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Structural Differences in Hippocampal and Prefrontal Gray
Matter Volume Support Flexible Context-Dependent
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Spatial navigation is a fundamental part of daily life. Humans differ in their individual abilities to flexibly navigate their world, and a
critical question is how this variability relates to differences in underlying brain structure. Our experiment examined individual differ-
ences in the ability to flexibly navigate routes that overlap with, and must be distinguished from, previously learned trajectories. We
related differences in flexible navigation performance to differences in brain morphology in healthy young adults using voxel-based
morphometry. Our findings provide novel evidence that individual differences in gray matter volume in the hippocampus and dorsolat-
eral prefrontal cortex correlate with our ability rapidly to learn and flexibly navigate routes through our world.

Introduction
The ability to use contextual information and past experiences to
guide successful navigation is a critical part of daily life. A funda-
mental question addressed in the present experiment is how dif-
ferences in the ability to distinguish between and flexibly navigate
overlapping spatial episodes relates to differences in underlying
anatomical structure in the healthy human brain.

Learning to navigate routes that share common elements with
alternative paths requires the ability to overcome interference
from the overlapping representation. The ability to use contex-
tual information to distinguish between or disambiguate over-
lapping sequential memories (Hasselmo and Eichenbaum, 2005;
Zilli and Hasselmo, 2008) depends on hippocampal function in
both rodents (Wood et al., 2000; Agster et al., 2002; Smith and
Mizumori, 2006; Ginther et al., 2011; MacDonald et al., 2011)
and humans (Kumaran and Maguire, 2006; Brown et al., 2010,
2012; Brown and Stern, 2013). Successful navigation of overlap-
ping routes also recruits prefrontal areas (particularly rostral lat-
eral prefrontal and orbitofrontal cortices) and the caudate in
humans during both learning (Brown and Stern, 2013) and re-
trieval (Brown et al., 2010, 2012). Prefrontal-striatal circuitry

may be critical for translating context-guided route memory in
the hippocampus into flexible selection of alternative naviga-
tional responses. Topographical memory and bias toward spatial
strategies is associated with hippocampal and prefrontal gray
matter structure in humans (Maguire et al., 2006; Bohbot et al.,
2007; Hartley and Harlow, 2012; Schinazi et al., 2013), and could
further support efficient use of existing route and environment
information to avoid navigational errors. In contrast, navigation
of completely distinct non-overlapping routes recruits the hip-
pocampus and prefrontal cortex (PFC) less than overlapping
routes (Brown et al., 2010, 2012; Brown and Stern, 2013), does
not require inhibition of alternative responses, and efficient per-
formance can potentially be supported through learning simple
associations and unique stimulus-response pairings. The ability
to learn and retrieve distinct non-overlapping routes may there-
fore benefit minimally from increased neural resources in the
hippocampus and PFC.

Together, these functional and structural data led to the pre-
diction that if learning and retrieving overlapping routes is more
dependent than learning non-overlapping routes on computa-
tions supported by the PFC and hippocampus, then overlapping
route navigation during learning would more directly benefit
from increased neural resources in these regions. We hypothe-
sized that larger gray matter volumes in the hippocampus and
PFC would provide a more robust architecture for representing
contextual and spatial details in sequential route memories, and
support learning to flexibly navigate overlapping mazes. We
tested this prediction in a between-subjects study correlating
gray matter volumes in healthy young adults with individual
differences in flexible context-dependent navigation during
learning. We used a functional magnetic resonance imaging
(fMRI) paradigm developed to compare overlapping maze navi-
gation performance during learning with navigation of distinct
non-overlapping routes that do not require the use of context to
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select between alternative navigational behaviors (Brown and
Stern, 2013). We predicted people with greater gray matter vol-
ume in the hippocampus and functionally related prefrontal re-
gions would have better accuracy on newly encoded overlapping
routes and would reach peak accuracy more rapidly across learn-
ing trials.

Materials and Methods
Participants
Thirty-two participants (20 female; mean age 20.9 � 2.9 years) from the
Boston University student community were included in this study. Par-
ticipants had no history of neurological or psychiatric disorder. Informed
consent was obtained in a manner approved by the Partners Human
Research Committee and the Boston University Institutional Review
Board.

Virtual navigation design and task
Our experiment targeted learning-period performance on navigating in-
tersections between overlapping mazes, where participants needed to
make different context-dependent navigational turn responses at the
same landmark/location depending on which route they were currently
following. Detailed information about the virtual maze stimuli can be
found in our recent fMRI publication introducing this paradigm (Brown
and Stern, 2013). Briefly, 20 virtual mazes formed two navigation condi-
tions. Each maze was comprised of three hallways and three intersec-
tions. Each intersection contained unique, clearly identifiable objects
that served as distinguishing features between the locations (Fig. 1a). Ten
mazes were split into five “Overlapping” pairs. Each maze began and
ended at distinct, non-overlapping locations, but converged in the mid-
dle to share the second hallway with another maze. The unique starting
location identified which route was being followed on a given trial. The
remaining 10 mazes comprised the “Non-overlapping condition” and
were completely distinct from one another.

Participants navigated the virtual routes from a ground-level first-
person perspective. Behavioral accuracies and reaction times were
recorded using E-Prime 2.0 (Psychology Software Tools). At each inter-
section, participants used a button box to select the direction of the next
hall in the sequence of locations comprising a maze. Following a correct
navigational choice, participants turned down the next hallway and trav-
eled to the subsequent intersection. Incorrect navigational choices were
followed with presentation of corrective feedback.

Navigational demands were matched between overlapping and
non-overlapping mazes, with the number of left, right, and straight
choices counterbalanced across mazes and experimental conditions.
Only knowledge of the routes distinguished the overlapping intersections
as different from non-overlapping intersections. In non-overlapping
mazes, intersections required the same navigational choices in every trial.
In contrast, in overlapping mazes the second and third intersections were

overlapping locations. The correct turn at
overlapping intersections differed depending
on which route was being followed in a given
trial. The present study focused on perfor-
mance at the primary context-dependent deci-
sion point, termed the “Critical Decision”
(Brown and Stern, 2013).

Our experiment was conducted over 2 con-
secutive days. On Day 1, participants learned to
navigate 10 of the routes 100% correctly in a
randomized order. Participants learned the re-
maining 10 mazes the following day during
scanning. Critically, five of the routes learned
in the scanner shared common hallways with
familiar alternative routes learned on training
day (Fig. 1b). The 10 training day mazes were
learned as distinct non-overlapping routes—
participants did not know which would be-
come overlapping and which would remain
non-overlapping on Day 2.

On Day 2, participants performed 10 runs of
the navigation task �24 h after prescan training. During each run, par-
ticipants navigated once through each of the previously learned and
novel mazes. By attending to the feedback for errors, participants learned
the 10 new mazes across runs. Mazes belonging to the different experi-
mental conditions were presented in an interleaved manner, with maze
order counterbalanced across runs, and run order randomized across
participants. Our analysis focused on between-subjects behavioral differ-
ences for the new overlapping mazes learned on Day 2.

MRI image acquisition
Images were acquired at the Athinoula A. Martinos Center for Biomed-
ical Imaging of the Massachusetts General Hospital in Charlestown, MA,
using a 3 T Siemens MAGNETOM Trio Tim scanner with a Siemens
32-channel matrix head coil. High-resolution T1-weighted multiplanar
rapidly acquired gradient echo structural scans were acquired using gen-
eralized autocalibrating partially parallel acquisitions (TR � 2530 ms;
TE � 3.31 ms; flip angle � 7; slices � 176; resolution � 1 mm isotropic).

Voxel-based morphometry
Gray matter volume was analyzed using standard voxel-based mor-
phometry (VBM) methods in SPM8 (Wellcome Department of Cogni-
tive Neurology, London, UK). Structural images were segmented using
SPM8’s New Segment option into gray matter, white matter, and CSF
images, and bias-corrected. Gray matter segmentation images were spa-
tially normalized into standard Montreal Neurological Institute space
using the Diffeomorphic Anatomical Registration Through Exponenti-
ated Lie algebra (DARTEL) algorithm (Ashburner, 2007) for a high de-
gree of intersubject registration. Gray matter images were resampled
during normalization (1.5 mm 3 isotropic voxels) and spatially smoothed
using a 6 mm full-width at half-maximum Gaussian kernel. As is now
standard (Mechelli et al., 2005), VBM analyses were conducted using
“modulated” smoothed gray matter images, providing a measure of re-
gional gray matter volume.

VBM statistical analyses
Behaviorally, we evaluated performance for newly learned overlapping
(OL) maze “Critical Decisions” and “counterpart” performance in novel
nonoverlapping (NOL) mazes at the second intersection. This allowed us
to distinguish gray matter correlates of flexible navigation ability from
correlates of navigating NOL routes that do not require the use of context
to select between alternative behaviors. Individual subject local gray mat-
ter volume estimates were related to Critical Decision performance using
two learning-related measures in linear regression analyses in SPM8.

Early task phase performance. Accuracies from individual mazes of
each condition were averaged for the first three experimental runs into
“Early task phase” performance measures for OL and NOL mazes (as
defined in Brown and Stern, 2013). The Early task phase was the period
during which learning was greatest for new OL and NOL mazes, and
“disambiguation errors” (erroneously making the navigational response

Figure 1. a, Example viewpoint during navigation. Unique landmarks distinguish each intersection and facilitate recognition of
OL locations. b, Examples of overlapping (OL) and non-overlapping (NOL) routes. Our study targets performance from novel mazes
(OLNew, in green) that overlap with routes learned during training (OLOld, in blue). The OL hallway is highlighted in yellow. Gray
hallways reflect “foil” hallways that are never correct choices. Gray matter correlates of OLNew performance are compared with
novel NOL routes (NOLNew) shown in orange.
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for the previously learned route) were observed almost exclusively dur-
ing these early trials, indicating that disambiguation processes are partic-
ularly important for accurate behavior during the first three runs. Early
task phase accuracy reflects the overall level of performance during early
navigation trials, influenced by how well participants are able to (1)
overcome interference from previously learned alternative behavioral
responses and use existing spatial knowledge from previously learned
overlapping routes to rule out turns in new mazes that cannot be correct
(OL condition only) and (2) rapidly improve performance from feed-
back for the second and third trials of each maze (OL and NOL condi-
tions). Participants had equivalent accuracy for the two conditions
(mean(SD): OL � 0.62(0.174), NOL � 0.63(0.140)). The distribution of
scores around the median (Fig. 2a) indicate substantial behavioral vari-
ability for analysis (confirmed by significant structure-performance re-
lationships for both conditions, reported below).

Learning rate. We also analyzed a correlate of Critical Decision learn-
ing rate using a signal detection theory-based approach. We limited our
analysis to the first six runs (participants reached peak performance by
the sixth run/the learning curves reached asymptote). Including addi-
tional runs to the model would not add meaningful information to anal-
ysis of the learning rate, while including fewer trials might discount
learning curve data for some subjects. Taking advantage of nonlinear
improvements in individual Critical Choice accuracies, we computed the
discriminability or sensitivity index, da, for each subject assuming a stan-
dard “unequal variance” dual Gaussian model of target and lure hallway
memory strength distributions. This model is used in many fields to
estimate receiver operating characteristic curves (e.g., radiology and psy-
chology: Obuchowski, 2003; Wixted and Mickes, 2010), and here is given
by Equation 1:

T � ��a � b � ��1�L��, (1)

where T is the cumulative target hallway choice rate, L is the cumulative
lure hallway choice rate, and � is the normal cumulative density func-
tion. The parameters a � �t � �l/�t and b � �l/�t were estimated via an
optimization routine that minimizes the negative log-likelihood of the
data given the model. da, was then calculated from these parameters
(Eq. 2)

da � a � � 2

1 � b2
. (2)

Critically, in this design, da is influenced mainly by the rate mazes are
learned. Thus, higher da values reflect more rapid learning. Participants
had comparable da measures for the two conditions (mean(SD): OL �
1.75(0.750), NOL � 1.95(0.600)). The distribution of scores around the
mean (Fig. 2b) indicates substantial behavioral variability for analysis
(confirmed by significant structure-performance relationships for both
conditions reported below). Models were fit and da was calculated using
the statistical software R 2.15.2 (R Development Core Team, 2012).

Individual subject Early task phase performance and da values were
entered as covariates with smoothed gray matter volume estimate images
into separate OL and NOL condition second-level multiple regression
analyses in SPM8. T statistic images, representing the strength of the
linear association, were calculated in SPM. Significant positive relation-
ships indicated local gray matter volume estimates were predicted by
Early task phase accuracy or da measures. Individual subject ages and
genders were included as additional covariates for the OL and NOL
regression analyses to control for their potentially confounding influence
on brain structure and performance.

By separately interrogating the relationship between these factors and
brain structure, we were able to examine whether there were any corre-
lates of learning common to both the OL and NOL conditions and di-
rectly determine how well volume is predicted by a given factor.
However, when differences between conditions were present, it was im-
portant to quantify the strength of the specificity of these effects to over-
lapping maze performance. Therefore, we ran a follow-up analysis with
the behavioral measures of both conditions combined into a unified
model, and directly contrasted the OL and NOL conditions. Accuracy
and da measures were also correlated within each condition (the average

level of accuracy is partially influenced by learning rate). By including
both behavioral measures from each condition in one unified model, we
were also able to determine whether volume differences significantly
predicted one behavioral measure while holding variance from the other
measure constant.

When considering the results of separate and unified models in our
study, it was useful to compare the predictive power of the two ap-
proaches. To gain leverage on this question, we refit each model to the
VBM data in R, and compared Akaike information criterion (AIC;
Akaike, 1974) statistics for each of the separate models against the unified
model. The AIC provides a simple measure of expected out-of-sample
prediction error for a given model, penalized for the number of param-
eters, and is used as a relative measure of model quality. A lower AIC
value reflects less deviance–indicative of the preferred model. We note
that, using this criterion, the separate models may be preferred for be-
tween 65 and 85% of voxels in our search volume within a given behav-
ioral condition. This is not to disregard the unified model, however,
which provides a single, comprehensive model for the data facilitating
direct comparison of the conditions of interest. To provide a complete
understanding of the nature of the structure-performance relationships
present in our data, we present results from the unified model alongside
our separate interrogations of the behavioral variables.

Based on our strong anatomical predictions from prior functional data
(Brown et al., 2010, 2012; Brown and Stern, 2013), and to limit the
multiple-comparisons problem, regression analyses were conducted
within a restricted region of interest (ROI) volume comprised of the
medial temporal lobes (MTL); striatum; and medial, orbital, and lateral
PFC. Our search volume was created by combining relevant AAL struc-
tural delineations (Tzourio-Mazoyer et al., 2002) from the Wake Forest
University (WFU) PickAtlas for SPM (Maldjian et al., 2003, 2004). Anal-
yses were conducted with voxelwise statistical thresholds of p � 0.01. To
limit the occurrence of spurious clusters, we applied a cluster-extent
threshold (k) of 168 to maintain a familywise error rate of p � 0.05,
calculated using a 10,000 simulation Monte Carlo analysis in 3dClustSim
(for the AFNI software package; http://afni.nimh.nih.gov/afni/). Results
were also viewed with an exploratory cluster extent of 100.

Results
Hippocampal gray matter volume and early task
phase performance
Local gray matter volume estimates from a large region of the
right hippocampus (xyz: 38, �25, �11; t(28) � 3.39; p � 0.001;
k � 222) had a significant positive relationship with Early task
phase performance in the OL condition, indicating people who
are better at navigating context-dependent decision points dur-
ing early trials of overlapping routes have larger hippocampi (Fig. 3).
At our exploratory cluster threshold, this positive relationship
was also observed in the left hippocampal ROI (xyz: �28, �28,
�12; t(28) � 3.37; p � 0.001; k � 109), and right anterior cingu-
late cortex (xyz: 14, 47, 1; t(28) � 3.48; p � 0.001; k � 120). The
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Figure 2. Box plots of the distribution of (a) accuracy and (b) learning rate measures for each
subject around the median.
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hippocampal effects did not extend into neighboring brain
areas. No negative relationships with OL performance were
observed.

Critically, these effects were specific to spatial disambiguation:
there was no positive relationship between gray matter volume
and NOL maze counterpart performance, even at a reduced vox-
elwise threshold of p � 0.05. Results from subsequent analysis of
the unified model demonstrated that variance in both left and
right hippocampal volumes robustly correlated with OL accu-
racy, corrected for multiple comparisons, when holding learning
rate constant (left/right: xyz � �31, �24, �17/36, �31, �11;
t(25) � 3.99/5.02; p � 0.0003/0.00002; k � 339/618). Direct com-
parison of the relationship between volume and accuracy for the
OL and NOL conditions confirmed that both left and right hip-
pocampal volumes related significantly more positively to OL
accuracy (left/right: xyz � �31, �24, �15/33, �24, �17; t(25) �
3.10/3.66; p � 0.002/0.001). The OL	NOL difference was also
significant for the right anterior cingulate (xyz � 12, 47, 1; t(25) �
3.69; p � 0.001).

Interestingly, we did observe negative relationships between
prefrontal structural variability and NOL accuracy in the anterior
cingulate cortex (left/right ACC: xyz: �12, 42, 10/6, 30, �15;
t(28) � 4.31/3.91; p � 0.00009/0.0002; k � 1111/1395), orbito-
frontal cortex (left/right OFC: xyz: �18, 41, �21/20, 42, �23;
t(28) � 3.43/4.17; p � 0.001/0.0001; k � 278/266), dorsolateral
PFC (left/right DLPFC: xyz: �21, 48, 25/35, 48, 6; t(28) � 4.40/
4.21; p � 0.00007/0.0001; k � 351/1169), and the ventrolateral
PFC (xyz: �51, 39, 13; t(28) � 4.80; p � 0.00002; k � 176). As
determined by subsequent analysis of the unified model, voxels in
the right anterior cingulate (xyz: 6, 33, 22; t(28) � 3.46; p � 0.001;
k � 208) and right DLPFC (xyz: 35, 47, 4; t(28) � 4.17; p � 0.0002;
k � 177) were negatively correlated with NOL Early task phase
performance variance when holding learning rate constant. We
found no significant relationships between caudate gray matter
volume and accuracy in either condition.

Prefrontal gray matter volume and learning rate
Gray matter volume from a large region of left rostral DLPFC
(xyz: �31, 57, 18; t(28) � 3.84; p � 0.0003; k � 315) had a signif-
icant positive relationship with da from the learning phase of the
OL condition, indicating that individuals who rapidly reached
peak context-dependent navigation performance across learning
trials have greater gray matter volume estimates in the DLPFC
(Fig. 4a). A negative relationship with da was observed in the left
amygdala (xyz: �21, �6, �23; t(28) � 3.18; p � 0.002; k � 220),
indicating larger amygdala gray matter volume correlates with
slower learning (Fig. 4b).

There was no positive relationship between gray matter and
NOL maze counterpart performance, even at a reduced voxelwise
threshold of p � 0.05. Direct comparison of the relationship
between volume and learning rate for the OL and NOL condi-
tions using the unified model demonstrated that left DLFPC vol-
umes related significantly more positively to OL learning rate
(xyz � �39, 50, 3; t(25) � 3.11). Furthermore, variance in left
DLPFC volumes significantly correlated with OL learning rate
when holding average accuracy constant (but not vice versa;
xyz � �36, 48, 13; t(25) � 3.24; p � 0.002; k � 169). Scatter plots
exploring the specificity of our effects in the hippocampus and
DLPFC revealed that the peak left and right hippocampal voxels
correlating most strongly with OL accuracy (Fig. 5a,b) had only a
weak relationship with OL learning rate (Fig. 5d,e), while the peak
left DLPFC voxel that correlated significantly with OL learning
rate (Fig. 5f) also showed a moderate relationship with accuracy
(Fig. 5c). This trend is consistent both with the role of the DLPFC
in decision making and a relationship between our accuracy and
learning measures. However, our multiple regression analyses
demonstrated that DLPFC volumes correlate with learning rate
when holding accuracy constant, and when separately examining
correlates of accuracy there was not a significant relationship with
accuracy in this region even at our exploratory reduced cluster
extent, which may be critical for inference of volumetric data.
These data suggest that large-scale morphology in the MTL and
PFC may be important, to different degrees, for partially distinct
facets of spatial disambiguation.

While there were no positive relationships between gray mat-
ter and NOL learning rate, we did observe negative relationships
with NOL learning rate in the anterior cingulate (xyz: �6, 32, 21;
t(28) � 4.24; p � 0.0001; k � 1335), OFC (xyz: 9, 59, �26; t(28) �
3.83; p � 0.0003; k � 326), DLPFC (xyz: �15, 56, 24; t(28) � 3.99;
p � 0.0002; k � 447), and ventrolateral PFC (xyz: 38, 54, �9;
t(28) � 3.78; p � 0.0004; k � 262). While it is difficult to interpret
negative relationships between anatomical variability and NOL
accuracy and learning rate, these data suggest that morphology in
prefrontal areas that support OL maze performance may impair
NOL maze performance–potentially reflecting a bias away from
stimulus-response learning that could support efficient naviga-
tion of unambiguous routes. Our findings do not suggest that
neurons in our ROIs are inactive for NOL route navigation, but
demonstrate that, in contrast to the OL condition, the ability to
perform computations needed for NOL maze navigation does
not systematically improve with additional neural resources in
these areas.

Importantly, our disambiguation (OL)-specific correlates re-
main significant when local gray matter volume estimates are
measured as “relative” rather than “absolute“ volume (regressing
out the influence of global gray matter volumes; Accuracy, left/
right hippocampus: t(27) � 3.11/3.14; anterior cingulate cortex:
t(27) � 3.59. Learning rate, DLPFC: t(27) � 4.84; amygdala: t(27) �
�3.38).
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Figure 3. Gray matter volume correlated with context-dependent Critical Decision accuracy
in new OL mazes. Green arrow denotes significant effect in the right hippocampus, blue arrow
denotes effect in the left hippocampus. Results are thresholded at p � 0.01. Scatter plots
indicate the distribution of individual gray matter volume estimates around the regression line,
solid dots indicating male participants, and open circles indicating female participants. Shaded
regions depict uncorrected 95% confidence intervals. R, right hemisphere.
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Discussion
Our experiment provides a novel exam-
ination of how individual differences in
brain structure relate to context-
dependent memory and navigational
abilities. Our results provide evidence
that accurate context-dependent over-
lapping route navigation during learn-
ing relates to individual differences in
hippocampal gray matter volume in
healthy young adults. Furthermore,
how rapidly people are able to learn to
navigate overlapping routes relates to
gray matter volume differences in ros-
tral DLPFC.

Hippocampal gray matter volume and
Critical Decision accuracy
We hypothesized that greater volume in
the hippocampus would support a more
robust anatomical framework for the rep-
resentation of contextual and spatial de-
tails in sequential navigational memories,
and could provide additional neural re-
sources for flexibly discriminating naviga-
tional representations based on context at
retrieval. Our results support this hypoth-
esis, demonstrating that individual differ-
ences in context-dependent navigation
ability are correlated with gray matter vol-
ume in the hippocampal body. This find-
ing is consistent with prior evidence that
hippocampal activity supports learning
and retrieval of overlapping sequential
memories (Kumaran and Maguire, 2006;
Ross et al., 2009; Brown et al., 2010, 2012;
Brown and Stern, 2013). Furthermore, we
found a relationship specific to the over-
lapping mazes between Critical Decision
accuracy and gray matter volume within
the anterior cingulate, which is a medial
prefrontal structure intimately connected
with the hippocampus and believed to be
critical to behavioral and mnemonic flex-
ibility (Barbas et al., 1999; Allman et al.,
2001; Beckmann et al., 2009; Bunce and
Barbas, 2011; Rushworth et al., 2011).

Our findings provide novel insight
into the question of how hippocampal
structure relates to flexible navigational
abilities. Episodic memory is a key com-
ponent of our task, and episodic and
spatial memory are linked in the hip-
pocampus (Eichenbaum et al., 1999;
Eichenbaum, 2000; Burgess, 2002; Buzsáki, 2005; MacDonald et
al., 2011). Hippocampal volumes have been linked with nonspa-
tial memory performance in humans (Rodrigue et al., 2013), and
support memory for context (Horner et al., 2012). Prior studies
have also linked hippocampal structure to topographical mem-
ory and spatial strategies (Maguire et al., 2006; Bohbot et al.,
2007; Iaria et al., 2008; Woollett and Maguire, 2011; Hartley and
Harlow, 2012), and recent data (Schinazi et al., 2013) suggest

larger hippocampal volume results in an increased ability to link
navigational experiences with cognitive maps, and supports
memory for the directional relationship between landmarks.
Spatial reasoning could further support efficient use of existing
route information to flexibly orient to landmarks in the environ-
ment and avoid navigational errors. Importantly, Early task
phase performance in our study is influenced by learning, and
fMRI research has demonstrated that hippocampal activity is
particularly important for the learning of cognitive map informa-

Figure 4. Gray matter volume correlated with Critical Decision learning rate (da) of new OL mazes. a. Green arrow denotes
significant positive relationship in the left DLPFC. b, Green arrow denotes significant negative relationship in the left amygdala.
Results are thresholded at p � 0.01. Scatter plots indicate the distribution of individual gray matter volume estimates around the
regression line, solid dots indicating male participants, and open circles indicating female participants. Shaded regions indicate
uncorrected 95% confidence intervals. R, right hemisphere; L, left hemisphere.

Figure 5. Scatter plots further characterizing the specificity of our structure-performance relationships in peak voxels in the
hippocampus and DLPFC identified in our SPM analyses. Top row plots (a– c) indicate the distribution of individual gray matter
volume estimates around the accuracy regression line. Bottom row plots (d–f ) indicate the distribution of individual gray matter
volume estimates around the learning rate (da) regression line. Solid dots indicate male participants, and open circles indicate
female participants. Right and left peak hippocampal voxels show a markedly stronger relationship with OL accuracy (a and b) than
OL learning rate (d and e). The peak left DLPFC voxel that correlated with OL learning rate (f ) also showed a moderate relationship
with accuracy (c), although the distribution of individual participants around these lines differs and the relationship with accuracy
is nonsignificant.
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tion (Wolbers and Büchel, 2005; Sherrill et al, 2013) and flexible
overlapping route memories (Brown and Stern, 2013). In our
study, navigators who are efficient at distinguishing navigational
episodes while also flexibly using contextual information and
existing spatial knowledge can better avoid navigational errors
when crossing paths with other navigational routes.

Prefrontal gray matter volume and Critical Decision
learning rate
Our finding that gray matter in the rostral DLPFC had a signifi-
cant positive relationship with learning rate is consistent with
evidence suggesting rostral prefrontal activity supports both
learning and retrieval of overlapping navigational routes (Brown
et al., 2010; Brown and Stern, 2013). Furthermore, the hip-
pocampal body (whose volumes correlate in this study with early
OL accuracy) is functionally connected with rostral lateral PFC
during overlapping route navigation (Brown et al., 2012). Lateral
PFC has been implicated in cognitive control and decision mak-
ing, with more rostral areas functioning on a more abstract or
integrative level (Badre, 2008). Critically, DLPFC supports rela-
tional memory encoding (Murray and Ranganath, 2007; Qin et
al., 2007; Blumenfeld et al., 2011). In the present study, greater
gray matter volume in the DLPFC could provide greater neural
resources for sequential route encoding and the efficient organi-
zation of recent experience and feedback into successful planning
of context-dependent behavior on subsequent trials.

It is interesting to note that hippocampal and DLPFC volumes
correlate strongly with Early task phase performance and learn-
ing rate, respectively, when variance from the other measure is
held constant. Both learning-related measures are correlated, and
as discussed above the results from our separate interrogations of
these factors are consistent with a functional role for both regions
in overlapping route performance. However, individuals with the
steepest learning curve across trials were not necessarily the indi-
viduals who began and performed at the highest level of accuracy
in the earliest trials of the task. When holding learning rate con-
stant, results from the unified model suggest that neural re-
sources in the hippocampus influence our ability to flexibly
access and use previously encoded spatial information in support
of accurate navigation during early trials, when interference from
the learned behavioral responses of the other routes is highest.
Neural resources in the DLPFC may be particularly important for
the ability to incorporate recent feedback, perhaps maintained in
working memory, into the integration of new response patterns
with existing behavioral associations in the environment–a pro-
cess that could be essential to overlapping route learning.

We observed an inverse relationship between gray matter vol-
ume in the left amygdala and overlapping maze learning rate.
This result is surprising because amygdala function has typically
been associated with the hippocampus and declarative memory
(Fenker et al., 2005; Kensinger and Schacter, 2006). However,
subregions of the amygdala have been implicated in conditioned
responses, habit memory, and regulating different memory sys-
tems (Everitt and Robbins, 2005; Wingard and Packard, 2008;
Lingawi and Balleine, 2012). Our findings may reflect structural
differences that correspond to altered or disrupted balance be-
tween goal-directed and stimulus-response subcircuitry in the
amygdala, such that participants with larger gray matter volume in
the amygdala have difficulty overcoming previously learned and
consolidated behavioral responses at the overlapping intersec-
tions. Prior anatomical research has linked decreased volumes in
the anterior hippocampus to increased spatial expertise (Maguire
et al., 2006), and it is possible that these adjacent regions of the

MTL relate to flexible navigation ability in a common manner. It
will be of particular interest to examine this relationship further
in future studies.

Importantly, hippocampal and DLPFC volumes were not
positively correlated with NOL maze performance, even at re-
duced thresholds, and correlations with OL performance mea-
sures were significantly more positive than for NOL performance
when directly compared. This suggests our results are not a gen-
eral effect of route navigation ability, and indicate gray matter
volumes in the hippocampus and PFC most directly support cog-
nitive processes underlying flexible context-dependent navigation.
Our findings support the prediction that the ability to perform
computations needed for NOL maze navigation does not system-
atically improve with additional neural resources in these re-
gions. The negative correlation between prefrontal volumes and
NOL accuracy and learning is consistent with greater activity in
these areas for accurate OL than accurate NOL navigation
(Brown et al., 2010; Brown and Stern, 2013) and, importantly,
suggests that morphology in these areas that facilitates flexible
navigation may impair efficient learning of unambiguous re-
sponse memories. These findings could have important clinical
implications— our paradigm and results, targeting the intersec-
tion of episodic memory and navigation, could be used as a
framework for research examining impaired flexible and goal-
directed navigation in healthy and diseased aging (Lithfous et al.,
2013).

Conclusions
We provide evidence that hippocampal volume estimates in
healthy young adults relate to accuracy navigating context-
dependent overlapping routes during early learning. Further-
more, gray matter volume in a rostral region of the DLPFC,
known to functionally interact with the hippocampus in support
of spatial disambiguation at retrieval, was significantly related to
our measure of overlapping route learning rate. These results
were specific to overlapping maze navigation, and were not ac-
counted for by global gray matter volume differences. Together,
our targeted analysis provides novel evidence that individual dif-
ferences in gray matter volume in the hippocampus and PFC
relate to our ability to rapidly learn and flexibly navigate routes
that cross paths with existing navigational memories. These find-
ings shed new light on the relationship between neuroanatomical
structure and navigational and episodic memory processes in the
healthy human brain.
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