbcb.umd.edu/igenomes.html) to facilitate
read mapping. After read mapping, transcripts were then assembled us-
ing Cufflinks software (version 1.3.0; Trapnell et al., 2010). Expression
level estimation was reported as fragments per kilobase of transcript
sequence per million mapped fragments (FPKM) value together with
confidence intervals for each sample. An in-house pipeline was devel-
oped to automate the abovementioned mapping and assembly process.

Determination of the threshold for reliable FPKM estimation

To facilitate downstream analyses (such as gene fold change analysis,
etc.) and to assess the accuracy and reliability of our RNA-Seq experi-
ments, we applied a widely used procedure to determine the threshold for
reliable FPKM estimation based on optimizing the intersection of false-
positive and false-negative rates (Ramskold et al., 2009; Lerch et al., 2012;
Chen et al.,, 2013). We conducted an analysis based on the 95% confi-
dence intervals of FPKM values as calculated by Cufflinks (Trapnell etal.,
2010). Genes whose estimated FPKM values had lower confidence
bounds of 0 were labeled as “unreliable.” We calculated the numbers of
reliable and unreliable FPKM values at various FPKM thresholds and
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produced false-positive and false-negative rate curves to identify an
FPKM value that is optimized for both false positives and negatives. We
determined an FPKM value of ~0.04 as a threshold for minimum gene
expression according to the above procedure and chose a more conser-
vative FPKM threshold of 0.1 for the following analyses. Therefore, genes
expressed at FPKM values >0.1 are expressed at statistically significant
levels (>99% confidence), although this represents the bottom of an
exceedingly large dynamic range (>5 orders of magnitude) of FPKM
values. Any FPKM that is <0.1 were set to 0.1 for fold enrichment calcu-
lations to avoid ratio inflation (Quackenbush, 2002). The RNA-Seq data
have been deposited in the National Center for Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus (GEO) and is accessible through
GEO Series accession number GSE52564.

Analysis of long noncoding RNAs

To identify cell type-enriched long noncoding RNAs (IncRNAs), we
obtained the most current IncRNA annotations from the GENCODE
project and created an annotation file that included both Ref-Seq and
IncRNA genes. We then recalculated expression levels with Cufflinks
using the amended annotation file and extracted corresponding FPKM
values for IncRNAs.

Analysis of cell type-enriched genes, transcription factors, signaling
pathways, and metabolic pathways
Differential expression was calculated as the FPKM of a given cell type
divided by the average FPKM of all other cell types. Genes were ranked by
their fold enrichment in each cell type, and top enriched genes for each
cell type were identified (see Fig. 3B). To identify cell type-enriched
transcription factors, we filtered our data with a previously annotated
transcription factor database (Zhang et al., 2012), and top enriched tran-
scription factors of each cell type were identified as described above.
Compared with the other seven cell types, the pericyte samples are
confounded by a small number of contaminating astrocytes and endo-
thelial cells. Accordingly, we did not include these data in any differential
expression calculations of the remaining cell types. Nevertheless, when
calculating pericyte-enriched genes, small astrocyte and endothelial cell
contaminants do not contribute to the list of pericyte-specific transcripts
because astrocyte and endothelial genes are included in the denominator
of the enrichment calculation. Therefore, we have included pericyte data
exclusively in lists of top cell type-specific genes (see Fig. 4; Table 1).
Considering the current dearth of RNA-Seq pericyte transcriptome data,
the pericyte gene expression presented here provides novel opportunities
to identify molecular handles to study this important cell population.
We used Ingenuity Pathway Analysis (Ingenuity) to identify signaling
pathways and metabolic pathways enriched in each cell type. Genes with
FPKM >5 and fold enrichment >5 in each cell type were fed into Inge-
nuity Pathway Analysis to highlight those pathways with substantial ex-
pression values. Information of gene functions in specific signaling
pathways and metabolic pathways with experimental evidence from the
Ingenuity knowledge base were used for analysis.

Microarray analysis

Identical cell samples were used for RNA-Seq and microarray analyses.
Each sample was purified with miRNeasy kit (Qiagen) and equally split
into two portions, one for RNA-Seq and the other for microarray analy-
sis. Mouse genome 430 2.0 Array (Affymetrix) was used for analysis.
The .cel files from the arrays were analyzed with Arraystar 4.0 software
(DNAstar) using robust multichip average processing and quantile
normalization.

qRT-PCR

Forty genes found by RNA-Seq to be enriched in specific cell types were
selected for qRT-PCR validation. We designed primers using NCBI
primer blast software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/)
and selected primer pairs with the least probabilities of amplifying nonspe-
cific products as predicted by NCBI primer blast. We designed primer
pairs to amplify products that span exon—exon junctions to avoid am-
plification of genomic DNA. We tested the specificity of the primer pairs
by PCR with mouse whole-brain cDNA (catalog #MD201; Zyagen), and
we examined the PCR product by agarose gel electrophoresis.
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We performed qRT-PCR with the Fluidigm BioMark system using
methods modified from a previously described protocol (Citri et al.,
2012). Briefly, purified cell samples for QRT-PCR were prepared identi-
cally to the methods described for the RNA-Seq samples. Cells were
harvested and lysed with SuperscriptIIl CellsDirect Onestep qPCR kit
(catalog #11732-020; Invitrogen) according to the instructions of the
manufacturer. A 500 nM primer mixture of all primer pairs was mixed
with cell lysates and components of the Superscript III CellsDirect
Onestep qPCR kit components according to the instructions of the man-
ufacturer. Reverse transcription and 8—13 cycles of specific target ampli-
fication were performed in a single program. Specific target amplification
products were then treated with 1 U/ul Exonuclease I (catalog #M0293L;
New England Biolabs) to degrade unbound primers. The products and
exonuclease were incubated at 37°C for 30 min, followed by inactivation
at 80°C for 15 min. Exonuclease I-treated samples were diluted 1:1 with
DNA suspension buffer (catalog #T0223; Teknova) and mixed with 2X
SsoFast EvaGreen Supermix (catalog #172-5211; Bio-Rad) and 20X
DNA Binding Dye Sample Loading Reagent (catalog #100-0388; Fluid-
igm) before loading to preprimed 96.96 Dynamic Array IFC (Fluidigm).
Primer pairs were mixed with 2X Assay loading reagent (catalog
#85000736; Fluidigm) and DNA suspension buffer (Teknova) and
loaded to the same 96.96 Dynamic Array IFC (Fluidigm). In addition to
purified cell samples, we included unpurified mouse whole-brain sam-
ples as positive controls and reactions without primer pairs or cDNA as
negative controls. Thirty cycles of gPCR amplification were performed
on the Fluidigm BioMark system, followed by a melting-curve analysis. A
total 0f 9216 (96 X 96) qPCR reactions were performed on a single chip.
The Fluidigm BioMark software was used for data analysis and visualiza-
tion. As a quality-control step, we manually examined the melting curves
for each reaction and included only those reactions with a single peak at
the expected melting temperature for final data analysis. Threshold was
determined automatically, and threshold cycle (Ct) values were calcu-
lated by the Fluidigm BioMark software. Gene enrichment was calculated
using the AACt method in relation to the housekeeping gene Gapdh.

Analysis of alternative splicing

We developed a pipeline, Quantas, for analysis of alternative splicing infor-
mation from RNA-Seq data (http://zhanglab.c2b2.columbia.edu/index. p h
p/Quantas). Briefly, we first performed de novo mapping of raw reads to
the reference genome (mm?9), as well as known and novel exon junctions
using small seeds with the OLego algorithm (Wu et al., 2013). We then used
gapless to infer transcript structure of alternative isoforms between ambigu-
ously located paired-end reads using a simple Bayes model that considers size
constraints of each cDNA fragment and previous isoform abundance esti-
mations from mapped junction reads. We then used countit, a library of
codes that quantifies the gapless output against a comprehensive database of
alternative splicing events (six in our case; Zhangetal., 2010). We derived the
information relative to alternatively spliced events and corresponding genes
from the output files. We computed an inclusion score estimating the prob-
ability of an exon to be included or excluded for each event type in each
sample. The score is calculated as the ratios of the OLego computed counts
for the form including the exon over the total. Most splicing events exhibit a
bimodal distribution in which the majority of the minor isoforms constitute
<<20% of the reads. Based on these data, we considered an event to be alter-
natively spliced only if it had a score between 0.2 and 0.8 to isolate those
splicing events with the most biological significance. Finally, we also per-
formed statistical tests (Fisher’s test) to determine significance of the splicing
events across different cell types. We then formatted output results into html
and visualized both aligned reads and mapped junction reads on a web
browser.

Double-fluorescent in situ hybridization

Full-length mouse cDNA expression plasmids were obtained for Eno2,
Glast, Plp1, Cx3crl, Gdpd2, Ppapdcla, Eltd1, Olfmi3, and Lppr3 (Thermo
Fisher Scientific). A full-length Cldn5 expression plasmid was a gift from
D. Agalliu (University of California, Irvine, Irvine, CA). Digoxigenin
(DIG)- or fluorescein-labeled single-stranded antisense and sense ribo-
probes were prepared by linearizing plasmids and transcription with T7,
Sp6, or T3 RNA polymerases and an RNA labeling kit (Roche) according
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to the instructions of the manufacturer. Fresh frozen 16-um-thick brain
sections were processed as described previously (Schaeren-Wiemers and
Gerfin-Moser, 1993), with the following modifications for fluorescent in
situ hybridization: after hybridization, sections were treated three times
(20 min each) in 3% hydrogen peroxide (Sigma-Aldrich) in PBS to block
endogenous peroxidase activity, washed three times in buffer B1 (0.1 m
Tris-HCI, pH 7.5, and 150 mm NaCl), and blocked in blocking reagent
(PerkinElmer Life and Analytical Sciences) in buffer B1 plus 0.1% Triton
X-100 for 1 h. Anti-DIG POD or anti-FITC POD (Roche) antibodies
were cross-absorbed against lightly fixed brain tissue to decrease nonspe-
cific binding, diluted in blocking buffer (1:400), and applied to tissue
overnight at 4°C. Slides were developed using a fluorescein or Cy3 Tyra-
mide Signal Amplification Plus kit (PerkinElmer Life and Analytical Sci-
ences). For double-fluorescent in situ hybridization, the protocol was
repeated starting with the peroxidase blocking step, using the alternate
antibody, and a different fluorophore. Slides were extensively washed in
PBS and coverslipped with Vectashield with DAPI (Vector Laboratories)
for imaging.

Results

Creation of an RNA-Seq transcriptome library

To maximize biological diversity, we pooled dissected cerebral
cortices from two litters of mice for each cell type that we profiled.
Purified cell populations were obtained by immunopanning with
cell type-specific cell-surface antibodies and FACS of transgeni-
cally labeled cell populations (astrocytes with Aldh111-GFP mice
and endothelial cells with Tie2—GFP mice). Despite the fact that
our protocols for immunopanning and FACS differ only in the
final step of cell isolation, we wanted to ensure that the two meth-
ods did not affect gene expression differently. Therefore, we used
both immunopanning and FACS to isolate astrocytes from
mouse brain cortices and directly compared expression profiles
of the two populations. As expected, both methodologies pro-
duced highly pure cell populations with minimal variation in
gene expression (data not shown). Selecting an ideal time point
for transcriptome profiling is a balance between maximizing cell
maturation with increasing difficulty of cell isolation over time.
We chose P7 because it is an age when differentiated populations
of neurons, astrocytes, and endothelial cells are present and can
be acutely purified with minimal activation. At P7, astrocytes are
robustly growing and promoting synapse formation. Although
these astrocytes have not reached their final mature size and mor-
phology, their gene expression profiles closely resemble that of
mature astrocytes isolated from P30 brains (Cahoy et al., 2008).
Oligodendrocyte-lineage cell isolation occurred at P17 because it
represents the earliest time point when the full collection of
oligodendrocyte-lineage cells are present. We extracted RNA
from purified cell populations and performed RNA-Seq with the
[lumina HiSeq 2000 platform. We obtained 65.6 = 5.4 million
(data represent mean = SD unless otherwise specified) 100 bp
reads per sample. We successfully mapped 86.9 * 6.4% of the
fragments to the genome. Few fragments were mapped to multi-
ple locations of the genome (1.5 = 0.7%).

To assess the reproducibility of our data and conservation
across biological replicates, we calculated correlations across all
RNA-Seq samples and found high correlations among cell type
replicates (Spearman’s rank correlation, mean r = 0.979 = 0.004)
and lower correlations across differing cell types (Spearman’s
rank correlation, mean r = 0.714 = 0.008). A notable and ex-
pected exception is that NFOs and MOs exhibit a tighter correla-
tion (mean r = 0.873 % 0.010) than typically observed across
differing cell types (Fig. 1C).
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Purification of neurons, glia, and vascular cells. A, We purified eight cell types—neurons, astrocytes, 0PCs, NFOs, MOs, microglia, endothelial cells, and pericytes—from mouse cerebral

cortex with a combination of immunopanning and FACS procedures (for details, see Materials and Methods). B, RNA was extracted from purified cells and analyzed by microarray and RNA-Seq. €,
Spearman'’s rank correlation of RNA-Seq biologically independent replicates. Each replicate consists of pooled cortices from 3—12 animals. D, Expression of classic cell-specific markers in purified glia,
neurons, and vascular cells samples determined by RNA-Seq. Two biological replicates of each cell type are shown. Specific expression of known cell-specific markers demonstrates the purity of the

glial, neuronal, and vascular samples.

Purity of neuronal, glial, and vascular samples

We next wanted to validate the purity of the isolated brain cell
types. We probed the transcriptome data for expression of well
known cell type-specific genes for astrocytes (e.g., Gfap, Aldh1l1,
Slcla3, Aqp4 ), neurons (e.g., Tubb3, Stmn2, Snap25, Eno2, Synl),
OPCs (e.g., Pdgfra, Cspg4), NFOs (e.g., Enpp6, Nfasc), MOs (e.g.,
Plp, Mog, Mbp, Mobp), microglia (e.g., Ccl3, Cd11b, Tnf), and
endothelial cells (Cldn5, Flt1, Esam) (Fig. 1D; Dugas et al., 20065
Cahoy et al., 2008; Daneman et al., 2010; Beutner et al., 2013;
Chiu et al., 2013). These classic cell type-specific markers each
exhibited high expression levels in their corresponding cell types
and undetectable or extremely low expression levels by the re-
maining cell populations (Fig. 1D). As expected, some of the

oligodendrocyte-lineage markers are expressed in a graded man-
ner at high levels during one maturation stage and at lower levels
at a different maturation stage (see OPC, NFO, and MO data in
Fig. 1D; Dugas et al., 2006). These data confirmed the purity of
the various isolated cell types and established the feasibility of
constructing a high-quality transcriptome database.

Improved sensitivity of RNA-Seq versus microarray

We chose to use RNA-Seq to construct our transcriptome data-
base because it offers several substantial advantages over
microarray-based platforms. Comparing these two technologies,
RNA-Seq is believed to have increased sensitivity, improved lin-
earity, and a vastly larger dynamic range (Marioni et al., 2008;
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Mortazavi et al., 2008; Wang et al., 2009). Furthermore, microar-
ray experiments also rely on species-specific predesigned probes
of varying quality that preclude analysis of unannotated genes,
which substantially limits data comparison across different stud-
ies or species. In contrast, RNA-Seq generates results at single-
nucleotide resolution without a priori knowledge and includes
results of both known and novel genes. The high reproducibility
and platform agnostic nature of RNA-Seq allows direct compar-
ison of data from different studies across diverse species.

Expression estimation by RNA-Seq can be biased by factors
including non-uniform distribution of cDNA fragments and dif-
ferences in fragment GC content. To correct for these biases, we
adopted the widely accepted Cufflinks algorithm to estimate
FPKM values. Cufflinks implements a likelihood-based bias cor-
rection step that considers fragment size and GC content bias,
among others, and has been shown to significantly improve ex-
pression estimation (Roberts et al., 2011).

To directly compare the quality of our RNA-Seq transcrip-
tome with microarray-generated data, we compared the two
technologies on identical RNA samples. We evenly divided the
RNA isolated from several of the brain cell types into two groups.
Half of the RNA from each cell type was analyzed by RNA-Seq,
whereas the other identical half was analyzed using microarray.
Comparing identical samples by the two platforms back-to-back
made it possible to validate the RNA-Seq data with an orthogonal
methodology and to confirm previously reported advantages of
RNA-Seq over the microarray platform.

To directly compare the RNA-Seq and microarray data, we
calculated the correlation between expression of those transcripts
that were present in both platforms (Fig. 2A). As expected, sam-
ples from identical cell types demonstrated high correlations
(Spearman’s rank correlation, mean r = 0.945 = 0.014) in con-
trast to those samples from different cell types (Spearman’s rank
correlation, mean r = 0.721 = 0.009), indicating that both RNA-
Seq and microarray are consistent in identifying characteristic
gene expression signatures of distinct cell classes. Although most
correlation values between mismatched cell types were low, we
again found slightly higher correlations between oligodendro-
cytes of different maturation stages (OPCs, NFOs, and MOs).
These trends correctly represented the developmental and
functional similarities and differences of glia, neurons, and
vascular cells in the brain. Biological replicates of identical cell
types showed high correlation as determined from either
method, indicating that our cell purification methods are
highly reproducible.

To compare the sensitivities of the two technologies, we com-
pared the distributions of cell type-specific gene enrichments. For
a given cell type, we calculated the fold enrichment of each
gene— defined as expression of the gene in the given cell type
divided by the average expression level of the gene in all other cell
types—for both RNA-Seq and microarray datasets. We plotted
these fold enrichment values for each gene to compare the two
platforms directly (Fig. 2B—E). The resulting scatter plots did not
reveal the 1:1 trend line expected if both technologies were
equally sensitive but rather produced plots that are stretched
across the RNA-Seq axis (x-axis). These data indicate that RNA-
Seq identified a greater number of differentially expressed genes
than did the microarray platform, likely because of the higher
sensitivity of RNA-Seq in detecting low-abundance transcripts
and the increased linear range of RNA-Seq compared with the
microarrays.

We next examined the overlap between genes that were iden-
tified as differentially expressed by RNA-Seq and microarrays.

Zhang et al. e Transcriptome of Glia, Neurons, and Vascular Cells

We identified differentially expressed genes (using a fourfold en-
richment or depletion cutoff) in both modalities and found that
the majority of genes classified as differentially expressed by mi-
croarray were similarly identified by RNA-Seq (mean, 92.5 *
2.6%; for cell type-specific counts, see Fig. 2B—E). Conversely,
RNA-Seq consistently identified a significant number of differ-
entially expressed genes that were not classified as differentially
expressed in the microarray dataset [ranging from 1471 (oligo-
dendrocytes) to 3529 (microglia) genes; Fig. 2B—E]. This trend
was consistent across all fold enrichment cutoffs (from 1.5 to 50;
data not shown). Together, these data indicate that the RNA-Seq
platform accurately identified many of the expression differences
observed with the microarray analysis but also detected a sub-
stantially larger number of new genes with previously unknown
cell type-specific distributions.

To investigate the relationship between enrichment and tran-
script abundance, we plotted the fold enrichment of all genes
against their transcript abundance in the whole cortex. Consis-
tent among all cell types, we observed a random distribution of
enrichment scores across all transcript abundance levels. In other
words, differential gene expression (as determined by RNA-Seq)
is not significantly biased by transcript abundance in the cortex.
We have included one such enrichment/expression plot for the
astrocyte data in Figure 2F as a representative example.

To further examine the genes detected as specifically enriched
in the RNA-Seq data, we compared the expression levels of cell
type-enriched genes identified by both RNA-Seq and microarray
versus those identified as cell type-enriched by RNA-Seq alone
(Fig. 2G). Here we observed a slight trend where genes enriched
in the RNA-Seq data alone were clustered toward lower FPKM
expression levels compared with those genes that were classified
as enriched in both modalities. This likely reflects a consequence
of the improved sensitivity and linearity of RNA-Seq compared
with microarray, and it is from this pool of lesser expressed genes
that we chose to validate new candidates with qPCR (see Fig. 6).

RNA-Seq analysis reveals distinct gene expression signatures
of each cell type

To assess the relationship between gene expression profiles of
different cell types, we performed unsupervised hierarchical clus-
tering of our complete RNA-Seq transcriptome data (Fig. 3A). As
expected, different maturation stages within the oligodendrocyte
lineage clustered together. Although astrocytes, oligodendro-
cytes, and microglia are all considered glia, they do not cluster
distinctly from neurons as is typically assumed based on their
misleading nomenclature. These glial cell types are actually as
dissimilar from each other as they are from neurons (Cahoy et al.,
2008). These differences are consistent with their distinct func-
tions and unique developmental origins. Indeed, ectoderm-
derived neurons, astrocytes, and oligodendrocyte-lineage cells
cluster more closely together than do the mesoderm-derived mi-
croglia and endothelial cells. The clustering heat map reveals dis-
tinct groups of genes specifically expressed by each cell type that
appear as red blocks in Figure 3A. Principal component analysis
revealed similar distinctions between cell classes (data not
shown).

RNA-Seq analysis identifies novel cell type-enriched genes

We analyzed the most highly enriched genes for each cell type
(Figs. 3B, 4). These genes are highly expressed (FPKM >20) by
one cell type and undetectable or expressed at low levels by other
cell types in the brain. As expected, several genes on this list are
well known cell type-specific markers, e.g., Aqp4, Aldhlll, and
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Cell type-specific genes

RNA-Seq analysis revealed cell type-specific gene expression profiles. A, Dendrogram and unsupervised hierarchical clustering heat map (using Euclidean distance) of purified cortical

glia, neurons, and vascular cells. The vertical distances on each branch of the dendrogram represent the degree of similarity between gene expression profiles of various samples. Biological replicates
showed the highest degree of correlation represented by short vertical distances. Cells in the oligodendrocyte lineage cluster closely together, and the order of the three oligodendrocyte-lineage cell
types corresponds to their maturation stages (OPC—NFO-MO). Although astrocytes and oligodendrocytes are hoth glial cells, their gene expression profiles are as different between each other as
they are different from neurons. Consistent with their embryonic origin, mesodermal-derived endothelial cells and microglia cluster farther away from ectoderm-derived neurons, astrocytes, and
oligodendrocytes. B, The top 40 enriched genes per cell type are shownin a heat map. Only highly expressed genes with FPKM =20 are included in this analysis. Fold enrichment s calculated as FPKM
of one cell type divided by the average FPKM of all other cell types. The majority of these genes showed specific expression by only one cell type, with the exception that some are expressed during

more than one maturation stage in the oligodendrocyte lineage.

Fgfr3 for astrocytes, DIxI and Stmn2 for neurons, Pdgfra and
Cspg4 for OPCs, Mbp and Mog for MOs, Tnfand Clga for micro-
glia, and Cldn5 for endothelial cells (Fig. 4). Additionally, how-
ever, we discovered a large number of cell type-enriched genes
that have not yet been described previously as cell type-specific in
the literature to the best of our knowledge. The restricted expres-
sion pattern of these genes reveals potential cell type-specific roles
in brain development, signaling, metabolism, and disease. For
example, we found astrocytic enrichment of the autism and
schizophrenia-associated gene Tspan7, neuronal enrichment of
the gene encoding a novel transmembrane protein Tmem59] that
is homologous to proteins implicated in the processing of amy-
loid precursor protein, and OPC enrichment of the gene encod-
ing Neurexophilinl, a protein involved in synapse formation.
Additional novel cell type-specific genes are included in Figure 4.

Transcription factors are key regulators of gene expression.
Cell type-specific transcription factor expression is important
for cell fate determination and cell differentiation (e.g., Neu-
roD for specification of neuron cell fate, Olig2 for specification
of oligodendrocyte fate, and GM98/Myrf for oligodendrocyte
differentiation; Lee et al., 1995; Zhou and Anderson, 2002;
Emery et al., 2009). Our RNA-Seq analysis identified numer-
ous cell type-specific or enriched transcription factors (Fig. 4).
These include well known transcription factors (e.g., Sox9 spe-
cific to astrocytes, DIxI, DIx5, and Tbrl specific to neurons,
Oligl and Olig2 specific to OPCs, Nkx2-2, Nkx6-2, and Myrf
specific to oligodendrocytes) and a large number of transcrip-
tion factors that were not recognized previously to be cell
type-specific. Additional investigation of these genes is likely
to be a fruitful approach to understanding the development of
the CNS.

What are the global differences in the signaling and metabolic
pathways among cell types of the brain? Historically, this ques-
tion has been difficult to address without a highly linear tran-
scriptome database. Here, we performed Ingenuity Pathway
Analysis enriched by each cell type among all expressed genes
from our samples and identified distinct signaling and metabolic
signatures for neurons, glia and vascular cells of the brain. As
expected, our analysis identified the enrichment of a collection of
neurotransmitter receptor signaling pathways in neurons, im-
mune cell signaling pathways in microglia, and epithelial adher-
ence junction signaling pathways in endothelial cells. Moreover,
we found the enrichment of NF-«B, Wnt/B-catenin, and sonic
hedgehog signaling pathways in astrocytes, suggesting the impor-
tance of these major signaling pathways in the development of
astrocytes and/or the induction of reactive astrogliosis. We de-
tected the enrichment of the inhibition of matrix metallopro-
teases and intrinsic prothrombin activation pathways in OPCs,
suggesting that OPCs have unique properties in their interactions
with the extracellular matrix compared with other cell types of
the brain. Metabolic differences among unique cell types of the
brain are poorly understood. We systematically analyzed enrich-
ment of metabolic pathways in each cell type of the brain. High-
lights include the enrichment of the 7y-linolenate biosynthesis
pathway in astrocytes, 3-phosphoinositide (IP3) biosynthesis
and degradation pathways in oligodendrocytes, the pyridoxal 5'-
phosphate salvage pathway in microglia, the citrulline—nitric ox-
ide cycle in endothelial cells, and the retinoate biosynthesis
pathway in pericytes. In addition, we conducted weighted gene
coexpression network analysis (WGCNA) to cluster genes into
coexpression modules using our RNA-Seq data (data available on
our RNA-Seq data website; see Notes).
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Figure4. Cell-specific markers and transcription factors. The top 40 genes and top 10 transcription factors ranked by fold enrichment of each cell type are listed. The most highly expressed genes
are highlighted. Green, FPKM >150; blue, FPKM 50 for transcription factors. Fold enrichment of astrocytes, neurons, microglia, and endothelial cells are calculated as FPKM of one cell type divided
by the average FPKM of all other cell types. Fold enrichment of OPC, NFO, and MO are calculated as FPKM of one cell type divided by the average FPKM of all non-oligodendrocyte-lineage cells, to
highlight top genes specifically expressed by a particular maturation stage during oligodendrocyte development. Only highly expressed genes with FPKM >20 are included in the ranking to
highlight genes that are most likely to have significant cell type-specific functions.
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Table 1. Top cell type-enriched IncRNAs

Zhang et al. e Transcriptome of Glia, Neurons, and Vascular Cells

Expression (FPKM)
Gene name Astrocyte Neuron 0PC NFO MO Microglia Endothelial Pericyte Enrichment
Astrocyte
Gm3764 773.4 783 915 215 2.1 6.5 1.1 103.4 23.1
Malat1 419.9 161.2 448 63.0 122 250 324 1208 74
(130071C03Rik 156.8 48.4 423 9.5 2.0 0.3 0.5 25.1 9.1
AW047730 100.3 9.7 4.8 5.5 23 19 0.5 40.1 9.6
Gm26924 54.9 0.1 0.1 0.1 0.1 17 49 7.5 46.8
Neuron
Meg3 6.2 729.7 48.6 1.2 33 249 15 105.5 45.7
Rian 3.8 446.8 354 16.6 26.7 54 6.1 727 285
6330403K07Rik 234 1411 69.3 14.0 6.5 25 12 27.8 7.2
Dix1os 2.0 29.0 0.9 0.4 0.2 0.1 0.4 23 446
DIx6os1 0.1 28.0 0.1 0.1 0.1 0.1 0.2 24 63.5
0PC
2810468N07Rik 59 33 974 199.9 249.5 24 0.4 47 32.7
Gm11650 1.0 0.8 29.1 6.1 0.1 0.1 0.1 0.6 59.1
Gm16277 1.9 1.4 28.1 14.9 6.5 0.2 0.1 6.7 83
Gm4876 15 0.8 25.8 19.3 14 0.1 12 2.7 28.7
3110043A19Rik 0.6 0.9 182 3.0 0.1 0.2 0.7 0.4 30.5
NFO
2810468N07Rik 59 33 974 199.9 249.5 2.4 0.4 4.7 67.1
9630013A20Rik 0.1 0.2 24 110.7 26.4 0.2 0.1 0.1 739.3
2410006H16Rik 20.2 8.9 2.7 67.0 30.1 8.1 31 19.0 6.7
Sox2ot 8.8 217 20.9 49.4 332 0.2 0.1 5.0 6.4
1700047M11Rik 0.1 0.1 3.2 30.9 244 0.2 0.1 0.2 240.9
MO
2810468N07Rik 5.9 33 974 199.9 249.5 24 0.4 47 83.8
Gm10687 0.5 0.2 0.8 16.0 26.5 0.1 15 0.8 45.2
9630013A20Rik 0.1 0.2 24 110.7 26.4 0.2 0.1 0.1 176.2
1700047M11Rik 0.1 0.1 3.2 30.9 244 0.2 0.1 0.2 190.2
Gm21984 0.2 24 03 31 18.4 0.2 0.1 0.4 253
Microglia
Gm13889 217 14.1 4.0 17.2 29.7 575.6 243 66.0 230
Gm26532 8.0 3.1 5.2 0.5 0.2 101.6 6.6 9.8 25.7
A430104N18Rik 0.1 0.2 14 0.1 0.1 60.3 0.1 03 181.2
Gm11974 21.6 12.6 9.2 5.0 3.0 493 6.6 11.0 5.1
Gm13476 1.4 1.0 0.1 44 34 38.7 0.1 0.1 222
Endothelial cell
Gm20460 0.9 03 03 0.2 0.2 0.4 14.9 23 40.4
Gm14207 0.2 0.1 0.1 0.1 0.1 0.1 128 1.2 106.7
Gm20748 0.2 0.1 0.1 0.1 0.2 0.3 10.9 1.2 703
Gm16104 03 0.2 0.2 0.1 0.1 0.2 9.4 14 51.8
Gm9581 0.2 0.1 0.4 0.7 09 0.5 9.1 3.0 19.6
Pericyte
Mir22hg 126 5.1 3.6 2.2 13 1.2 7.9 48.1 7.7
Gm17750 17.9 29.0 9.9 1.5 0.5 0.2 0.5 47.5 5.6
Gm17120 0.1 0.2 1.6 0.1 0.1 0.1 3.7 21.0 245
Gm14964 9.2 3.1 0.8 0.2 0.3 0.2 13 17.3 8.0
H19 20 0.7 0.7 0.2 0.1 0.2 17 163 20.1

The top expressed IncRNAs are listed for each cell type with an enrichment threshold >5.

The eukaryotic genome is transcribed in a developmentally
regulated manner to produce large numbers of IncRNA or large
intervening noncoding RNAs (Guttman et al., 2009; Mercer etal.,
2009), the function of which in gene regulation and cancer patho-
genesis are increasingly being recognized. However, the expres-
sion landscape of IncRNAs across different cell types has not been
characterized in a complex organ such as the brain. We detected
the expression of 811 IncRNAs with an inclusive criterion (FPKM
>1) and 227 IncRNAs with a stringent criterion (FPKM >5) in at
least one cell type. Some IncRNAs are among the highest ex-
pressed transcripts in the brain, with 12 having FPKM values
>100, placing them among the 7% most highly expressed genes
in our dataset. To ask whether we could observe cell type-specific
expression of IncRNAs, we compared the numbers of IncRNAs ex-
pressed by each cell type. We found that astrocytes and neurons

express large numbers of IncRNAs (109 * 2 and 92 = 3, respec-
tively), whereas MOs and endothelial cells express fewer IncRNAs
(44 * 3 and 48 * 3, respectively). Some IncRNAs are expressed in
cell type-specific or enriched manners (Table 1). Their function in
cell type-specific gene regulation warrants future investigation.
How do cells of the brain communicate with each other to
coordinate their unique roles in brain development and func-
tion? Much of our knowledge of cell-cell interactions is derived
from studies of secreted ligands and their transmembrane recep-
tors. For example, astrocytes secrete thrombospondins, which
bind their receptors 281 on neurons to stimulate synapse for-
mation (Christopherson et al., 2005; Eroglu et al., 2009). Endo-
thelial cells secrete heparin-binding EGF-like growth factor,
which binds its receptor epidermal growth factor receptor on
astrocytes to promote astrocyte survival (Foo et al., 2011). Bio-
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Table 2. Cell type-enriched ligands and receptors
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Astrocyte Neuron 0PC NFO MO Microglia Endothelial Pericyte
Enriched transmembrane receptors Ptprz1 Gpcl Pdgfra Gpr17 Efnb3 Gsflr Tfrc Pdgfrb
Ednrb Ptprm Gpr17 Semadd Gpr37 (d83 Pglyrp1 Colec12
Spr Caly ltgav Plxnb3 Sema4d Tyrobp H2-D1 Sfrp1
Fgfr3 Grin1 Omg Ddr1 Lparl Carl2 Eltd1 S1pr3
Gabbr1 Ptprn2 Gfral Efnb3 Ddr1 B2m Kdr Abcc9
Tnfrsf19 Grial Gria3 Gpr37 Omg Trem2 Eng Rarres2
Vcam1 Cnrl Sstrl Lpar1 Ephb1 Sirpa Tiel Pdgfrl
Adcyap1r1 Opeml lrap Pdgfra GpreSh Feerlg Cav1 Mrc2
Gria2 Stx1b Adora1 Omg S1pr5 (d14 FIt1 Fas
F3 (Cxadr Lypd1 Ephb1 Gpr17 Icam1 Fegrt Ednra
Grm3 Nptxr Gria4 Semaba Plxnb3 x3a Sema7a Lepr
Dag1 Grm2 Chrna4 [1rap Gpré62 Lag3 Lsr Osmr
Plxnb1 Robo2 Sema5a S1pr5 IIrap Gpr56 Acvrll Gprcsa
Ntsr2 Kit Calcrl Prkez Prkcz Itgam Tek Ifitm1
Fgfr1 Gabrb3 Gabra3 Erbb3 [tgh4 Fegr3 Gpr116 Ddr2
Ptch1 Gabrg2 Grin3a Gpré62 Erbb3 P2ry12 Fzd6 Scarf2
Fgfr2 Sarm1 Oprl1 Ptpre Semaba P2ry13 Ptprb Tgfbr3
Gpr19 Gabra2 Grik4 Grik3 Tnfrsf12a Aplnr Fzd5
ltga6 Darc Plxnb3 Grik2 H2-K1 Ptprg NpyTr
Gabbr2 Celsr3 Grik3 Casr Gpr183 Plxnd1 Celsr1
Enriched ligands Sparcl1 Reln Matn4 Gsn Trf Gst3 Sparc lgf2
Cpe Sst Sargl Lgi3 Gsn (lga Sepp1 Vin
Cyr61 Npy 0lfm2 Sargl Apod Ccl4 Pltp (xd12
Mfge8 Olfm?1 Vean Enpp6 Lgi3 (3 lgfbp7 (ol4a1
Clu Dkk3 Emid1 Matn4 Metrn Clgb Spock2 Col1a2
Htra1 (d27a Tnr Tnr Endod1 (lqc (tla2a Bgn
lgfbp2 (x3d Nxph1 Ddr1 Adamts4 Selpig Pglyrp1 Dcn
Vegfa Cck Timp4 Adamts4 Cntn2 (tsh Col4a1 Ptgds
Seg3 Vgf Spon1 Metrn Enpp6 B2m Egfl7 (x
Ncan Vstm2l Igsf21 Fam3c HapIn2 Gdf15 AU021092 Colnal
Pla2g7 Chgb Gsn gl [Irap OIfm3 Srgn Fstl1
Fix1 Seg2 Fam5c¢ Vecan Erbb3 Tnf Fn1 (ol3a1
Timp3 (1qtnf4 Qpct Timp4 Slpi Pla2g15 Kdr Mdk
18 (xadr (1qi3 Irap KIk6 Ten2 Apln Igfbp5
Bthd17 Col6a2 Smocl Col11a2 (Col11a2 Ly86 Wfdcl Serpinf1
Itih3 Resp18 Gpcs Bmp4 Matn4 Plod1 Angptl4 NbI1
HapIn1 Vstm2a IITrap Elfn2 DIk2 Na Htra3 Nid2
Lcat Garn Dscam DIx2 1123a Tgfb1 Smpdi3a Islr
ChrdI1 Igfbpl Chga Spon1 Wnt3 Lgals9 Lama4 Ptx3
Pla2g3 Nppc Nptx2 Dscam Npb Cd2 Emcn Vasn

The top 20 transmembrane receptors and top 20 ligands ranked by fold enrichment of each cell type are listed here. Fold enrichment of astrocytes, neurons, microglia, and endothelial cells are calculated as FPKM of one cell type divided by
the average FPKM of all other cell types. Fold enrichment of OPCs, NFOs, and MOs are calculated as FPKM of one cell type divided by the average FPKM of all non-oligodendrocyte-lineage cells to highlight top genes specifically expressed by

a particular maturation stage during oligodendrocyte development.

chemical and genetic identification of receptor-ligand pairs in
cell types of the brain has been cumbersome and time consuming.
Our transcriptome database provides an unprecedented oppor-
tunity to systematically identify cell type-specific expression of
ligands and their corresponding receptors (Table 2). For exam-
ple, we identified specific expression of Lgr6 by astrocytes and its
ligands, the R-spondins, by neurons. Stimulation of Lgr6 by
R-spondins potentiates Wnt/B-catenin signaling (Gong et al.,
2012). Our finding of the cell type-specific expression of this
ligand-receptor pair suggests a role of neurons in regulating Wnt/
B-catenin signaling in astrocytes. Investigation of the function of
these receptors and ligands will tremendously expand our knowl-
edge of neuroglial, neurovascular, and gliovascular interactions
in the brain.

An alternative splicing database of glia, neurons, and vascular
cells of the brain

Alternative splicing generates enormous transcriptome complex-
ity by producing multiple mRNA isoforms from a single gene. To
capture this transcriptome diversity, we constructed the first

RNA-Seq alternative splicing database of collective populations
of glia, neurons, and vascular cells. A daunting task in analyzing
alternative splicing from RNA-Seq data is to map hundreds of
millions of short reads (usually 50—150 nt in length) back to the
reference genome and to detect known or novel splice junctions.
For this purpose, we recently developed an algorithm, OLego, that
has an improved sensitivity and accuracy compared with previously
published programs (Wu et al., 2013). The false-negative rate (8.2%)
of OLego almost halved the false-negative rate of the widely used
programs TopHat (15.4%) and PASSion (14.8%). OLego is capable
of detecting six common alternative splicing event types (detailed in
Fig. 5A), including alternative 3" and 5’ splice sites, retained introns,
and various types of exon inclusion/exclusion events.

To address the global question of how many genes in the brain
are alternatively spliced, we mapped RNA-Seq reads from neu-
rons, astrocytes, OPCs, NFOs, MOs, microglia, and endothelial
cells with the OLego algorithm. This analysis identified 6588 total
genes that are alternatively spliced in at least one cortical cell type.
We next considered how alternative splicing varies across each of
these differing cell types. We found that the overall frequency of
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alternative usage of a splicing site on the 3’ end of an exon. B, Frequencies of the six types of alternative splicing events detected in the entire dataset and in individual cell types. In all cell types,
cassette exon events, i.e., the inclusion or exclusion of an exon, are the most frequently detected alternative splicing events. , The numbers of genes that are alternatively spliced in each cell type
and the union of these samples. The dotted line represents the total number of genes that are known to contain a potential splicing event in the mouse genome. The number of these genes that are
expressed in a given cell type are represented by gray bars. The black bars indicate the numbers of genes that are alternatively spliced in a given cell type based on criteria (Figure legend continues.)
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alternative splicing (5549 = 674 events corresponding to 3187 *
347 unique genes per cell type) and the distribution of various
splicing event types were similar across all of our samples (Fig.
5B, C). Cassette exon events consistently comprised the most fre-
quent alternative splicing event (35.3 * 1.3%), followed by a
nearly identical distribution of the remaining five splicing event
types (Fig. 5B). Despite the overall similarity in the frequency of
alternative splicing, we detected thousands of cell type-specific
alternatively spliced genes. Neurons contain the greatest number
of specific alternative splicing events (3110) in contrast to
oligodendrocyte-lineage cells, which contained less than half as
many (1469 unique splicing events in OPCs; Fig. 5D). This ob-
servation likely reflects the significant heterogeneity that is pres-
ent among various neuronal subtypes. The most significant
splicing events enriched in each cell type can be found in Table 3.
How many alternative splicing events of a gene, on average, are
present in a given cell type? Per cell type, we detected 5549 = 275
alternative splicing events in 3171 = 142 alternatively spliced
genes, resulting in ~1.7 alternative splicing events per alterna-
tively spliced gene. To provide easy access to the alternative splic-
ing data that we generated, we deposited the complete splicing
dataset in an interactive web browser and database (see Notes).

To test the accuracy of our splicing database, we looked for
genes reported previously to be differentially spliced in neurons
and glia. Two particularly interesting examples include the dif-
ferential expression of neuronal and glial isoforms of Nfasc and
Sgce genes (Zonta et al., 2008; Ritz et al., 2011), both of which are
confirmed in our splicing database, among others. Next, to vali-
date the accuracy of the novel cell type-specific splicing events in
our dataset, we searched for a biologically significant gene candi-
date to validate via PCR. One of our top cell type-specific splicing
events involved the gene pyruvate kinase (Pkm), which catalyzes
the final step of glycolysis (Tani et al., 1988). Our RNA-Seq data
indicated that neurons and glial cells express distinct splicing
isoforms of the Pkm gene, Pkm1I and Pkm2, respectively, and we
confirmed this result using RT-PCR with isoform-specific prim-
ers (Fig. 5E, F). Unlike Pkm1, the Pkm2 isoenzyme is allosterically
regulated to dynamically regulate the relative rate of energy pro-
duction (see below, Regulation of energy metabolism in neurons
and astrocytes).

qRT-PCR and in situ hybridization validate RNA-Seq results

We next used two different methods, QRT-PCR and in situ hy-
bridization, to determine the accuracy of the cell type-enriched
genes identified by RNA-Seq. We selected 40 genes that had not
been identified previously in the literature as cell type-specific for
our validation. Some of these genes are expressed at moderate
levels and others at low levels. We chose genes with low expres-

<«

(Figure legend continued.) outlined in Materials and Methods. D, The numbers of statistically
significant cell type-specific alternative splicing events in each cell type. Neurons have the
highest number of specific splicing events, whereas oligodendrocyte-lineage cells have the
least amount of specific splicing events. E, Pkm2 is an example of a gene spliced uniquely in
astrocytes and neurons. The traces represent raw data of the number of reads mapped to the
Pkm2 gene from astrocytes and neurons. The height of the blue bars represents number of
reads. The bottom schematic is the transcript model of Pkm2 gene from the UCSC Genome
Browser. Boxes represent exons, and black lines represent introns. The exon shown in blue is
predominantly included in neurons, whereas the exon shown in yellow is included only in
astrocytes. This is an example of a mutually exclusive event. F, Validation of PKM1/2 splicing
differences by PCR. We designed primers targeting exons unique to PKM7, unique to PKM2, and
exons common to PKM7 and PKM2. PR products were detected from neuron, astrocyte, and
whole-brain samples in patterns predicted by the RNA-Seq data.
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Table 3. Cell type-specific splicing events

Gene Coverage  dl p value FDR
Astrocyte Fyn 7 —0.27 1.15E-176 1.95 E-174
Prom1 251 0.86 1.12E-133 459 E-131
Neam1 3576 024  1.63E-132  593E-130
Ptorf 480 —0.58 1.03 E-120 298 E-118
Srgap3 308 0.69 1.99 E-84 1.44 E-82
Kifla 180 0.75  3.12E-66 1.76 E-64
Ptk2 134 —047  133E63 6.73 E-62
(amk2g 903 —0.44 5.75 E-56 243 E-54
Mapk8 270 —055  6.98E37 2.36 E-35
Pkm2 1112 —0.23 2.85E-25 6.58 E-24
Neurons Agm 907 —05 <1E-300 <1E-300
App 5181 0.2 <1E-300 <1E-300
Atp6v0al 1815 =066  <<1E-300 <1E-300
(lta 3032 —0.81 <1E-300 <1E-300
Dync1i2 1618 —082  <1E-300 <1E-300
Nfasc 821 —094  <TE-300 <1E-300
Rab6 3058 0.34 <1E-300 <1E-300
Miss1 1244 —06 519E-216  7.02E-214
Srgap3 834 062  169E-132  152E-130
Lrp8 328 —0.75 3.23E-119 2.51E-117
Oligodendrocytes ~ Phldb1 2947 —0.58 <1E-300 <1E-300
Aplp2 1358 048  <1E-300 <1E-300
(apzb 1350 —0.58 5.97 E-263 3.54 E-260
Add1 1515 —0.51 1.41E-231 5.95E-229
Mpzl1 1165 0.45 437 E-227 3.15E-223
(ldnd1 1187 —0.6 2.49 E-209 8.2 E-207
Enpp2 1550 023 1.63E-209  235E-191
H2afy 320 0.43 1.31E-35 511E-34
Miss1 181 0.44 1.58 E-24 454 E-23
Snap25 100 039  88E-22 2.1E-20
Microglia (stn1 588 0.91 <1E-300 <1E-300
H13 1263 0.2 6.2 E-296 3.94 E-283
Sema4d 768 0.6 1.19E-282  6.79E-280
App 705 —0.6 533E-240  2.04E-237
Add1 509 0.57 9.97 E-188 3.17 E-185
Lass5 408 0.65  249E-174  7.12E172
Rapgef1 355 0.45 2.22E173 579 E-171
Fmnl1 493 0.44 1.32 E-158 3.15E-156
Fez2 853 036  161E-139  3.08E-137
Fyn 131 0.68  7.07E-89 9.31E-87
Endothelial Adam15 893 0.7 <1E-300 <1E-300
Mcf2l 629 074 <1E-300 <1E-300
Palm 942 =065  <TE-300 <1E-300
Ablim1 1025 0.47 <1E-300 <1E-300
Mprip 3292 —0.51 <1E-300 <1E-300
Actn4 1805 —031 <1E-300 <1E-300
Ktn1 809 —0.7 3.84 E-226 1.02 E-223
Arhgef1 865 036  2.23E-219  5.66E-217
Eif4h 1199 0.46 1.14 E-197 2.29 E-195
Pkp4 577 0.63 1.68 E-195 3.26 E-193

The coverage, delta inclusion (dl), p value, and false discovery rate (FDR) are listed. To obtain dI values, we first
calculated the ratio of inclusion junction tags to inclusion plus skipping junction tags in each cell type and then
determined the differences of the ratios between cell types. dl essentially quantifies the magnitude of the difference
between the splicing of the two groups being compared (1 or —1 represents maximum difference, whereas 0
represents no difference).

sion values because their validation provides confidence in the
overall accuracy of the RNA-Seq dataset, whereas preferentially
validating highly expressed genes is more straightforward but less
informative. Additionally, these cell type-enriched genes have
not been well characterized and are therefore novel markers
worth validating. We used the Fluidigm Biomark microfluidics
technology for qRT-PCR analysis. Using the Biomark microflu-
idics system, we loaded small volumes of 96 primer pairs and 96
samples to a microfluidics chip, in which each sample and each
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Validation of RNA-Seq results by qRT-PCR and in situ hybridization. A, qRT-PCR validation of cell type-enriched genes identified by RNA-Seq. We performed gRT-PCR with Fluidigm

BioMark microfluidic technology. Expression of several genes identified by RNA-Seq as enriched in each cell type was examined by qRT-PCR. The housekeeping gene Gapdh was included for
comparison. Twelve replicates of each purified cell type and three replicates of whole-brain samples were analyzed. Warmer colors represent lower Ct values (higher abundance of transcripts), and
cooler colors represent higher Ct values (lower abundance of transcripts). Black indicates no amplification. Data of genes labeled in red were quantified in B. B, t differences of Atp13a4, Cpne7,
Fam70b, Tmem88b, and Resd 1 compared with Gapdh were plotted on alog2 scale. Error bar represents SD. RNA-Seq analysis showed that Atp13a4, (pne7, Fam70b, Tmem88b, and Resd 1 are enriched
in astrocytes, neurons, OPCs, oligodendrocytes, and microglia, respectively. qRT-PCR validated these results. C~G, In situ hybridization validated novel cell type-specific genes. Left, Low-
magnification image of the cortex and hippocampus. Scale bar, 200 m. Right, High-magnification image of the cortex. Scale bar, 50 m. Fluorescence in situ hybridization signals with probes
against novel cell type-specific genes (red) and known cell type-specific markers (green) are shown. The regions in the yellow boxes are enlarged and shown as single channel and merged images

on the right.

primer pair were mixed together to produce 9216 individual
nanoliter-scaled qRT-PCR reactions in a single experiment. This
eliminates the plate-to-plate variation seen commonly in tradi-
tional gqRT-PCR experiments and allowed us to easily assay the
expression of a large number of genes with many replicates.
Thirty-four of the 40 genes we assayed were detected by qRT-PCR
in the identical cell-enriched pattern as determined by RNA-Seq
(Fig. 6). Six genes were not consistently amplified across replicates in
any cell type. This is likely attributable to the lower sensitivity of
running nano-scaled qRT-PCR reactions on microfluidics chips
compared with RNA-Seq. None of the 40 genes we tested were
reproducibly amplified in a cell type that contradicted the RNA-
Seq data. Of the 34 genes we validated by PCR, our RNA-Seq data
indicated that each was >10-fold enriched in a given cell type.
Using the same threshold, only 20 of these genes were similarly
identified as cell type-enriched by our microarray data. At a less-
stringent twofold enrichment cutoff, only 29 were identified as
cell type-enriched by microarray, thus demonstrating the in-
creased sensitivity of the RNA-Seq data.

Finally, we sought to examine the accuracy of our transcrip-
tome database by performing in situ hybridization on several
relatively unknown cell-specific genes from our dataset. We gen-
erated specific probes to these candidate genes and cohybridized
them with classic cell type-specific markers to investigate their
cell specificity (Fig. 6C-G). We identified novel markers for astro-
cytes (Gdpd2), neurons (Lppr3), oligodendrocytes (Ppapdcla), and
microglia (Olfml3). Consistent with this finding, OlfmiI3 was re-
ported recently to be a microglia-specific marker in the spinal cord
(Chiuetal.,2013). These results suggest that our database includes
a substantial number of novel cell type-specific genes that could
have wide-ranging significance for understanding brain func-
tion. In Figure 6C, the in situ hybridization signals of Gdpd2 and
Glast are located in close proximity but do not overlap. When we
examined Gdpd2 and Glast signals together with DAPI stains, it
was clear that clusters of Gdpd2- and Glast-positive puncta local-
ized to the same cell. In our experience, many astrocyte-specific
genes produce in situ hybridization signals that are localized to
processes instead of/in addition to the cell body. In situ hybrid-
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Energy metabolism differences between astrocytes and neurons. The expression of several requlatory enzymes by astrocytes but not neurons allows astrocytes to adapt their metabolic

flux to the energy state of the cell and to perform higher rate of aerobic glycolysis. Left, Diagram of energy metabolism pathways. Glycogen metabolism and glycolysis, which occurin the cytosol, and
the tricarboxylicacid cycle, which occurs in the mitochondria, are shown. Steps highlighted with red asterisks are differentially requlated in astrocytes and neurons. Right, Detailed diagram of energy
metabolism differences between astrocytes and neurons. Metabolic steps with key differences are labeled with numbers 1—4 and explained below the diagram. The rate of reactions is represented
by the width of the arrows. The predominant metabolic products converted from pyruvate (lactate in astrocytes and acetyl-CoA in neurons) are highlighted in green.

ization signals in astrocytes often appear more diffuse than those
in other cell types. The function of mRNA in astrocyte processes
is unknown. One possibility is the presence of distinct RNA gran-
ules containing Gdpd2 and Glast mRNAs within astrocytes.

Regulation of energy metabolism in neurons and astrocytes

To demonstrate the application of this database toward under-
standing fundamental cellular interactions in the brain, we used
our expression and splicing data to investigate the cellular divi-
sion of labor in brain energy metabolism. We began by looking at
glycolytic enzymes, because the primary energy consumers in the
brain, neurons and astrocytes, each exhibit diametric patterns of
glucose consumption (for review, see Bélanger et al., 2011;
Bouzier-Sore and Pellerin, 2013); neurons heavily rely on oxida-
tive metabolism, whereas astrocytes exhibit high glycolytic rates
in vivo and in vitro (Lebon et al., 2002; Itoh et al., 2003; Bouzier-
Sore and Pellerin, 2013). Under physiologic conditions, the ma-
jority of glucose entering the glycolytic pathway in astrocytes is
metabolized to lactate rather than oxidized in the mitochondria.
This phenomenon forms the foundation of the astrocyte—neuron
lactate shuttle hypothesis (Walz and Mukerji, 1988), which pro-
poses that astrocytes synthesize and subsequently expel lactate so
that neurons can use it as an energy source. Subsequently, nu-

merous studies have demonstrated that neurons efficiently use
lactate as an energy source (Schurr et al., 1997; Bouzier et al.,
2000; Qu et al, 2001) and may even prefer it over glucose
(Bouzier et al., 2000; Itoh et al., 2003).

We identified expression and splicing differences in various
glycolytic enzymes that help distinguish astrocytes as primary
glycolytic cells (summarized in Fig. 7). The first of these enzymes
is 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase-3 (Pfkfb3),
which synthesizes fructose 2,6-bisphosphate, a potent glycolytic activa-
tor. Protein levels of Ptkfb3 are low in neurons because of its constant
proteasomal degradation (Herrero-Mendez et al., 2009; Almeida et al.,
2010), and, consistent with these observations, we found that Pfkfb3
mRNA is enriched by an order of magnitude in astrocytes com-
pared with neurons. Another key regulated step of glycolysis is
the conversion of phosphoenol pyruvate into pyruvate through
the enzyme pyruvate kinase (PK). PK is found in two primary
isoforms, PkmI and Pkm2. We identified and validated the exclu-
sive expression of Pkm1 in neurons and Pkm?2 in astrocytes (and
other glial cells; Fig. 5E, F). Pkm2 contains an inducible nuclear
translocation signal that allows a cell to regulate the amount of
glycolytic flux in response to the local energy state. However,
Pkm1 is not allosterically regulated and locks neurons in a steady
state of glycolysis. After PK catalyzes the formation of pyruvate,
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its flux into oxidative metabolism is carefully controlled by
the activity of the enzyme pyruvate dehydrogenase (Pdh).
Phosphorylation-mediated inactivation of Pdh in astrocytes
(Itoh et al., 2003; Halim et al., 2010) prevents glycolytic pyruvate
from entering oxidative phosphorylation. Analysis of our tran-
scriptome data demonstrates that pyruvate dehydrogenase kinase
4 (Pdk4) transcripts are >30 times enriched in astrocytes com-
pared with neurons, suggesting that high Pdk4 expression in as-
trocytes might be responsible for subsequent Pdh inactivation.
Diminished Pdh activity in astrocytes requires pyruvate to be
shunted to the formation of lactate by the enzyme lactate dehy-
drogenase (Ldh). Our data indicate that astrocytes and neurons
preferentially express different versions of the lactase dehydroge-
nase enzymes that interconvert pyruvate and lactate, Ldha and
Ldhb. Ldha and ldhb are biased toward the production of pyru-
vate or lactate, respectively, and we find that Ldhb is enriched in
astrocytes (twofold), whereas Ldha is primarily expressed in neu-
rons (1.7-fold).

The expression and splicing patterns that we identified in
Pfkfb3, Pkm2, Pdk4, and Ldha/b are each consistent with meta-
bolic observations in astrocytes and neurons. Although the ma-
jority of the primary glycolytic and oxidative phosphorylation
enzymes are expressed at similar levels in neurons and astrocytes,
the differential expression of these key regulatory enzymes helps
to explain how astrocytes perform such high rates of aerobic
glycolysis. Our data suggest that, in contrast to neurons, astro-
cytes express a collection of regulatory enzymes that are sensitive
to the energy state of the cell.

Discussion

An RNA-Seq transcriptome database of purified cell classes of
the brain

In this study, we refined purification protocols for neurons, as-
trocytes, various maturation stages of oligodendrocytes, micro-
glia, endothelial cells, and pericytes from mouse cortex and
obtained an RNA-Seq transcriptome dataset of these cell types.
Although a large number of neuronal subtypes have already been
recognized (and glial subpopulations likely exist), grouping these
populations into major cell type classifications allows for the in-
vestigation of interactions between primary cell classes. We ob-
tained data on the expression level of >22,000 genes, and we
determined the abundance of each alternative splicing variant of
each gene for each of our samples.

The systematic transcriptional dissection of an organ to its
primary cell type components for the purpose of establishing a
transcriptome database provides an essential step toward under-
standing a complex tissue such as the brain. Understanding brain
function (as well as dysfunction) requires an understanding of
how distinct cell classes in the brain interact in a dynamic envi-
ronment. For example, recent advances in understanding disease
mechanisms in the neurodegenerative disease amyotrophic lat-
eral sclerosis have revealed that the disease is not simply a motor
neurons disease. Rather, it is a disease of the spinal cord in which
astrocytes, microglia, and oligodendrocytes all contribute to dis-
ease progression (Ling et al., 2013). Thus, the database we have
established should be invaluable in future studies of complex
cell-cell interactions in other neurological diseases.

Our dataset contains a tremendous quantity of novel gene
expression data, and exploration of this dataset by the neurosci-
ence research community will generate hundreds of new testable
hypotheses with biological significance. We noted that the vast
majority of well annotated cell type-specific genes exhibit the
predicted cell-enrichment patterns in our dataset (Fig. 1). Fur-
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thermore, RNA-Seq allows for the detection of novel genes that
are unannotated in the current genome; we detected 26 novel
transcripts with expression levels of FPKM >5 that were previ-
ously unannotated in UCSC Genome Browser (Meyer et al.,
2013), Ensembl (Flicek et al., 2012), Vega (Ashurst et al., 2005),
and AceView (Thierry-Mieg and Thierry-Mieg, 2006) databases
(data not shown).

When directly compared with the microarray platform, our
RNA-Seq library identified a dramatic increase in the number of
cell type-specific genes (Fig. 2). This is in part attributable to the
higher sensitivity of RNA-Seq in detecting low-abundance RNAs.
One caveat regarding the interpretation of large-enrichment
scores is to consider the effects of ratio inflation at lower FPKM
levels. The biological relevance of a gene that is 20-fold enriched
at an FPKM value of 2 should be weighed with more caution than
a similarly enriched gene with an FPKM of 200.

An alternative splicing database of purified cell types of
the brain
Alternative pre-mRNA splicing is an essential mechanism for
generating proteome complexity. Previous expressed sequence
tagged mapping studies have led to the conclusion that the brain
has the highest number of alternative splicing events when com-
pared with other organs (Yeo et al., 2004), and different brain
regions are associated with complex patterns of alternative splic-
ing (Johnson et al., 2009). However, the cellular source of this
complexity is not known because analyses were performed on
brain tissues comprising mixed cell types. We sought to answer
the question of how many genes are alternatively spliced in the
mouse cortex with our highly sensitive RNA-Seq data. Of the
~22,000 genes that comprise the mouse genome, we examined a
large collection of RNA-Seq data across several tissue types and
identified 10,447 cases in which there is direct evidence of alter-
native splicing or predicted alternatively spliced isoforms. Of
these genes that are potentially alternatively spliced in the mouse
genome, 9036 are expressed in the mouse cortex above a mini-
mum expression threshold. Interestingly, we found that 6588 of
these genes (73%) are alternatively spliced in at least one major
brain cell type. This demonstrates that the majority of genes that
are known to undergo alternative splicing in the mouse genome
are alternatively spliced in the brain. Thus, an understanding of
cellular transcriptomes would not be complete unless alternative
splicing information accompanies gene-level expression data.

Tissue-specific alternative splicing is well established (Xu et
al., 2002). However, the regulation of alternative splicing in a cell
type-specific manner in a complex tissue like the brain has not
been addressed. We report that alternative splicing occurs as fre-
quently in glia and vascular cells as it does in neurons. In contrast
to the overall similarity in the frequency of alternative splicing,
each cell type contains its own specific repertoire of thousands of
alternatively spliced RNAs. These observations suggest that the
distinct functions of each cell type may result as much from the
presence of specific protein isoforms generated by alternative
splicing as from global differences in the levels of gene expression.
Moreover, previous studies have shown that disruption of alter-
native splicing can lead to neurological diseases in human and
animal models (Buckanovich et al., 1996; Yang et al., 1998; Geh-
man et al., 2011), and our splicing dataset provides a resource for
understanding the cell type-specific contributions to these
disorders.

Alternative splicing of specific genes has also been shown to
play important roles in the development and function of the
nervous system. For example, the mechanisms by which differ-
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entially spliced isoforms of neuroligin and neurexin pre-mRNA
mediate synaptic adhesion offer a well characterized example of
how cell-specific splicing can have considerable functional con-
sequences (Chih et al., 2006). Before systematic methods for the
analysis of alternative splicing became available, characterizing
alternative splicing of specific molecules (e.g., neuroligin and
neurexin) and their role in the nervous system was cumbersome
and time consuming. In the present study, we generated a high-
quality splicing dataset for every gene in the major cell classes of
the brain. Although a systematic and deep analysis of this splicing
data is beyond the scope of this study, a preliminary exploration
of the data has already identified interesting splicing patterns of
considerable biological significance. For example, the neural cell
adhesion molecule (NCAM), encoded by the Ncaml gene, is a
homophilic cell adhesion molecule involved in synaptic plastic-
ity, learning, and memory (Becker et al., 1996; Senkov et al., 2006
Stoenica et al., 2006). Multiple splicing isoforms of NcamI have
been reported previously (Owens et al., 1987; Krushel et al.,
1998). We found that Ncam!1 is spliced uniquely in neurons and
glia. The neuronal isoform includes an exon that encodes a trans-
membrane domain, whereas the glial form excludes this exon.
Both isoforms contain a signal peptide sequence. Therefore, neu-
ronal NCAM is likely located on the plasma membrane, whereas
glial NCAM is likely secreted or glycophosphatidylinositol an-
chored. This discovery raises interesting new possibilities of the
cellular mechanism by which NCAM controls synaptic plasticity,
learning, and memory.

Another finding from our alternative splicing dataset is the
differential expression of splicing isoforms of the H2afy gene in
oligodendrocyte lineage. H2afy encodes an atypical histone vari-
ant macroH2A1 enriched in heterochromatin. The gene H2afy
contains two mutually exclusive exons, and alternative splicing
generates two isoforms, mH2A1.1 and mH2A1.2 (Kustatscher et
al., 2005). Embryonic stem cells exclusively express mH2A1.2,
and as development progresses, the expression of the mH2A1.1
isoform increases. In addition, cancer cells downregulate the
mH2A1.1 isoform, which inhibits cell proliferation (Novikov et
al.,2011). We found that OPCs predominately express mH2A1.2,
NFOs express approximately equal amounts of mH2A1.1 and
mH2A1.2, and MOs predominately express mH2A1.1. This de-
velopmental progression of splicing isoform change correlates
with the reduced proliferation capacity as oligodendrocytes dif-
ferentiate. Our data are consistent with a role of mH2A1 in regu-
lating oligodendrocyte differentiation through chromosomal
changes.

RNA-Seq is highly reproducible and reference independent.
Thus, this database of wild-type mouse neurons, glia, and vascu-
lar cells of the brain provides a valuable reference dataset for
future studies that compare gene expression patterns of diseased
versus healthy tissues. Our cell purification protocols can be used
to similarly purify cell types from brains of mutant mice. Com-
paring these transcriptome studies at the resolution of individual
cell types will help elucidate mechanisms of neurological diseases.
Accumulating evidence has demonstrated that glia are involved
in a variety of neurological diseases, including schizophrenia,
autism spectrum disorders, epilepsy, Alzheimer’s disease, Parkin-
son’s disease, multiple sclerosis, amyotrophic lateral sclerosis,
and stroke (Matute etal., 2005; Tian etal., 2005; Nagai et al., 2007;
Chen et al,, 2009; Li et al., 2011; Lioy et al., 2011; Molofsky et al.,
2012; Zamanian et al., 2012). As the research community contin-
ues to look beyond neurons to understand the pathogenesis of
neurologic dysfunction, the comprehensive transcriptome data-
set of the brain presented here will be a valuable resource.
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Notes

Supplemental material for this article is available at http://web.stanford.
edu/group/barres_lab/brain_rnaseq.html. Searchable RNA-Seq data-
base for purified cell types. This material has not been peer reviewed.
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