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Brief Communications

Alcohol Binge Drinking during Adolescence or Dependence
during Adulthood Reduces Prefrontal Myelin in Male Rats

Wanette M. Vargas,"> Lynn Bengston,”> “Nicholas W. Gilpin,> “Brian W. Whitcomb,* and ““Heather N. Richardson>
"Neuroscience and Behavior Program and 2Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003,
3Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, and “Department of Public Health,
University of Massachusetts, Amherst, Massachusetts 01003

Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropa-
thology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models
with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated
axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water
intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after
dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into
abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum,
i.e., forceps minor (CCpy ), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic
protein in the gray matter medial to the CCyy, of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we
found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse
performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary
alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral

and cognitive impairments associated with early onset drinking and alcoholism.
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Introduction
Adolescence is a period of heightened vulnerability when teenag-
ers engage in high-risk activities like binge drinking (Romer,
2010) as the frontal lobes undergo developmental processes in-
cluding axonal myelination (Barnea-Goraly, 2005). Myelination
increases conductance speed in axons and enhances information
processing and cognitive performance (Blakemore and Choud-
hury, 2006). If prefrontal fiber tracts are sensitive to alcohol ex-
posure during this time of plasticity, drinking could significantly
impair the social and mental health trajectories of teenagers be-
cause the prefrontal cortices are responsible for evaluating re-
ward (Taren et al., 2011) and regulating risk-taking behavior
(Crone et al., 2008).

Early onset of alcohol use predicts increased impulsivity (Ste-
phens and Duka, 2008), cognitive performance impairments
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(Konrad et al., 2012), and alcoholism in adulthood (Grant and
Dawson, 1998). Heavy episodic (binge) drinking is related to
lower white matter integrity in the corpus callosum (CC) of teen-
agers (McQueeny et al., 2009) and in alcoholic adults (Pfeffer-
baum et al., 2006). The link between reduced white matter and
increased addiction vulnerability in humans suggests alcohol ex-
posure may damage myelin. Alternatively, predisposing factors
could explain the relationship between adolescent drinking and
frontal white matter.

The present study tested the hypothesis that alcohol dam-
ages CC myelin tracts within the PFC. Preclinical models of
adolescent binge drinking (Gilpin et al., 2012) and adult de-
pendence (Becker, 2013; Vendruscolo and Roberts, 2014)
were used to elicit different in vivo alcohol exposures in out-
bred rats. Myelin was labeled 1 month into abstinence in
adulthood to quantify white matter changes in the frontal
lobes. We show that voluntary binge drinking reduces myelin
density in the mPFC in adolescent rats, relates to working
memory deficits in adulthood, and produces enduring pre-
frontal white matter loss comparable to that observed after
alcohol dependence. Moreover, greater severity of prefrontal
white matter neuropathology was correlated with higher levels
of relapse-like drinking in adulthood. These findings give in-
sight into myelinated prefrontal axons that are vulnerable to
alcohol and may underlie adverse mental health outcomes
associated with early alcohol use in humans.
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Figure 1.
line during adolescence and adulthood. Male rats underwent voluntary, binge self-administration
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Alcohol causes reductions in prefrontal white matter that predict higher levels of relapse-like drinking in adulthood (Experiment 1). a, Schematic llustrating the alcohol exposure time

sessions with sweetened alcohol (binge) or sweetened water (control) during early adolescence.

In adulthood, rats were tested for baseline alcohol drinking, then exposed to chronic alcohol vapors (dependent) or ambient air (nondependent), and tested for relapse drinking (details in Gilpin et

al., 2012). b, Schematicillustrating the anatomical location of CCr,, and (C,,, sections. ¢, d, Alcohol

Genu

reduced cross-sectional area of the CCj,, (¢; main effect of adolescent binge drinking, ”p =0.004;

main effect of adult alcohol dependence, *p = 0.006), but not the CCe,, (d; all ps > 0.05). e, f, (Cy,, cross-sectional area did not predict baseline alcohol intake (e), but did predict the percentage

increase from baseline levels after short abstinence periods, i.e., relapse-like drinking (f; p = 0.02

Materials and Methods

Animals

Male Wistar rats were shipped with their mothers on postnatal day (P)18
from Charles River, weaned, and housed in triads beginning on P21. All
procedures were performed according to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and approved
by the Institutional Animal Care and Use Committee.

Study design

Experiment 1: effect of binge drinking and dependence on prefrontal white
matter. The experimental design is shown in Figure la. Rats (N = 27)
were given differential exposure to alcohol during adolescence and adult-
hood (described briefly below; details in Gilpin et al., 2012). After oper-
ant training, P28 rats were randomly assigned to control (n = 9) or binge
(n = 18) treatment [see below, Adolescent alcohol exposure (experi-
ments 1-3)]. A priori, a larger binge group was planned to account for
anticipated variability in alcohol self-administration. After 5 weeks of
abstinence (beginning on P78), binge and control rats were tested for
baseline drinking in adulthood. At P130, groups were further divided
after balancing for adolescent and adult drinking behaviors, and animals
were either made dependent [1 month of intermittent alcohol vapors;
target blood alcohol levels (BALs) were 0.15-00.20 g/dl] or remained

). Data expressed as mean = SEM (n = 49 rats/group).

nondependent (1 month of ambient air control) and tested for relapse-
like drinking, i.e., augmented drinking after short deprivation periods.
Details on tail nick blood collection and Analox measurement of BALs
are described in Gilpin et al. (2012). Brains available for this myelin study
were from (1) control nondependent (n = 4), (2) control dependent
(n=15), (3) binge nondependent (n = 9), and (4) binge dependent (n =
9) rats that were perfused 1 month after vapor/air treatment ended.
Brains were processed for quantification of prefrontal white matter loss
and myelin damage, as described below.

Experiment 2: effect of binge drinking on myelinated axons in the mPFC
of adolescent rats. The experimental design is shown in Figure 3a. Rats
(N = 25) underwent binge (n = 8) or control (n = 8) drinking from
P28-P42, or remained naive to operant training and alcohol (n = 9). The
day after the binge period ended, animals were perfused and brain tissue
was processed and analyzed for myelin density (described below). Brain
sections from a small proportion of these animals were used in a previous
study (Karanikas et al., 2013).

Experiment 3: effect of binge drinking on working memory (T-maze). The
experimental design is shown in Figure 3a. Animals (N = 27) underwent
adolescent binge (n = 13) or control (n = 14) drinking from P28—-P42.
After the binge period, animals were tested on P43, P44, and P48 for
performance on the T-maze spontaneous alternation task as described
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Adolescent alcohol causes enduring damage to mPFC myelin (Experiment 1). @, Schematic illustrating the anatomical regions analyzed. b—d, Adolescent alcohol increased myelin

damage, indexed by dMBP, in the gray matter just medial to the CCy,, (CCy,,mPFC; main effect of adolescent binge drinking, *p = 0.02). Adult dependence did not significantly increase dMBP in the
(CeyymPFC (b; p > 0.05) and neither treatment significantly increased dMBP in the center of the medial branch of the (Cy,, (CCpyCenter; ¢, p > 0.05) or striatum (CCpy, Striatum; d, p > 0.05). Data

expressed as mean = SEM (n = 4-9 rats/group).

below, and were tested again in adulthood after ~6 weeks of abstinence
(P88—P89).

Adolescent alcohol exposure (experiments 1-3)

Beginning on ~P25, animals were trained to self-administer sweetened
water (3% glucose/0.125% saccharin/tap water). On P28, rats were either
switched to sweetened alcohol (8—10% w/v ethanol/3% glucose/0.125%
saccharin/tap water; binge) or remained on sweetened water (control).
Overnight operant sessions consisted of six 30 min bouts divided by
time-out periods when the levers were retracted and alcohol was unavail-
able. Time-out periods lasted 90 min in Experiment 1 (Gilpin etal., 2012)
and were reduced to 60 min in Experiments 2 and 3 to maximize operant
box usage in our laboratory. Food and water were available ad libitum in
the operant boxes throughout the binge exposure period.

Perfusions and brain sectioning (experiments 1-2)

Animals were intracardially perfused the day after the 2 week binge pe-
riod ended (P43, Experiment 2) or several months later after drinking
behavior was tested in adulthood (P196, Experiment 1, Gilpin et al.,
2012). After 4 h post fixation and 24—48 h in 20% sucrose, brains were
snap frozen using isopentane (2-methylbutane; Sigma) and dry ice, and
stored at —80°C until sectioning. Thirty-five micrometer coronal sec-
tions were sliced on a freezing microtome and stored at —20°C in cryo-
protectant (50% 0.1 M PBS, 30% ethylene glycol, and 20% glycerol).

Myelin labeling and microscopic analysis of prefrontal white
matter (experiment 1)

Black Gold II (BG-II) was used to impregnate myelin and label white
matter in every eighth brain section (Schmued et al., 2008). For white
matter microscopic analysis, brain sections were classified as (1) forceps
minor (CCp,,), anterior to the CC joining across hemispheres, 2.10-1.85
mm from bregma or (2) genu (CCg,,,), posterior to the joining of the
left and right CC, 1.60-1.35 mm from bregma (Paxinos and Watson,
1998; Fig. 1b). Fifteen to 20 photomicrographs were taken using a Leica
microscope (5X objective) attached to a DP71 Olympus camera and

were digitally montaged for a single hemisphere. Two to four hemi-
spheres were used for microscopic analysis of each anatomical classifica-
tion for each animal. CCpy, and CCg,,, cross-sectional areas were
quantified using ImageJ software (Rasband, 1997).

Degraded myelin basic protein labeling and microscopic analysis
(experiment 1)

Using a marker of degraded myelin basic protein (dMBP), we quantified
myelin damage in the center and the borders of the CCp,, where these
axons extend into the mPFC or the striatum (Fig. 2a). Free-floating
sections were prepared using the immunohistochemistry standard pro-
tocol for AMBP (Millipore) primary antibody (1:1000), as described pre-
viously (Matsuo et al., 1997; Li and Stys, 2000), and Cy3 fluorescent
secondary antibody (1:300, Jackson ImmunoResearch). Photomicro-
graphs were taken 2.2 mm from bregma (20X objective) using constant
imaging parameters, and were analyzed for intensity quantification using
Image] software; the threshold function was used to highlight dMBP-
positive regions. Percentage of dMBP-positive area within the total area
was calculated.

Myelin labeling and microscopic analysis of myelin density in the
mPFC (experiment 2)

Every 10th section was labeled for BG-II (Schmued et al., 2008), and
dorsal mPFC photomicrographs were taken 2.2 mm from bregma (5X
objective). Aperio ImageScope software was used to quantify myelinated
fiber density in cortical layers II-V by thresholding the images. Percent-
age of myelinated fiber area within the total area was calculated.

T-maze spontaneous alternation task (experiment 3)

T-maze assays were conducted as previously described (Deacon and
Rawlins, 2006), with the modification of a 70 s delay between trials,
making this task mPFC dependent (Delatour and Gisquet-Verrier, 1996;
Lalonde, 2002). In total, animals underwent 10 trials during adolescence
and 6 trials during adulthood.
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We next examined behavioral corre-
lates of white matter loss. CCr,, size was
not significantly correlated with baseline
drinkinglevels (g/kg/30 min, r = 0.26,p =
0.21; Fig. le). Conversely, smaller CCpy
size predicted higher drinking after short
deprivation periods, indexed by percent-
age increase in intake relative to baseline
(r=—0.47,p = 0.02; Fig. 1f). No significant
correlations were detected between CCq.,,,
size and any adult drinking behaviors.

A marker of dMBP was next used to index myelin health and
identify the axonal population of the CCp,, axons damaged by
alcohol. We detected significantly elevated dMBP at the dorso-
medial border of the CCp,, (CCp,;mPFC) in rats with a history of
adolescent binge drinking (adolescent treatment main effect,
F 53 = 7.00, p = 0.01; Fig. 2b). Dependence did not signifi-
cantly increase dMBP in the CCpy,mPFC (p > 0.05; Fig. 2b).

Figure 3.

Adolescent alcohol decreases myelinated fiber density in the mPFCand predicts poor T-maze performance in adult-
hood (Experiments 2 and 3). a, Schematic illustrating the time line of alcohol exposure during adolescence and neural and
behavioral measures. Male rats underwent voluntary, binge self-administration sessions with sweetened alcohol (binge) or sweet-
ened water (control) during early adolescence. Rats were tested on the T-maze as adolescents and again in adulthood after 6 weeks
of abstinence. b, Schematic illustrating the anatomical location of the myelinated fiber density measurement (left). Alcohol
reduced myelinated fiber density in the mPFC (*p = 0.002). ¢, There was a significant negative correlation between daily adoles-
cent consumption and percentage correct responses in the T-maze in adulthood in binge rats (left graph; p = 0.009). This
relationship was not observed in control rats (right graph; p > 0.05) and no relationships were detected between drinking
behavior and T-maze performance tested in adolescence (ps > 0.05; data not shown). Data expressed as mean = SEM (b, n =
8-9rats/group; ¢, n = 13-14 rats/group).

dMBP was detected in the CCy,,Center and CCp,,Striatum,
but the intensity did not significantly differ between groups
(ps > 0.05; Fig. 2¢,d).

Based on the findings above, we next tested the hypothesis that
binge drinking decreases myelinated axons in layers II-V of the
mPFC of adolescent rats. Indeed, the day after the last binge
session, mPFC myelinated axonal density was reduced in binge



Vargas et al. @ Alcohol Reduces Prefrontal Myelin

Table 1. Summary of adolescent alcohol binge drinking for experiments 1-3

Experiment 1 Experiment 2 Experiment 3
Groups Mean = SEM Mean = SEM Mean = SEM
Binge 321038 2.96 = 031
Binge nondependent 436 = 0.16
Binge dependent 452 +0.15
Alcohol binge consumption during adolescence (g/kg/d) for the groups in each experiment. Data shown as mean
SEM.

drinking rats compared with control and naive rats (F,,,, =
8.43; p = 0.002; Fig. 3b).

We next explored whether binge drinking related to per-
formance on the mPFC-dependent, spontaneous alternation
T-maze working memory task. There was no main effect of binge
drinking on performance (p > 0.05), but the amount of alcohol
consumed early in adolescence predicted poor performance on
the T-maze in adulthood (r = —0.69, p = 0.009; Fig. 3¢). Con-
versely, this relationship between sweetened water drinking and
T-maze performance was not observed in control rats (r =
—0.14, p = 0.63; Fig. 3¢). There were no significant relationships
between adolescent drinking and T-maze performance at the end
of the adolescent treatment period for either group (ps > 0.05;
data not shown).

Table 1 summarizes average daily alcohol intake over the 2
week adolescent binge period for rats in Experiments 1-3. BALs
ranged between 0.0 and 0.17 g/dl after 0.0-2.20 g/kg alcohol
consumption in single, 30 min self-administration bouts, which
were randomly assessed from animals in the three experiments.
These BALs are moderate and similar to what has been reported
for adolescent rats consuming sweetened alcohol in the home
cage (Walker et al., 2008; Gilpin et al., 2012; Broadwater et al.,
2013).

Discussion

The current study examined the effect of adolescent and adult
alcohol exposure on myelin in the frontal lobes of male rats.
Similar to human studies, we found negative correlations be-
tween adolescent alcohol drinking and white matter. We also
provide empirical evidence that alcohol reduces myelin density in
adolescent rats and causes enduring white matter deficits in the
mPFC. Alcohol treatment—adolescent binge drinking or adult
dependence—reduced the size of the CCp,, and this neuropa-
thology was predictive of higher levels of relapse-like drinking.
Adolescent drinking predicted poor performance on an mPFC-
dependent task. Structural changes in white matter and degraded
myelin health persisted well into abstinence in adulthood, sug-
gesting that adolescent binge drinking produces irreversible
changes in prefrontal circuitry.

The effect of alcohol on CCp,, axons may have broad impli-
cations for adolescent and adult mental health outcomes. This
anterior fiber bundle connects the mPFC to the lateral prefrontal
cortex and striatum, and is implicated in depression, multiple
sclerosis, Tourette’s syndrome, and chronic schizophrenia
(Cader et al., 2006; Friedman et al., 2008; Jackson et al., 2011;
Tadayonnejad et al., 2014). The structures interconnected by the
CCpy are also implicated in addiction (Everitt and Robbins,
2005; Volkow et al., 2005) and our current data suggest impaired
connectivity may influence drinking risk in adulthood. Re-
duced CCpy, size predicted augmented drinking during re-
lapse tests, but did not predict increased baseline drinking
behavior. Importantly, relapse-like drinking behavior was
normalized for each animal to his own baseline. This suggests
that the link between CCpy structure and relapse is not simply
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reflecting the effect of alcohol dose on CCp,, axons. Instead,
these axons may help control the magnitude of increase in
alcohol intake, or “over-doing it,” after experiencing short
periods of abstinence from drinking.

Adolescent alcohol drinking and adult alcohol dependence
produced changes of similar magnitude in the CCy,,. This is re-
markable considering the substantial difference in the duration
and dose of alcohol exposure between the two treatment groups.
Binge rats consumed alcohol voluntarily, reaching 0.08 g/dl BALs
in only some of the drinking bouts over a 2 week adolescent
drinking period that took place early in adolescence, >5 months
before the brains were processed in adulthood. Conversely, de-
pendence was induced in adulthood by 1 month of exposure to
daily cycles of alcohol vapor-induced intoxication that main-
tained BALs between 0.15 and 0.20 g/dl for 14 h/d—an exposure
that produces mild physical dependence (Richardson et al.,
2008). The fact that the adolescent alcohol exposure duration and
amount was much less than vapor exposure in adulthood sug-
gests that the adolescent brain has heightened sensitivity to alco-
hol and the effects are enduring. The data support the hypothesis
that the dynamic changes occurring in the developing prefrontal
cortices during adolescence (Casey et al., 2008) increase suscep-
tibility to potentially toxic external stimuli such as alcohol (Crews
et al., 2007). The fact that dependence induction did not further
reduce CCpy, size in the binge group suggests a ceiling effect of
alcohol on degradation of this axonal bundle.

The lack of group changes in CCg,,, structure suggests that
higher doses and a more prolonged exposure to alcohol, perhaps
in combination with vitamin B1 deficiency, may be required to
significantly impair white matter structure, as previously sug-
gested (He et al., 2007; Pfefferbaum et al., 2008). This notion is
supported by the significant inverse correlation between adoles-
centalcohol consumption and CCg_,, size observed in this study.
It will be important in future studies to determine how prefrontal
myelin is damaged by alcohol using other models of alcohol use
disorders (Simmis et al., 2008; Crabbe et al., 2009) and to extend
these findings to females.

Finally, to assay functional integrity of the mPFC, we tested
rats for spontaneous alternation on the T-maze usinga 70 s delay
to increase working memory demand (Delatour and Gisquet-
Verrier, 1996; Lalonde, 2002). Higher binge drinking levels dur-
ing adolescence predicted poorer performance on the T-maze
task in adulthood. This relationship was not evident in control
rats, suggesting that alcohol consumption produces enduring
functional changes in mPFC circuitry. Nevertheless, without a
significant main effect, we cannot exclude the possibility that the
correlation between alcohol and performance may reflect a rela-
tionship that is not causal in nature. The lack of a significant main
effect could be due to variability in intake, as well as limitations in
assaying a subtle cognitive impairment. In future studies, treat-
ment differences in performance might be detected after increas-
ing the retention interval, i.e., a larger delay between sample and
choice phases (Deacon and Rawlins, 2006).

In conclusion, the present study provides causal evidence
for alcohol-induced reductions in myelin in prefrontal cir-
cuits. To the best of our knowledge, this is the first study to
show that adolescent voluntary binge drinking reduces the
density of myelinated axons in the mPFC and has long-lasting
effects on prefrontal white matter. Future work exploring the
mechanisms by which alcohol damages prefrontal myelin may
lead to new therapeutic strategies for the treatment of alcohol
use disorders.
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