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Value Coding in Decision-Related Circuits
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Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-
dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex
temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of
normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-
sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients,
time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in
saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average
of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism
can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural
coding.
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Introduction
The value of available options is a central variable in decision-
making. Recent evidence suggests that certain canonical neural
computations play a crucial role in the neural representation of
value. Neurons in the monkey lateral intraparietal area (LIP)
respond selectively to visual stimuli in, and saccades toward, a
circumscribed region of visual space termed the response field
(RF). Consistent with decision-related sensorimotor integration,
LIP activity is neither purely sensory nor motor but reflects an
integrated decision variable representing RF saccade value (Platt
and Glimcher, 1999; Sugrue et al., 2004; Louie and Glimcher,
2010). We have recently shown that action value is computed
relative to the value of alternative options via divisive normaliza-
tion (Louie et al., 2011), where the response of a given neuron is
divided by the summed activity of a larger neuronal pool (Caran-
dini and Heeger, 2012).

The discovery of normalization in value coding provides a
computational framework for examining decision-related neural
activity. Divisive normalization is widespread in sensory process-

ing; the extension of this algorithm to premotor and parietal areas
(Rorie et al., 2010; Louie et al., 2011; Pastor-Bernier and Cisek,
2011), where action value is encoded within the context of avail-
able options, reinforces the prevalent notion that normalization
is a canonical neural computation (Carandini and Heeger, 2012).
Furthermore, this computational framework provides novel, bi-
ologically motivated predictions about empirical choice behavior
(Louie et al., 2013). However, the neural basis of normalized
value coding is unknown.

We propose that neural dynamics provides a critical link to
understanding the biophysical basis of value normalization.
Value coding is often characterized in a static manner, assuming
stationarity over extended time intervals, but neural activity dis-
plays significant time-varying changes over the choice process. A
prominent example is the characteristic temporal profile of
decision-related activity in parietal cortex: a transient response to
sensory presentation, sustained intervening delay activity, and an
action-specific response related to motor execution (Gnadt and
Andersen, 1988; Andersen and Buneo, 2002). Numerous studies
have examined the dynamics and behavioral relevance of delay
activity, which encodes decision variables such as evidence accu-
mulation and value (Platt and Glimcher, 1999; Shadlen and New-
some, 2001; Roitman and Shadlen, 2002; Sugrue et al., 2004;
Louie and Glimcher, 2010). In contrast, the initial phasic re-
sponse is not well characterized; this transient spiking is often
presumed to be sensory in origin and its relationship to decision-
related value coding is unknown.

Here, we hypothesize that both transient dynamics and sus-
tained delay-period value coding arise from a recurrent normal-
ization circuit. To test this, we use a dynamical systems approach
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to model the time-varying activity of excitatory and inhibitory
neurons. In response to an input step, this system produces the
characteristic parietal pattern of initial peak and subsequent sus-
tained activity, suggesting that such dynamics can arise from local
circuit processing. Furthermore, the model predicts time-
dependent variations in value coding consistent with previous
and new electrophysiological recordings. These results imply that
static normalization models, which have largely dominated dis-
cussion of sensory processing, can be characterized as the unique
equilibrium state of simple dynamic models.

Materials and Methods
Dynamic normalization model. To quantify the dynamics of value coding,
we used a dynamic firing rate model of a cortical circuit comprised of
excitatory output (R) and inhibitory gain control (G) units (Fig. 1, sche-
matic). Each option in a choice set was modeled as a coupled pair of R-G
neurons, as described in the main text. Time-varying circuit activity was
represented as a system of ordinary differential equations (Eqs. 1, 2),
which was solved numerically using the Runge-Kutta method (MAT-
LAB, MathWorks). Qualitative predictions of the model were examined
with standard parameters (� � 1, B � 0, �ij � 1 for all i and j). These
parameters were chosen to produce the simplest version of the model, in
which the timescales of excitation and inhibition are equal, baseline ac-
tivity is absent, and inhibition is global and untuned.

Electrophysiology. To verify the qualitative predictions of the model, we
recorded the activity of LIP neurons in rhesus monkeys (Macacca mu-
latta). All experimental procedures were performed in accordance with
the United States NIH Guide for the Care and Use of Laboratory Animals
and approved by the New York University Institutional Use and Care
Committee. Standard techniques for chamber placement, visual target
presentation, eye tracking, and reinforcement were used as previously
described (Louie et al., 2011). We first examined dynamic LIP responses
under varying value conditions with a single target (Monkey W, �6.0 kg;
n � 23 neurons). In individual trials, after the monkey acquired fixation
a single target was presented in the neuronal RF for a variable random-
ized interval (1000, 1250, 1500 ms) and water reward was delivered for a
successful saccade to the target following fixation point offset. Blocks
consisted of 40 –50 trials with a fixed reward magnitude; across blocks,
reward magnitudes were varied in a pseudorandom fashion (40, 80, 160,
320, 640 �l).

We next examined the timing of dynamic LIP responses in two-target
and three-target value modulation tasks (Monkey W, �6.0 kg; Monkey
D, �8.6 kg; n � 89 neurons); static analyses of this dataset and complete
experimental details were previously reported (Louie et al., 2011). In the
two-target task, monkeys fixated a central target and were presented with
two peripheral targets for 1000 ms: one (green) in the previously identi-

fied RF and one (red) in the contralateral hemi-
field. To avoid possible choice-related signal
confounds, we used an instructed saccade task
where the central fixation cue then changed
color to indicate the saccade for that trial. Each
session was conducted in blocks of 40 trials,
with the instructed target determined ran-
domly. For all neurons, responses were re-
corded with fixed RF reward (260 �l) and
varying extra-RF reward magnitude (130, 163,
195, 228, or 260 �l; pseudorandomized across
blocks). In a subset of neurons (n � 16), re-
sponses were also recorded with fixed extra-RF
reward (130 �l) and varying RF reward (65,
195, 260, or 390 �l).

In the three-target task, monkeys fixated a
central target and were presented with one,
two, or three peripheral targets. After target
presentation (1000 ms), monkeys were in-
structed to saccade to a specified available tar-
get for an associated water reward. The target
in the neural RF was associated with a 130 �l
reward and the two targets outside the RF was

associated with 65 and 260 �l rewards; target locations and reward asso-
ciations were fixed during an individual session. Each trial consisted
of one of the seven possible target arrays with unique combinations of
RF value and extra-RF value, presented randomly and with equal
probability.

Data analysis. To examine equilibrium value coding properties of the
dynamic normalization model, we fit a two-parameter version of the
dynamic model at equilibrium (Eq. 4) to previously reported LIP data
and value conditions (Louie et al., 2011). In this procedure, the two free
parameters consist of the baseline term B and an overall scaling factor to
convert model activity into normalized firing rate. Model activity was
quantified at times (i.e., 10 s) after the system had reached a steady-state
and compared with previous LIP delay period activity.

To quantify the extent and time course of value modulation in model
output and LIP neurons, we used sliding window linear regression anal-
yses. Model output was analyzed with either simple linear regression as a
function of value in the single-option condition or multiple regression as
a function of both direct and contextual value in the dual option condi-
tion. Individual neural responses were analyzed in 50 ms windows slid in
progressive 1 ms steps across the period of interest (aligned to target
onset) and individual neuron regression coefficients were then averaged
across the recorded population to obtain separate population regression
weight time courses for direct and contextual modulation. Two-target
LIP data, where only one option value was varied at any time, was quan-
tified with independent simple linear regression analyses with either RF
value or extra-RF value as the covariate. Three-target LIP data were
quantified with multiple regression analyses with RF value and extra-RF
value as covariates.

To compare the time courses of direct versus contextual value modu-
lation, we quantified the time of initial deviation from baseline, time of
half-peak modulation, and time of peak modulation in the average re-
gression profiles. The time of initial deviation was determined as the first
of 10 consecutive windows (50 ms windows at 1 ms steps) with modula-
tion significantly different from baseline modulation (50 ms window
aligned to target onset). Significance was determined via 95% bootstrap
confidence intervals of the difference between average modulation at a
specific time and at baseline. The time of half-peak modulation was
determined as the time when the population average direct (or contex-
tual) modulation time course reached half the maximum (or minimum)
level. Significance of the difference in direct and contextual half-peak
times was determined via bootstrap resampling from the population of
neural regression time courses; each resampled population was averaged
and the time of half-peak modulation was identified. The time of peak
direct or contextual value coding in LIP responses was estimated from
smoothed versions of the mean population regression coefficient time
course (50 ms smoothing span); other smoothing kernel lengths pro-
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G1 G2
ωij

value input
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Inhibitory neurons

Excitatory neurons

B

Figure 1. Dynamic model of divisive value normalization. Left, schematic of dynamic normalization circuit. The model consists
of paired excitatory (R) and inhibitory (G) units for each specified choice alternative, with value-dependent inputs directly activat-
ing R neurons. Lateral interactions are governed by the strength �ij of cross-option R-G weights. Right, the system of paired
differential equations that define the dynamical behavior of the network.
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duced the same qualitative result: peak contextual value suppression lags
peak direct value activation. Significance of the difference in peak times
was determined via bootstrap resampling. All bootstrap tests were per-
formed with 1000 resamples with replacement.

Results
Dynamic normalization model
Normalization operates in multiple sensory levels and modali-
ties, explaining features of both early stimulus coding (Heeger,
1992; Carandini and Heeger, 1994; Britten and Heuer, 1999;
Bonin et al., 2005; Rabinowitz et al., 2011) and higher-order pro-
cessing such as object identification, visual attention, and multi-
sensory integration (Zoccolan et al., 2005; Reynolds and Heeger,
2009; Ohshiro et al., 2011). Empirical and theoretical studies of
normalization have focused largely on steady-state responses,
producing a wide variety of functional forms to model neural
systems at equilibrium. Dynamic models of normalization can
explain temporal response characteristics unaddressed by static
models (Wilson and Humanski, 1993; Carandini and Heeger,
1994; Carandini et al., 1997; Reynaud et al., 2012), but to date
have not been applied to normalized value coding. In this work,
we present a dynamic firing rate model of value normalization,
using a simplified functional form to facilitate mathematical
analysis and exposition of the model; in the Mathematical Anal-
ysis sections, we provide proofs that apply to the general family of
dynamic normalization models.

Our model uses a recurrent architecture with feedforward ex-
citation, lateral connectivity, and recurrent inhibition. Although
the normalization algorithm can be implemented by multiple
biophysical and network mechanisms (Carandini and Heeger,
2012), recurrent inhibition is a key candidate to mediate the di-
visive scaling necessary for normalization in cortical areas. Cortex
displays extensive recurrent connectivity critical to local circuit
information processing (Douglas and Martin, 2004) and pro-
posed to generate the integration and selection dynamics seen in
perceptual and economic decision-making (Wang, 2002; Hunt et
al., 2012; Jocham et al., 2012; Wang, 2012). Sensory normaliza-
tion processes such as contrast gain control are well characterized
by models incorporating lateral connectivity and divisive inhibi-
tion (Wilson and Humanski, 1993; Carandini and Heeger, 1994).
Furthermore, physiological evidence suggests that this architec-
ture plays a specific role in shaping the dynamics of divisive nor-
malization (Carandini et al., 1997; Reynaud et al., 2012).

The dynamic normalization model assigns pairs of excitatory
output neurons (Ri) and inhibitory gain control neurons (Gi) to
each available choice option i. Each gain control neuron com-
putes a weighted sum of all of the output neurons in network and
inhibits its output neuron partner via divisive scaling (Fig. 1). To
model the time-varying activity of this network, we use a nondi-
mensional system of N neuron pairs (Gi, Ri) whose dynamics are
governed by the system of differential equations as follows:

�
dGi

dt
� � Gi � �j�1

N
�ijRj (1)

�
dRi

dt
� � Ri �

Vi � B

1 � Gi
, (2)

where i � 1, .., N corresponds to individual choice options, � is an
intrinsic timescale parameter, B corresponds to baseline back-
ground input to the circuit, and the parameters �ij weight the
input Rj to the gain neuron Gi. Setting asymmetric excitatory-
inhibitory weights (�ii � �ij) would produce local option-
specific inhibition; for simplicity, the simulations here use

symmetric weights, equivalent to a circuit with a single global
inhibitory pool (Wang, 2008). For each neuron in the circuit,
these equations describe how neural activity changes as a func-
tion of existing activity levels and option values Vi, which serve as
inputs to the model.

Normalized value coding at equilibrium
We first examine whether the dynamic normalization model rep-
licates the relative value coding observed in delay activity in both
premotor and parietal cortex (Rorie et al., 2010; Louie et al., 2011;
Pastor-Bernier and Cisek, 2011). As discussed in the following
section, the model produces characteristic patterns of time-
varying activity comprising initial phasic transients followed by a
stable equilibrium. Here, we describe the equilibrium solutions
to Equations 1 and 2 and show that the model implements a
normalized value coding at steady-state. To verify this normal-
ization, we note that at equilibrium:

Gi
� � �j�1

N
�ijRj

� (3)

Ri
� �

Vi � B

1 � Gi
� �

Vi � B

1 � �j�1

N
�ijRj

�
(4)

where Ri
� and Gi

� denote equilibrium firing rates. Linearization of
Equations 1 and 2 at (G �, R �) implies that this solution is both
asymptotically stable and unique and hence solutions with
nearby initial conditions will always converge to this equilibrium.
Further theoretical analysis (see Mathematical Analysis) shows
that this equilibrium is in fact globally asymptotically stable for all
physiologically relevant initial conditions.

Importantly, this equilibrium solution implements basic fea-
tures of normalized value coding observed in neurophysiological
experiments. In monkey parietal cortex, LIP neurons encode a
relative representation of value (Rorie et al., 2010; Louie et al.,
2011) consistent with a normalization computation:

Ri � Rmax

Vi � �

	 � �
j�1

N Vj

, (5)

where the activity of a given neuron i is increased by the value Vi

the target in the RF and suppressed by the summed value �Vj of
all available targets. Note that the equilibrium behavior of the
dynamic model (Eq. 4) captures the value coding characteristics
of the static normalization computation (Eq. 5). Specifically, the
firing rate of an output neuron denoting a particular option Ri

�

increases with the value of that option. At the same time, in-
creases in the value of other options increase the activity of other
R neurons (Rj

�, where j � i) and consequently decrease Ri
� via the

suppressive term in the denominator. These interacting terms
produce a relative value code (Fig. 2A, right) corresponding to
previously observed LIP activity.

A critical initial question is whether the dynamic normaliza-
tion model presented here characterizes neural responses as well
as the standard static normalization model. To quantify perfor-
mance, we fit the dynamic model to previously reported popula-
tion LIP activity in a reward manipulation task with varying
option (V1) and context (V2) values. Specifically, parameters of
the dynamic model were fit using the comparison between pre-
dicted R1 equilibrium activity levels and recorded LIP delay pe-
riod responses (see Materials and Methods). As shown in Figure
2A, the best fit static and dynamic normalization models exhibit
similar firing rate dependence on both V1 and V2. Furthermore,
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the dynamic model predicts LIP responses as well as the static
normalization model (Fig. 2B; Rstatic

2 � 0.961; Rdynamic
2 � 0.959),

despite the dynamic normalization model having one less free
parameter.

This similarity is not unexpected, because the dynamic model
was designed to replicate the value coding exhibited under static
normalization. However, these results confirm that the dynamic
model provides a potential circuit implementation for the com-
putation described by the static normalization equation, allowing
us to examine the activity dynamics associated with normalized
value coding. In the following sections, we address the time-
varying properties of this dynamic normalization network.

Characteristic model dynamics
What are the dynamic properties of a circuit that produces nor-
malized value coding at equilibrium? Using the dynamic model
equations, we quantified the temporal pattern of activity follow-
ing the presentation of choice options, simulated by the onset of
value inputs to the model. Figure 3A plots the vector field corre-
sponding to dynamic value coding in the simplest form of the
model (single-option, two-neuron circuit; � � 1, B � 0) for an
input of V � 30. Each arrow in this plot represents the instanta-
neous rates of change in the activities of the R and G neurons at a
given circuit activity state.

As shown by the vector field, the model produces characteris-
tic non-monotone dynamics driven by an asymmetric influence
of input on the constituent R and G neurons. From low initial
levels of activity (Fig. 3A, bottom-left quadrant), value input se-

lectively increases R activity, evident as upward-pointing vectors.
Intuitively, this occurs because only the R neuron is driven di-
rectly by value input; G neurons are excited by R neuron activity,
which has not yet begun to rise. After R neuron activity increases
and provides G neuron input (Fig. 3A, top-left quadrant), recurrent
inhibition arises in the circuit. This increased inhibition and
resulting decrease in R unit activation is evident as rightward
(and downward) pointing vectors. Eventually, balanced excita-
tion and inhibition drives the circuit toward the stable equilib-
rium point where the change vectors vanish and both neurons
maintain steady-state levels of activity. The general conditions for
stability in this system are outlined in Mathematical Analysis (Theo-
rem 1).

These dynamics can be quantified by examining an exam-
ple trajectory through the phase space representing R and G
activity (Fig. 3B). This phase plane plot shows the response of
a single-option circuit to a step change in value input. Before
the onset of input, the circuit maintains low levels of baseline
activity. Once value input is provided, input-driven excitation
of R activity occurs first and eventually recruits G-mediated
inhibition, producing the non-monotone dynamics defined
by the vector field. The nullclines (dashed) represent the stable
circuit states for the individual R (black) and G (gray) units,
obtained by setting dR/dt and dG/dt to 0 in Equations 1 and 2.
The equilibrium point where the entire system is stable, alge-
braically defined by Equations 3 and 4, occurs at the intersec-
tion of these nullclines.
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Figure 2. Normalized value coding at equilibrium. A, Comparison between standard static normalization model (left) and dynamic normalization model (right). Both models were fit to
population LIP responses recorded in varying value conditions (Louie et al., 2011). Color represents the activity of an action-selective neuron as a function of the value of the associated option (V1)
and the value of alternative options (V2). Consistent with the standard normalization model, dynamic model R1 activity increases with option value and decreases with value context. Black dots
indicate the experimental value conditions used to fit the models. B, Predicted versus observed LIP activity using standard and dynamic normalization models. Value conditions correspond to the
dots in A. Note that the dynamic model achieves comparable performance to the static model despite having one fewer free parameter.
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This model predicts a characteristic time-varying pattern of
activity in the presence of constant input (Fig. 3C). R activity
demonstrates an initial transient peak before settling to a lower
equilibrium firing rate (R �). This pattern holds for any initial
condition below the R nullcline (i.e., for low baseline firing rates)
and follows from the fact that a solution with such initial condi-
tions must cross the R nullcline at a point to the left of (G �, R �),
corresponding to a local maximum of R(t). These dynamics
match neural data recorded in sensorimotor decision areas,
where target presentation often elicits phasic increases in firing
rates followed by a lower-level of sustained decision activity. Im-
portantly, this pattern occurs following a step input, implying
that phasic-sustained activity transitions are driven by local cir-
cuit interactions rather than time-varying feedforward signals.

Single-option dynamics: transient and sustained value coding
We next examine how value coding within the dynamic model
evolves over time. Neurophysiological studies to date have pri-
marily focused on value coding during the sustained rather than
initial transient phase of activity, in part because of the prevailing
assumption that early phasic modulation is purely sensory in
nature. In contrast, analysis of the dynamic normalization model
shows that both phasic and sustained activity can arise from in-
hibitory gain control mechanisms, suggesting that constant value
input and intrinsic circuit processing may account for the pre-
sumed sensory-mediated dynamics.

To quantify the temporal characteristics of value coding under
these conditions, we examined the response of the dynamic nor-
malization model to varying value inputs (Fig. 4). In each condi-
tion, a single-option, two-neuron version of the model was
presented with a step input of varying magnitude corresponding
to different value inputs. As evident in the phase plane plots (Fig.
4A), varying the strength of value input changes both the equi-
librium state and the dynamic path of the system. In this plot,
the solid curves are solutions to Equations 1 and 2 and show the
path of the circuit through (G, R) activity space. The dashed lines
are the nullclines for the R neuron in different value conditions
(colored, V � 30 or 40) and the G neuron (black, identical across
value conditions). The behavior of the R nullclines explains the
value-dependence of system activity: increasing the strength
of value input V shifts the corresponding R nullcline away from
the origin, producing value-dependent increases in R �.

In addition to value coding at equilibrium, the phase plane
plots reveal higher peak excursions for larger value inputs. As
evident in the activity trace, this pattern corresponds to value-

dependent phasic transients at the onset of value input across a
range of different values (Fig. 4B). Consistent with value coding
during the transient, the peak activity in each condition Rmax

increases with input value. Notably, the extent of the initial activ-
ity excursion beyond the ultimate steady-state activity level is also
value-dependent, resulting in a more pronounced phasic peak
under larger value conditions. Mathematically, this occurs be-
cause the single-option R nullcline equation, as follows:

R �
V � B

1 � G
, (6)

has the following properties:


R


V
�

1

1 � G
� 0 (7)


2R


V
R
�

�1

�1 � G�2 � 0. (8)

The first inequality implies that the R nullcline shifts upward as
value increases and underlies the general value-dependent in-
crease in R neuron activity at all time points. The second inequal-
ity implies that the rate of value-mediated increase is smaller at
higher levels of G activity; because inhibitory neuron activity is
always greater at the equilibrium point than during the initial
transient, it follows that the rate of change with respect to V of
R � is less than that of Rmax. This is evident as a stronger value
modulation in peak activity compared with sustained activity
in the model (Fig. 4C). The complete proof of this time-
varying value coding is given in the Mathematical Analysis
section below.

Multiple option dynamics: relative timing of direct and
contextual information
A fundamental characteristic of the normalization computation
is divisive scaling, typically by a quantity representing the
summed activity of a large pool of neurons (Heeger, 1992;
Carandini and Heeger, 2012). In decision-related brain areas,
this normalization produces a relative value coding: the activ-
ity representing a given action increases with the value of that
action and decreases with the value of alternative options (Rorie
et al., 2010; Louie et al., 2011; Pastor-Bernier and Cisek, 2011).
Thus, individual neurons carry value information about both
targets within the neural RF that provide direct, feedforward
activation and targets outside the RF that define the context of
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other possible choices. These findings suggest that individual
neurons integrate value information about all available op-
tions, but little is known about how this is accomplished in
cortical circuits.

Here, we show that the simple recurrent circuit model of
normalization presented here predicts characteristic time

courses for modulation by both direct and contextual value
information. The intuition behind this time course difference
is evident in the mechanism by which different kinds of value
information reach a given R neuron in the model. The value of
a specific option directly excites the associated R neuron via
value-modulated input. In contrast, the value of other options
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influences that neuron only through a chain comprising
input-driven R neuron activity and G neuron inhibition.
Thus, the influence of the value of an alternative option should
be suppressive and arise later in time. Empirically, delayed
onset of contextual information is widely documented in sen-
sory processing, and evident in reward-related processing during
perceptual decision-making (Rorie et al., 2010).

To quantify these effects in the dynamic normalization model,
we examined the behavior of a two-choice, four-neuron circuit
(Fig. 5). As shown in Figure 5A, the activity representing a given
option (R1) is dependent on the values of both presented alterna-
tives; consistent with a normalized value code, activity increases
as a function of V1 and decreases as a function of V2. However,
there are notable timing differences in the dynamics of direct
versus contextual modulation, as quantified by multiple-
regression analysis of the model output (Fig. 5B). Whereas the
effect of option value (V1) increases R1 activity almost immedi-
ately, the suppressive influence of value context (V2) begins only
after a short delay. Furthermore, the time of peak value modula-
tion occurs later for value context (t � 0.88 A.U.) compared with
option value (t � 1.89 A.U.). This delay in model contextual
processing emphasizes the role of inhibitory G neurons, which ex-
hibit a delayed response to value input (Fig. 3C) and mediate the
suppressive effect of alternative option value via lateral inhibition.

Model validation: electrophysiological data
As discussed above, the dynamic normalization model makes
specific qualitative predictions about the dynamic nature of value
coding activity: (1) value coding during sustained delay-period
activity, (2) value coding during the initial phasic transient, (3)
time-varying strength of this value modulation, and (4) differen-
tial timing of direct and contextual value processing. To test the
predictions of the dynamic normalization model, we examined
the activity of LIP neurons in monkeys performing single- and
multiple-target saccade tasks. Value modulation is commonly
observed in LIP (Platt and Glimcher, 1999; Dorris and Glimcher,
2004; Sugrue et al., 2004; Louie and Glimcher, 2010; Rorie et al.,
2010; Louie et al., 2011) but most studies of value-based decision-
making have focused exclusively on delay-period modulation and
little is known about the temporal dynamics of such coding.

We first examined LIP activity in a single-target value task,
which avoids potentially confounding activity related to action
selection (i.e., choice probability signals) in multiple alternative
scenarios. In each trial, the monkey foveated a central fixation
cue, viewed a peripheral target in the isolated neuron’s RF, and
completed a saccade to the target location. Successful saccades to
the target produced a water reward whose magnitude was con-
stant within a block of trials; reward magnitude was varied across
blocks to determine the effect of value on the time course of LIP
responses. In this single-alternative task, value modulates LIP
firing rates throughout both the phasic and sustained phases of
activity (Fig. 4D). As seen in the average population activity (n �
23 neurons), consistent value modulation occurs across both
early and sustained periods of target presentation. Across the
population, linear regression analysis (Fig. 4E) reveals that both
phasic (t � 100 –150 ms: mean � � 0.0095; p � 3.7 
 10�4,
Wilcoxon signed rank test) and sustained (t � 950 –1000 ms:
mean � � 0.0035; p � 0.019) activity levels are dependent on
value, with a significantly stronger modulation during the initial
phasic transient than at steady-state (p � 0.0022, bootstrap test
of difference of mean regression weights).

To test model predictions about the relative timing of direct
and contextual value information, we next examined the dynam-

ics of LIP value coding in multiple-option tasks (equilibrium
activity previously analyzed and reported in by Louie et al., 2011;
see Materials and Methods). In these tasks, the values of a target
inside the RF and target(s) outside the RF were varied; we quan-
tified via regression analyses how neural responses depended on
direct RF value and contextual extra-RF value information. Con-
sistent with the qualitative timing predictions of the model, the
suppressive effect of contextual value is delayed relative to direct
value activation. As evident in Figure 5C, the influence of RF
value (red) rises immediately, significantly deviating from base-
line (fixation) levels of modulation at 7 ms; in contrast, suppres-
sion by extra-RF value (blue) is unchanged for the first 25 ms and
does not become significant until 44 ms (p � 0.05, bootstrap test
of difference in mean regression coefficient). Furthermore, both
the time of half-maximal modulation and the time of peak mod-
ulation occur significantly earlier for direct activation (thalf � 35
ms, tpeak � 87 ms) compared with contextual suppression (thalf �
60 ms, tpeak � 122 ms) processes (95% CI of difference between
direct and contextual timing: thalf, [�49, �7]; tpeak, [�313,
�2]). We note that similar reward effects have been shown in
parietal neurons during a perceptual choice task (Rorie et al.,
2010); our results confirm these previous findings and extend
them to purely value-guided decision making.

Discounted divisive normalization
Although most normalization models scale the firing rate of a given
neuron with respect to the instantaneous activity of a large normal-
ization pool, others have been proposed that normalize over both
the current and past activity of these neurons (Carandini and
Heeger, 2012). In this approach, past activity is discounted with
more recent activity weighted more heavily. Such models have been
used to describe history-dependent processes including light adap-
tation in the retina and contrast adaptation in visual cortex but their
implementation in decision-related circuits is unknown.

Our differential equations model incorporates an intrinsic de-
pendence of current activity on past circuit activity because the
firing rates are, by definition, time-dependent. Here, we show
that the dynamic normalization model presented above implies
that the firing rate at a fixed time is normalized by the firing rates
at previous time steps in an exponentially weighted manner. In
other words, our dynamical model naturally implements the ex-
tended time-dependent normalization model previously used to
model adaptation (Wainwright et al., 2002; Carandini and
Heeger, 2012; Sinz and Bethge, 2013). This discounted normal-
ization equation is derived from Equations 1 and 2 by first dis-
cretizing the derivative (using Euler’s Method), rescaling
parameters, and relying on the linearity of the G� equation, with
the following result for a single (G,R) pair:

Rt�1 � Rt �
V � B

1 � ��
k�0

t�1
kRt�k�1

, (9)

where the parameter  is between 0 and 1 and is related to the
time step associated with discretization and the time constant �.
For multiple (G, R) pairs, this approach produces a double sum
over both time and neuron pair.

This discounted formulation suggests that the firing rate at a
given time depends on the firing rate at previous time steps in an
exponentially decaying manner, with recent firing rates weighted
most heavily. Critically, this circuit property suggests a neural mech-
anism for certain temporal forms of context-dependent choice be-
havior. Recent high-value choices, for example, would produce a
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persistent larger divisive scaling and persistently reduced firing rates
in the current choice set, thus altering value-guided decisions. We
note that because the current temporal structure of this model is
qualitative in nature, it is unclear whether the time-scale in the cur-

rent model is consistent with that necessary for context-dependent
choice effects. These results are not dependent on the discretization,
as we have also developed a continuous time version of the dis-
counted form, with the summation replaced by a convolution with a
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decaying exponential function. The details of the derivations of both
versions of our model are given in the following sections.

Mathematical analysis: equilibria in a single-option model
Here we provide the mathematical foundations for the results
presented above. Instead of proving results for the specific
normalization-based differential equations in the text, we con-
sider more general families of differential equations of which the
model equations are a special case; this theory indicates that the
preceding results are not tied to a specific functional form of
the differential equations. In what follows, the variable x corre-
sponds to the variable G, and y corresponds to the variable R used
in the main text. We have used these variables here to emphasize
the generality of these results.

Theorem 1. Consider the system of differential equations

�ẋ � �x � f� y�

�ẏ � ��y � g� x�,
(10)

defined for x � 0, y � 0 and satisfying the following conditions:

•  � 0 and � � 0,
• f is a continuously differentiable increasing function

(f�(y) � 0) mapping an interval [a, �) onto [b, �) with a �
0, b � 0, and either a � 0 or b � 0.

• g is a continuously differentiable decreasing function
(g�(x) � 0) mapping the interval [0, �) onto an interval
(0, M], and

a �
M

�
.

Then the equations (10) have the following properties:
(1) There exists a unique asymptotically stable equilibrium

point �x�,y�� � �� � ��.
(2) Any solution �t (x0, y0) with the initial condition:

�x0, y0� � R � ��x, y�:0 � x �
f�M/��


and 0 � y

�
M

�� satisfies lim
t¡�

�t�x0, y0� � �x�, y��.

(3) If �x0, y0� � �0,x�� � �0, y��, then there exists a t� � 0,
such that y(t) has a local maximum at t�.

Proof
We begin by showing that the system of equations (10) has a
unique equilibrium point. The nullclines are given by x � f(y)/
and y � g(x)/�, and any equilibrium is the intersection of these
two graphs.

Because f is invertible we can express the x-nullcline as y �
f�1(x). Note that this latter function is monotonically increas-
ing and f�1:[b, �) ¡ [a, �). Let

H�x� �
g� x�

�
� f�1�x�.

Because lim
x¡�

g�x� � 0 and lim
x¡�

f�1�x� � �, there exists an x � b,
such that H(x) � 0. First assume that b � 0, and hence f�1(0) �
a by assumption. Then,

H�b� � H�0� �
g�0�

�
� f�1�0� �

M

�
� a � 0.

By the intermediate value theorem, there exists x�, such that
H(x�) � 0. Moreover, because H�(x) � 0, x� is the unique zero of H.

Now suppose that b � 0 so that a � 0. Then,

H�b� �
g�b�

�
� f�1�b� �

g�b�

�
� 0,

and again we have a unique x �, such that H(x �) � 0. Clearly x � is
the x-coordinate of an equilibrium point and thus we have shown
system 10 has a unique equilibrium point.

The asymptotic stability of (x �, y �) is determined by evaluat-
ing the Jacobian matrix at (x �, y �) to get the following:

J � � � f�� y��
g�� x�� �� � .

Because Tr J � �( � �) � 0 and det J � � � f�(y �)g�(x �) � 0,
it follows that both eigenvalues of J have a negative real part, and
thus the equilibrium point is locally asymptotically stable.

We next prove Statement 2. It is easy to show that the compact
rectangular region R is positively invariant. This implies that so-
lutions with initial conditions in R exist for all t � 0, and thus
these solutions have nontrivial �-limit sets. Moreover, because:

div�� ẋ,ẏ�T� � � � � ẋ,ẏ�T � Tr J � 0,

for all x � 0, y � 0, it follows from Bendixon’s criterion that there
are no periodic orbits in this region. Thus all solutions interior to
R limit on the equilibrium (x �, y �).

The proof of Statement 3 is also straightforward. If
�x0, y0� � �0,x�� � �0, y��, then the solution curve �t (x0,y0)
exits this rectangle through the line y � y � and into the compact
region bounded by this line, the y-axis, and the graph of y �
g(x)/� with 0 � x � x �. Solution curves in this region must exit by
crossing the y-nullcline at a value of y � y �. Thus y(t) has a local
maximum at some value t � t1 � 0.

Mathematical analysis: effect of changing value in a
single-option model
We now turn our attention to families of differential equations
satisfying the properties of Theorem 1. In particular, we consider
the family of differential equations:

ẋ � �x � f� y�

ẏ � ��y � g� x;V�,
(11)

satisfying the conditions of Theorem 1 for all V � 0. In addition we
assume that 
g/
V � 0, and a � M(V)/� for all V in some interval
(Vmin,Vmax).LetAV denotetheopentriangularshapedregionbounded
by the y-axis, and the x and y nullclines for a given value of V.

Theorem 2. Consider the family of differential equations (11)
that satisfy the conditions of Theorem 1, 
g/
V � 0, and a �
M(V)/� for all V in some interval (Vmin, Vmax). Then,

(1) The y-coordinate of the equilibrium point y �(V) is in-
creasing, and

(2) if Vmin � V1 � V2 � Vmax, then for all �x0,y0� � Av1

�y � ��t�1, x0,y0;V1� � �y � ��t�2, x0,y0;V2�

where t�k is the minimal t � 0, such that �y � ��t�k,x0,y0;Vk� is a
local maximum.

Proof
Statement 1 follows immediately from the fact that 
g/
V � 0,
and f�(y) � 0.

Let V1 � V2, and let A � Av1 � Av2. Let (x0,y0) � A and define
�k(t) � �t(x0,y0;Vk) for k � 1,2.

For all (x,y) � A, the slope of each vector defined by (11) is
given by the following:
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T� x,y;V� �
d y/dt

dx/dt
�

��y � g� x;V�

�x � f� y�
.

Moreover, the following derivative:


T


V
�


g/
V

f� y� � x

describes the change in these slopes with respect to a change in the

parameter V and if (x,y) � A, then

T


V
� 0. Thus the slopes of the

vectors in this region increase with V.

Because T(x,y;V)�0 and

T


V
� 0 in A, it follows that for V1 and V2

each vector in A is directed upward and to the right and T(x,y;V2) �
T(x,y;V1).Thisimpliesthatthereexists��0,suchthatforall tandswith
0� t��and 0� s��, then�2(t)��1(t). In other words, the solution
curve �2 lies above the solution curve �1 for sufficiently small t and s.

Now suppose, by way of contradiction, that the solution curves �1

and �2 intersect in A. Then there exists t� � 0 and s� � 0, such that:

�2(t�) � �1(s�)

in A. Because �2 initially lies above �1, it follows that:

T[�2(t�);V2] � T[�1(s�);V1].

But this contradicts the fact that

T


V
� 0. Hence �2(t) lies above

�1(s) when both solution curves lie in the region A.
This, combined with the fact y � g(x;V1) is decreasing, implies that

�(t) intersects the nullcline y � g(x;V1) at a greater value of y than�1(s).
Because�2(t)isstill increasingand�1(s)isatitsmaximum,itfollowsthat
the maximum of �2 is greater than the maximum of �1.

Mathematical analysis: equilibria in multiple option models
We now turn our consideration to systems of differential equations
based on those studied above. Let X � �n and Y � �n and consider the
system of differential equations on �2n as follows:

Ẋ � �AX � F�WY�

Ẏ � �BY � G�X�.
(12)

Let A � diag(i) and B � diag(�i) be n 
 n positive, diagonal
matrices. Let W � [�ij] be an n 
 n non-negative matrix and
define the diagonal matrix Wd � [�ij�ij], where:

�ij � � 1 if i � j
0 otherwise .

Assume that F: �n¡�n is continuously differentiable and has the form

F�Z� � � f1� z1�
�

fn� zn�
� ,

with fi(z) � 0 for all i. Similarly, G: �n¡�n is continuously dif-
ferentiable and has the following form:

G�X� � � g1� x1�
�

gn� xn�
� ,

with each gi satisfying the conditions imposed on g in Theorem 1.
Finally, recall that the norm of an n 
 n matrix M is given by the
following:

�M� � � �
i�1

n �
j�1

n

mij
2� 1/ 2

.

Theorem 3. If �W � Wd� is sufficiently small then system (12) has
a unique asymptotically stable equilibrium in ��� � ���n.

Proof
When W � Wd then the equations (12) decouple to a system of n
pairs of differential equations each satisfying the hypotheses of
Theorem 1. Thus each pair of equations has a unique asymptot-
ically stable equilibrium point �xi

�,yi
�� � �� � �� for i � 1 to n.

Thus, in this case, equations (12) also have a unique asymptoti-
cally stable equilibrium at (X� ,Y� ), where X� � �x1

�,. . .,xn
��. and

Y� � �y1
�,. . .,yn

�� Because (X� ,Y� ) is structurally stable, it follows
immediately that equations (12) also have a unique asymptoti-
cally stable equilibrium in some neighborhood of (X� ,Y� ) for suf-
ficiently small �W � Wd�. See Guckenheimer and Holmes (1983)
for a discussion of perturbations of structural stable systems of
differential equations.

We note here that the above theorem is local in the sense that
the persistence of the asymptotically stable equilibrium is only
guaranteed for some “small” value of �, where �W � Wd� � �.
Numerical simulations suggest that this value of � is in fact fairly
large. Simulations suggest that as long as �ij � 1 for all i and j,
then the asymptotically stable equilibrium persists.

Mathematical analysis: derivation of the discounted
normalization equations
Consider the system of differential equations as follows:

�ẋ � �x � �f� y�

�ẏ � �y �
v

1 � g� x�
.

(13)

We begin by discretizing this system of equations via Euler’s
method with a step size of h� with 0 � h � 1. This gives the
discrete system:

xt�1 � xt � �f� yt�,

yt�1 � yt �
v

1 � g� xt�

(14)

where  � 1 � h and the parameters � and V are rescaled from
(13) by a factor of h.

Assume initial conditions of x0 � 0 and y0 � 0. It follows
immediately that:

x1 � �f� y0�

y1 � y0 �
v

1 � g�0�
. (15)

The next terms in the sequence are as follows:

x2 � ��f� y0� � f� y0��

y2 � y1 �
V

1 � g� x1�
. (16)

By induction, we get the generalized x term of the following:
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xt�1 � ��
k�0

t

kf� yt�k�. (17)

Substituting this into the y recurrence in (14) gives the following:

yt�1 � yt � V� 1 � ��
k�0

t�1

kf� yt�k�1��� 1

, (18)

as desired.

Discussion
We show here that a simple dynamical model incorporating re-
current gain control and lateral connectivity captures fundamen-
tal aspects of early decision-related processing. Although this
mathematical model is more abstract than biophysically realistic
network models of decision circuits, it provides a number of
qualitative predictions regarding value coding neural activity.
This circuit exhibits both empirically observed normalized value
coding at equilibrium and characteristic dynamics including se-
quential phasic-sustained activity, time-varying value modulation,
and differential strength and timing of direct versus contextual in-
formation processing. Together, these findings suggest that multiple
aspects of value coding can arise from intrinsic interactions of the
local circuit and reinforce the importance of examining temporal
aspects of the normalization process (Carandini and Heeger, 1994;
Carandini et al., 1997; Mikaelian and Simoncelli, 2001; Reynaud et
al., 2012).

Identifying the biological basis of value normalization is an
essential step in understanding its role in neural coding and ulti-
mately behavior. Normalization occurs in diverse brain areas and
organisms, suggesting that the common element is the computa-
tion rather than a specific biophysical mechanism (Carandini
and Heeger, 2012). For gain control in simpler systems, such as
retinal photoreceptor light adaptation, normalization can be me-
diated by intracellular phenomena (Normann and Perlman,
1979). However, normalization processes involving a pooled
signal summing over many neurons are likely mediated by a
circuit-level mechanism. Feedforward mechanisms may drive
normalization in certain circuits such as the housefly visual or
fruit fly olfactory systems (Reichardt et al., 1983; Olsen et al.,
2010), but the predominant candidate architecture for normal-
ization in cortical areas is feedback connectivity. Recurrent con-
nections are a characteristic feature of cortical circuits (Gilbert,
1983; Callaway, 1998; Douglas and Martin, 2004) and feedback
inhibition plays a critical role in shaping cortical activity (Isaac-
son and Scanziani, 2011), possibly by balancing excitatory drive
via divisive gain control (Chance and Abbott, 2000; Chance et al.,
2002). Consistent with a feedback mechanism, we find that a
simple network with recurrent and lateral inhibition replicates
dynamic and equilibrium aspects of normalized value coding.

The strong similarity between theoretical predictions and em-
pirical dynamics suggests that our basic model captures funda-
mental features of value normalization, but several important
open questions remain. First, our model incorporates divisive
scaling via recurrent inhibition but is agnostic about how this is
implemented at the biophysical level. Shunting inhibition can
implement divisive gain control (Carandini and Heeger, 1994;
Carandini et al., 1997; Mitchell and Silver, 2003) but its role in
empirical normalization remains debated (Holt and Koch, 1997)
and other mechanisms, such as balanced excitation and inhibi-
tion, may be involved (Chance et al., 2002). Second, how value

information reaches cortical areas like LIP is unknown. Such
signals could arrive in a bottom-up manner from lower order
sensory cortices or in a top-down manner from reward-coding
frontal brain areas. Our model does not differentiate between
these possibilities, and identifying the source of value informa-
tion is a crucial target of further work. Finally, in addition to
recurrent inhibition, cortical circuits exhibit additional complex-
ities including laminar organization, recurrent excitation, and
multiple interneuron subtypes. Although not necessary to gener-
ate the dynamic properties of early value coding, these features
may be important in other aspects of decision processing; for
example, recurrent excitation likely underlies the late winner-
take-all dynamics that implement selection (Wang, 2002, 2008,
2012). A goal of our future research is to incorporate these fea-
tures into richer models of the valuation process.

To date, empirical and theoretical studies have focused pre-
dominantly on neural activity in the latter stages of the decision
process, when action-selective neurons begin to indicate choice
outcome. Neural dynamics during this interval have been studied
extensively in perceptual decision tasks and characterized with
mathematical and network models based on the accumulation of
noisy evidence over time. Such models typically are not applied to
early decision-related neural activity: drift diffusion models char-
acterize firing rates associated with a motion stimulus that ap-
pears after target onset (Roitman and Shadlen, 2002; Churchland
et al., 2008) and network models often ignore early activity or
assume that dynamics are inherited strictly from feedforward
input (Wang, 2002; Furman and Wang, 2008). Our model sug-
gests that divisive normalization operates early in the decision
process, mediating value coding even during the initial sensory-
associated transient. However, it is important to note that the
normalization circuit described here does not implement
winner-take-all selection; because the system reaches a value cod-
ing equilibrium, it does not exhibit the attractor state dynamics
observed in networks with strong recurrent excitation. Thus, these
results suggest that a full description of decision-making requires
two dynamic processes: inhibition-mediated normalized value cod-
ing and excitation-mediated winner-take-all choice. Identifying the
neural circuit components that implement these different computa-
tions in the same network will be a critical target of future research.
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