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Loss of PINK1 Attenuates HIF-1� Induction by Preventing
4E-BP1-Dependent Switch in Protein Translation under Hypoxia
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Parkinson’s disease (PD) has multiple proposed etiologies with implication of abnormalities in cellular homeostasis ranging from
proteostasis to mitochondrial dynamics to energy metabolism. PINK1 mutations are associated with familial PD and here we discover a
novel PINK1 mechanism in cellular stress response. Using hypoxia as a physiological trigger of oxidative stress and disruption in energy
metabolism, we demonstrate that PINK1 �/� mouse cells exhibited significantly reduced induction of HIF-1� protein, HIF-1� transcrip-
tional activity, and hypoxia-responsive gene upregulation. Loss of PINK1 impairs both hypoxia-induced 4E-BP1 dephosphorylation and
increase in the ratio of internal ribosomal entry site (IRES)-dependent to cap-dependent translation. These data suggest that PINK1
mediates adaptive responses by activating IRES-dependent translation, and the impairments in translation and the HIF-1� pathway may
contribute to PINK1-associated PD pathogenesis that manifests under cellular stress.
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Introduction
PTEN-induced putative kinase-1 (PINK1) is a nuclear-encoded
serine/threonine kinase that localizes to mitochondria and cyto-
sol (Lin and Kang, 2008) and promotes cell survival through
distinct functions in both cellular compartments (Pridgeon et al.,
2007; Haque et al., 2008). Mutations in PINK1 that results in de-
creased kinase activity or a loss in protein stability are linked to au-
tosomal recessive Parkinson’s disease (PD; Valente et al., 2004;
Beilina et al., 2005). In the absence of wild-type (WT) PINK1, cells
exhibit impairments in bioenergetics and mitochondrial homeosta-
sis. Well characterized deficits include decreased mitochondrial
membrane potential, reduced complex I activity, lowered ATP pro-
duction, increased oxidative stress, and abnormal mitochondrial
morphology such as fragmented cristae (Clark et al., 2006; Park et al.,
2006; Gautier et al., 2008; Liu et al., 2009; Yao et al., 2011), but the
mechanisms for these observed changes have been elusive.

HIF-1� is a major transcriptional factor that under hypoxia
binds to hypoxia-response elements (HREs) in the promoter and
upregulates HRE-containing genes that govern a multitude of
cellular functions, ranging from biosynthetic pathways to glucose

metabolism to cell viability (Ke and Costa, 2006; Majmundar et
al., 2010). A major role of HIF-1� activation is to reprogram
cellular metabolism by altering glucose utilization in cells, pro-
moting a shift from oxidative to glycolytic metabolism (Lum et
al., 2007). This action helps to restore homeostasis by supplying
ATP through glycolysis while preventing further reactive oxygen spe-
cies (ROS) generation from oxidative phosphorylation (OXPHOS) ac-
tivity. Compared with WT cells, HIF-1�-null cells generate more
ROS from increased ATP production and lose the ability for mi-
tophagy as an adaptive response for maintaining cell viability to
prolonged hypoxia (Zhang et al., 2008). In essence, HIF-1�-
dependent metabolic changes fuel cell proliferation in mitotic
cells and cell survival in postmitotic cells.

Several lines of evidence link HIF-1� to PD. First, some genes
containing HRE in their promoter sequences are downregulated
in the postmortem PD brains, for example, VEGF and hexokinase
(Grünblatt et al., 2004; Miller et al., 2006). Second, EGLN1, a
prolyl hydroxylase enzyme regulating HIF-1� protein level by
proteasome degradation, was found to be upregulated in PD
brains (Grünblatt et al., 2004; Lee et al., 2009). Third, iron accu-
mulation, common in PD patients, inactivates HIF-1� activity, as
iron is a necessary cofactor for prolyl hydroxylases (Sofic et al.,
1988; Zecca et al., 2004). Fourth, HIF-1� is necessary for mid-
brain progenitor cell survival and proliferation (Milosevic et al.,
2007). Fifth, PARK9 gene ATP13A2 is regulated by hypoxia (Xu
et al., 2012). In this study, we demonstrate that PINK1 deficiency
attenuated HIF-1� protein induction under hypoxia, leading to a
reduced HIF-1� transcriptional activity and induction of HRE
genes. This attenuated induction of HIF-1� is likely due to de-
creased protein translation resulting from an increase in hyper-
phosphorylated 4E-BP1 and the inability to augment internal
ribosomal entry site (IRES)-dependent translation under hyp-
oxia. Our data offer insights into a novel PINK1 mechanism,
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whereby PINK1 facilitates stress response by activating 4E-BP1 to
switch on IRES-dependent translation.

Materials and Methods
cDNA plasmids, antibodies, and chemicals. p2.1 HRE-luciferase construct,
a gift from Nanduri Prabhakar (University of Chicago), was previously
generated and described (Semenza et al., 1996). The bicistronic reporter
plasmid pcDNA3-RLUC-POLIRES-FLUC, a gift from Nahum Sonen-
berg (McGill University, Quebec, Canada), was generated and described
previously (Poulin et al., 1998). N terminally FLAG-tagged mouse WT
4E-BP1 was PCR cloned from MEF RNA and ligated in EcoRI and
BamHI sites of p3xFLAG-Myc-CMV-24 (Sigma). The final expression
plasmid was sequence verified and named FLAG-4E-BP1. The following
antibodies were purchased commercially: HIF-1� C-20 (LifeSpan BioSci-
ences), human HIF-1� (BD Biosciences), �-actin (Sigma-Aldrich), 4E-BP2,
4E-BP1, p-S65 4E-BP1 antibodies, eIF4G, caspase-3, and hydroxy-HIF-1�
(pro564; Cell Signaling Technology). The following chemicals were pur-
chased commercially: deferoxamine mesylate (DFO; Calbiochem), epox-
omicin (Calbiochem), and cycloheximide (CHX; Sigma).

Cell cultures. Generation of PINK1 knock-out (KO) mouse and PINK1
MEF was described previously (Xiong et al., 2009). Congenic PINK1 KO
mice of either sex were generated by back crossing up to 10 generations.
HEK293 cells were purchased from ATCC. HEK293 and MEF cells were
maintained in DMEM (Invitrogen) supplemented with 10% fetal bovine
serum (FBS; GemCell) and penicillin/streptomycin (Invitrogen). Pri-
mary cortical neuronal cultures were derived from WT C57BL or PINK1
KO mouse embryos of either sex from embryonic day 14 –16.Cortical
cells were harvested, plated on poly-L-lysine-coated dishes, and main-
tained in Neurobasal media with B27 supplement, L-glutamine,
5-fluoro-2�-deoxyuridine, and penicillin/streptomycin. Cultures were
incubated in 5% CO2 at 37°C until 10 –12 days in vitro (DIV).

Hypoxia experiments. The hypoxic chamber was described previously
(Kanao et al., 2010). Briefly, it consists of a humidified, 37°C, CO2- and
O2-regulated workstation (Coy Laboratory) maintained at settings of 5%
CO2 and 1% O2 or 0.1% O2. O2 electrode calibrations were regularly
readjusted using 100% dry N2 and room air as 0% O2 and 20.8% O2 calibra-
tion standards. When possible, media was pre-equilibrated to the oxygen
tension inside the chamber before experiments. Wash buffers were degassed
with N2 for 30 min before use. Hypoxic samples were collected inside the
hypoxic chamber and then immediately placed on ice.

Western blot analysis. Protein quantification was done using the BCA
method (Pierce). After electrophoresis with SDS-HEPES-PAGE gel
(Pierce), proteins were transferred onto Immobilon PVDF membrane
(Millipore). The membranes were blocked for 2 h in blocking buffer (1�
Tris-buffered saline, 5% milk, 0.1% Tween 20). Primary antibodies were
incubated for overnight in blocking buffer, and secondary antibodies
were incubated at room temperature for 1 h in blocking buffer. The
membrane was then developed with ECL reagents (Millipore) and im-
aged with ChemiGenius Bio-Imaging system (Syngene). For infrared
quantification, proteins were transferred onto FL-Immobilon PVDF
membrane (Millipore). The membranes were blocked for 2 h in Odyssey
blocking buffer (LI-COR). Primary and secondary antibodies were dilu-
ated in Odyssey blocking buffer containing 0.02% SDS. Membranes were
scanned using the Odyssey Infrared Imaging System (LI-COR Biosci-
ences). �-Actin serves as a protein loading control. A representative fig-
ure from at least two independent experiments is shown.

Phos-tag gel. The Phos-tag gel was made with 25 �M Phos-tag acryl-
amide (Wako Pure Chemical Industries) and 50 �M ZnCl2, as described
previously (Kinoshita and Kinoshita-Kikuta, 2011). Cell lysates were
treated with lambda protein phosphatase (New England Biolabs) as non-
phosphorylated protein controls in Western blots.

TaqMan quantitative PCR. The following primers were purchased
from Integrated DNA Technologies. HIF-1� probe (6-FAM/CTG CCA
CTG CCA CCA CAA CT /BHQ_1), HIF-1� fwd (ACC CAG TTA CAG
AAA CCT AC), HIF-1� rev (TGC CAC TGT ATG CTG ATG), Glut-1
probe (6-Fam/TGT CGA GCA CTT GTC CCG ACA /BHQ_1), Glut-1
fwd–(ATC ATT GCA GTG GAC TGG TT), Glut-1 rev (CCA TTT CAA
CAT CTC GGT TC), BNIP3 probe (Cy5/CAG ACA CCA CAA GAT ACC
AAC AGA GC /BHQ_2), BNIP3 fwd (CCA AGA GTT CTC ACT GTG

A), BNIP3 rev (CTC TCA ATA TAA TCT TCC TCA GAC), PPIA probe
(HEX/CTT GCC ATC CAG CCA TTC AGT CTT G /BHQ_1), PPIA fwd
(GCT GGA CCA AAC ACA AAC), PPIA rev (CCA CAA TGT TCA TGC
CTT C). VEGFa probe and primer TaqMan gene expression assays were
purchased from Applied Biosystems (Assay ID: Mm00437304_m1). RNA
from MEF cells or primary cortical neuronal cultures was harvested in
RLT buffer with 2-mercaptoethanol and collected using Qiagen RNeasy
kit. Equal RNA concentration was used for reverse transcription-
quantitative PCR (RT-qPCR) with the iScript Reverse Transcription Su-
permix (Bio-Rad Laboratories). TaqMan qPCR was performed using a
Bio-Rad CFX96 thermocycler.

Luciferase reporter assay. For HRE reporter assay, MEF cells were trans-
fected with 1 �g of the p2.1 HRE-firefly luciferase and 1 ng of SV40
Renilla luciferase using Lipofectamine 2000 (Invitrogen). For IRES re-
porter assay, MEF cells were transfected with 1 �g of pcDNA3-RLUC-
POLIRES-FLUC and 1 �g of FLAG-4E-BP1 or vector with DharmaFECT
Duo (Dharmacon). After 24 h the cells were treated as indicated. Cell
lysates were collected and assayed with Dual-Luciferase Reporter Assay
System (Promega) outside of the hypoxic chamber. Luminescence was
measured using a Tecan Safire 2 microplate reader at Biophysics Core
Facility (University of Chicago) and readings were normalized to the
protein concentration.

Metabolic labeling. MEF cells were incubated for 30 min in
methionine/cysteine-free DMEM supplemented with 1% dialyzed FBS
(Invitrogen). For labeling, 2 ml of DMEM containing 250 �Ci/ml of
35S-met/cys trans-label (MP Biomedical) was added to the cells for 10
min and then washed three times with cold PBS before cell lysis. For
hypoxia-treated samples, all media were placed inside the hypoxia cham-
ber for 1 h to equilibrate to the oxygen concentration. Cells were lysed in
400 �l IP buffer (750 mm NaCl, 250 mm Tris HCl, pH 7.4, 1.25% NP40,
25 mM EDTA, 1.25% Na-deoxycholate), protease inhibitor cocktail, and
PMSF. Five microliters of the final supernatant was used for TCA counts.
Equal radioactive counts per sample were used for overnight immuno-
precipitation with 5 �l of rabbit anti-HIF-1� antibody. Fifty microliters
of protein A beads was added to each sample for 30 min. The beads were
washed three times with IP buffer for 15 min each. The beads were then
loaded on a 1 M sucrose cushion to remove protein aggregates. The beads
were resuspended in 40 �l of 2� SDS sample buffer and boiled for 5 min
before loading on SDS-HEPES PAGE gel. Quantification and imaging for
radiography was done on the Bio-Rad FX Pro Plus system.

siRNA knockdown. Gene knockdown in HEK293 cells was performed
by transfecting either 5 �M nontargeting siRNA #1 or 5 �M human
PINK1 siRNA (J-004030-07-0005) with DharmaFECT 1 according to
instructions. Cells were transfected with siRNA for 48 h before experi-
ments. All the reagents were purchased from Dharmacon.

Immunocytochemistry. MEF cells were fixed in paraformaldehyde (4%
for 10 min) and then washed three times in 0.5% Triton X-100. Nonspe-
cific immunoreactivity was blocked with 10% goat serum. Glass cover-
slips were incubated overnight at 4°C with anti-HIF-1� antibodies.
Immunoreactivity to HIF-1� was amplified and detected using an Alexa
546 anti-rabbit IgG antibody. The cells were imaged at University of
Chicago Light Microscopy Core Facility, using confocal microscopy
(Olympus IX2-UCD microscope) under 40� oil objective with Slide-
book 5.0 software. Quantification of nuclear HIF-1� immunostaining
was performed with ImageJ. A macro was used to generate an automated
mean for the amount of HIF-1� staining located within the area defined
by the DAPI stained nucleus. For each treatment group, cells within
random fields of view of six coverslips were counted and the results were
pooled for two-way ANOVA with Tukey post hoc.

CHX experiment. MEF cells were incubated for 1 h in methionine/
cysteine-free DMEM supplemented with 10% dialyzed FBS (Invitrogen).
Cells were then transferred to the hypoxia chamber for 2 h in normal
growth media. CHX (60 �g/�l) was added to cells for the indicated
amount of time and lysed with IP buffer containing 0.1% SDS, protease
inhibitor cocktail, and PMSF. HIF-1� degradation was analyzed using
Western blotting techniques.

Intracellular H2O2 measurements. For H2O2, cells were lysed in 0.2%
Triton in PBS and detection of hydrogen peroxide was measured using
Amplex red hydrogen peroxide/peroxidase assay (Invitrogen). Fluores-
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cence signal was measured using a Tecan Safire 2 microplate reader and
readings were normalized to the protein concentration.

7-Methyl-GTP cap immunoprecipitation. Immunoprecipitation was
performed as previously described (Connolly et al., 2006). Briefly cells
were lysed in 0.5% NP-40 IP buffer (50 mM HEPES, pH 7.5, 250 mM

NaCl, 0.5% NP-40, 2 mM EDTA) with protease inhibitors and PhosSTOP
(Roche). Equal protein concentration and 20 �l of the 7-methyl GTP-
Sepharose 4B (m 7 GTP) beads (GE Healthcare) were added for overnight
immunoprecipitation at 4°C. The beads were washed in 0.5% NP-40 IP
buffer three times before boiling in 1� sample buffer and loaded on
SDS-HEPES-PAGE gel for Western blotting.

Statistics. All statistics were performed using SigmaStat (SPSS). Two-
way ANOVA was performed with a Tukey post hoc test for statistical
significance. Data are represented as mean � SEM.

Results
Increased apoptosis and oxidative stress in PINK1 �/� cells
under hypoxia
PINK1 exhibits protective effects against various oxidative
stresses, but the role of PINK1 during hypoxia is unknown. First

we assessed whether the loss of PINK1
renders the cells more susceptible to hyp-
oxia. We hypothesized that PINK1 is
needed to protect against ROS accumula-
tion and cell death under hypoxia.
PINK1�/� cells (MEFs and primary cor-
tical neurons) showed more cleaved
caspase-3 than PINK1�/� cells after 2 d of
0.1% O2 hypoxia, indicating increased ap-
optosis activation (Fig. 1A,B). Intracellu-
lar H2O2 level examined by Amplex red
assay was significantly higher in PINK1�/�

MEFs than in PINK1�/� MEFs after 2 d of
0.1% O2 treatment (Fig. 1C). PINK1�/�

primary cortical neurons also showed a
higher level of H2O2 than PINK1�/� neu-
rons under hypoxia, while no significant
differences in H2O2 levels were detected in
normoxic conditions (Fig. 1D). Our data
suggest that PINK1 may play a protective
role under stressful conditions such as
hypoxia by attenuating elevation of H2O2

levels.

Loss of PINK1 diminishes HIF-1�
induction and activity
Increased cell death and augmented ROS
production are also observed in HIF-1�-
null cells under hypoxia, because cells
continue to convert pyruvate into acetyl-
CoA to produce ATP and oxyradical by-
products in TCA cycle (Semenza, 2010).
We hypothesized that HIF-1� mediates
the protective role of PINK1 from in-
creased cell death and oxidative stress un-
der hypoxia. To test the hypothesis that
PINK1 is needed for HIF-1� induction,
PINK1�/� and PINK1�/� primary corti-
cal neurons or MEFs were first treated
with 1% O2 for up to 24 h. PINK1�/� cells
showed a significantly greater level of
HIF-1� protein induction compared with
PINK1�/� cells after 2, 8, and 24 h of hyp-
oxia (Fig. 2A,B). When treated with a
more severe condition of hypoxia at 0.1%

O2, PINK1�/� neurons and MEF also expressed higher HIF-1�
than PINK1�/� counterparts (Fig. 2C,D). Transient PINK1
knockdown with siRNA in HEK293 cells led to a reduction in
HIF-1� induction level when compared with HEK293 cells trans-
fected with negative scrambled siRNA controls (Fig. 2E). In three
distinct cell types, we demonstrated that the loss of PINK1 signif-
icantly attenuated HIF-1� induction, suggesting that cells require
PINK1 for HIF-1� upregulation.

As a transcriptional factor, HIF-1� binds to HRE in the pro-
moter regions and upregulates downstream target genes. We hy-
pothesized that the reduction in HIF-1� level translates into a
lowered HIF-1� activity and subsequently lower target gene ex-
pression. We examined the inductions of three HRE genes—
GLUT-1, BNIP3, and VEGFa. BNIP3 and VEGFa mRNA
increased more dramatically in PINK1�/� than PINK1�/� pri-
mary neurons treated with 1% O2, whereas PINK1�/� MEFs had
significantly higher levels of GLUT-1 and BNIP3 mRNA (Fig.
3A,B). Since other promoter regions and factors may have influ-

Figure 1. Loss of PINK1 increases vulnerability to hypoxic stress. A, B, Increased caspase-3 cleavage in (A) PINK1 �/� MEFs or
(B) primary cortical neurons when treated with 0.1% O2 for 2 d. Cell lysates were analyzed by Western blot and quantified for
cleaved caspase-3 and �-actin. A representative figure from three independent experiments is shown. C, D, Quantifications from
three experiments were pooled for two-way ANOVA analysis. Increased intracellular H2O2 level in (C) PINK1 �/� MEFs or (D)
primary cortical neurons after exposure to 0.1% O2 for 2 d. H2O2 measurements was performed using Amplex red assay with cell
lysates. Samples were normalized to protein concentration and readings from three independent experiments were pooled. *p
value � 0.05, **p value � 0.01, #p value �0.001. A.U., arbitrary units.
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ence on the final target gene expression, we measured HIF-1�
activity by luciferase reporter assay to focus solely on HRE activ-
ity. PINK1�/� and PINK1�/� MEFs were transfected with HRE-
luciferase constructs and treated with hypoxia or DFO–a
commonly used chemical mimic of hypoxia (Wang and Se-
menza, 1993). After 18 h of treatment, PINK1�/� MEFs gener-
ated significantly more luciferase signals than PINK1�/� MEFs
in all three test conditions, with little activity in PINK1�/� MEFs
(Fig. 3C). Here we demonstrated that the lack of HIF-1� protein
induction in the absence of PINK1 led to the attenuation in
downstream gene activation, suggesting that the loss of PINK1
can have global consequences through decreased HIF-1� activity.

Decreased HIF-1� translation and hyperphosphorylation of
4E-BP1 in PINK1 �/� cells
To understand how PINK1 acts upon HIF-1� induction, we in-
vestigated known cellular mechanisms for regulating HIF-1� ac-
tivity and protein level. First, we asked whether decreased HIF-1�
activity is caused by the loss of nuclear HIF-1� in PINK1�/� cells,
as HIF-1� translocates to the nucleus for transcriptional activity.
By immunostaining, PINK1�/� and PINK1�/� MEFs both
showed detectable nuclear HIF-1� that colocalized with DAPI

staining when cells were treated with 1% O2 (Fig. 4A). Although
PINK1�/� MEFs had significantly less cells with nuclear HIF-1�
compared with PINK1�/� MEFs (Fig. 4B), hypoxia-induced in-
crease in nuclear translocation was preserved. This suggests that
less nuclear HIF-1� simply reflects lower levels of overall HIF-1�
and the lack of PINK1 is unlikely to directly interfere with HIF-1�
nuclear translocation and HRE gene activation. Second, we ex-
amined if lowered HIF-1� mRNA contributes to the reduced
HIF-1� protein level. We found that PINK1�/� primary cortical
neurons expressed significantly higher HIF-1� mRNA than
PINK1�/� neurons during normoxia and hypoxia, whereas both
PINK1�/� and PINK1�/� MEFs expressed similar HIF-1�
mRNA levels (Fig. 4C). This ruled out the possibility that HIF-1�
mRNA expression contributed to lower HIF-1� protein in
PINK1�/� cells. Third, we measured HIF-1� protein degrada-
tion during hypoxia in PINK1�/� cells by performing a CHX-
pulse chase experiment. After 2 h at 1% O2, CHX was added to
prevent further protein synthesis and the chase was performed
for up to 90 min in the presence of 1% O2. HIF-1� protein ex-
hibited similar degradation rate in both PINK1�/� and
PINK1�/� MEFs, with a half-life of �15–20 min (Fig. 4D), sug-
gesting that the HIF-1� degradation is not altered in the absence

Figure 2. Loss of PINK1 attenuates HIF-1� induction in response to hypoxic stress. A, B, (A) PINK1 �/� and PINK1 �/� primary cortical cultures and (B) PINK1 �/� and PINK1 �/� MEF were
treated with 1% O2 for 0, 2, 8, and 24 h. Cell lysates were analyzed by Western blot for HIF-1� and �-actin and quantified using Odyssey Infrared Imaging System. A representative figure from at
least three independent experiments is shown. Quantifications from at least three experiments were pooled for two-way ANOVA analysis. C–E, (C) PINK1 �/� and PINK1 �/� primary cortical
neuronal cultures, (D) PINK1 �/� and PINK1 �/� MEFs, and (E) HEK293 cells knocked down with either negative control or PINK1 siRNA were treated with 0.1% O2 up to 8 h. Cell lysates were
analyzed by Western blot and quantified for HIF-1� and �-actin. A representative figure from three independent experiments is shown. Quantifications from three experiments were pooled for
two-way ANOVA analysis.*p value � 0.05, **p value � 0.01. A.U., arbitrary units.
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Figure 3. Decreased HIF-1� activity in PINK1 �/� cells during hypoxia. A, B, Downstream HRE genes showed decreased induction in (A) PINK1 �/� and PINK1 �/� primary cortical cultures and
(B) PINK1 �/� and PINK1 �/� MEFs when treated with 1% O2 for 0, 2, 8, and 24 h. Quantitative RT-PCR was performed for BNIP3, GLUT-1, and VEGFa and results were normalized to the PPIA signal.
The fold induction of each gene was calculated by dividing into the respective starting mRNA quantity at time 0 of each genotype (n 	 4 –5). C, PINK1 �/� MEFs exhibit significantly lowered
HRE-promoter activity compared with PINK1 �/� MEFs. Cells were cotransfected with HRE-luciferase and SV40-Renilla constructs and treated with 1% O2 (n 	 4), 0.1% O2 (n 	 6), and 100 �M DFO
(n 	 4) for 18 h. HRE-luciferase signal was normalized to the SV40-Renilla signal. *p value � 0.05, **p value � 0.01.
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of PINK1. Fourth, we examined HIF-1� protein stability through
post-translational modifications, such as (1) hydroxylation by
prolyl hydroxylase, which promotes ubiquitin-mediated protea-
somal degradation and (2) phosphorylation by p38 or MAPK,
which leads to protein stability. Hydroxylated HIF-1� can be
detected in both PINK1�/� and PINK1�/� cells under normoxic
conditions by inhibiting proteasome with epoxomicin (Fig. 4E),
where the ratio of hydroxy-HIF-1� to total HIF-1� was propor-
tionally the same in both genotypes. We used the Phos-tag gel
technique to determine the phosphorylation status of HIF-1�
as HIF-1� can be phosphorylated at multiple residues and the
Phos-tag gel is indiscriminate of site specificity. When treated
with 0.1% O2, PINK1 �/� cells displayed higher amounts of
phosphorylated HIF-1� than PINK1 �/� cells, most likely due
to more abundant HIF-1� level (Fig. 4F ). We concluded from
these data that loss of PINK1 attenuated HIF-1� level without
changing protein stability through degradation or post-
translational modifications.

PINK1 �/� cells exhibit impairments in protein translation
We hypothesized that HIF-1� translation is impaired in
PINK1�/� cells. Using metabolic radiolabeling, we observed sig-
nificant differences in HIF-1� synthesis in PINK1�/� and
PINK1�/� MEFs under hypoxia, where PINK1�/� MEFs syn-
thesized significantly more HIF-1� than PINK1�/� MEFs (Fig.
5A). These data suggest that the loss of PINK1 decreased HIF-1�
translation, thus resulting in a lower HIF-1� level. This led us to
hypothesize that impaired translation exists in PINK1�/� cells.
We used a dual luciferase promoter activity assay to simultane-
ously examine the relative activity of cap-dependent (Renilla lu-
ciferase) and IRES-dependent (POLIO IRES-firefly luciferase)
translation. We discovered that the lack of PINK1 reduced both
IRES-dependent and cap-dependent translational activity in
PINK1�/� MEFs compared with PINK1�/� MEFs under nor-
moxia, but with more effect on reducing IRES translational ac-
tivity, which leads to a significantly lower relative ratio of IRES/
CAP activity (Fig. 5B–D). Hypoxia increased all translational
activity with greater effect on IRES as reflected by a higher IRES/
CAP ratio than normoxia in PINK1�/� MEFs. PINK1�/� MEFs
did not exhibit an increase in the IRES/CAP ratio with hypoxic
treatment (Fig. 5D). These findings suggest that PINK1 may play

a role in upregulating IRES-dependent translation relative to cap-
dependent translation.

When we examined the expression level of proteins involved
in initiation of mRNA translation, PINK1�/� and PINK1�/�

MEFs showed no differences in eIF4E, eIF4G, or eukaryotic
translation initiation factor 4E-BP1 (Fig. 6A). We next investi-
gated 4E-BP1 phosphorylation given its implicated role in PD
(Imai et al., 2008; Tain et al., 2009). Utilizing the Phos-tag gel
technique, we looked at the phosphorylation profile of 4E-BP1
during 0.1% O2 treatment in PINK1�/� and PINK1�/� MEFs.
When comparing the two genotypes with total 4E-BP1 antibody,
PINK1�/� MEFs showed an increase in unphosphorylated 4E-
BP1 �-form, whereas PINK1�/� MEFs had a higher level of hy-
perphosphorylated 4E-BP1 �-form (Fig. 6B). We also examined
if PINK1 acts on 4E-BP2, the predominant 4E-BP protein in
brain (Bidinosti et al., 2010) in PINK1�/� and PINK1�/� pri-
mary cortical neurons. As in MEFs, primary cortical neurons
expressed similar protein levels in eIF4E, eIF4G, and 4E-BP2 (Fig.
6C). Phos-tag gel analysis showed that hypoxia treatment in-
creased 4E-BP2 �-form more in the PINK1�/� versus PINK1�/�

neurons (Fig. 6D). The consequence of increase in 4E-BP1
�-form can be demonstrated with increased binding to the trans-

4

Figure 4. Characterizing the effects of PINK1 on HIF-1�. A, HIF-1� translocates to nucleus in
PINK1 �/� and PINK1 �/� MEFs during hypoxia. Cells were treated with 1% O2 for 8 h, fixed,
and stained for HIF-1� (in green) and nucleus with DAPI stain (in red). B, Quantification of
nuclear HIF-1� signal from A. C, PINK1 �/� cells do not have lower levels of HIF-1� mRNA. RNA
was collected from PINK1 �/� and PINK1 �/� cells after being treated with 1% O2 for 0, 2, 8,
and 24 h. HIF-1� mRNA level was quantified with RT-qPCR and normalized to PPIA mRNA from
four independent experiments. *p value�0.05, **p value�0.01. D, HIF-1� degradation rate
under hypoxia remains unchanged in the absence of PINK1. PINK1 �/� and PINK1 �/� MEFs
were exposed to 1% O2 for 2 h before 60 �g/ml CHX was added to inhibit de novo protein
synthesis in hypoxia for up to 90 min. HIF-1� level was normalized to �-actin level and the
percentage remaining was calculated by dividing each chase time point into its time 0. Data
pooled from six independent experiments. E, HIF-1� hydroxylation occurs in PINK1 �/� cells.
PINK1 �/� and PINK1 �/� MEFs and primary cortical neurons were treated with 1 �M epox-
omicin (Epox) with or without 100 �M of the hypoxia mimic DFO for 8 h. Cell lysates were
analyzed by Western blot for hydroxy-HIF-1�, HIF-1�, and �-actin as a protein loading con-
trol. A representative figure from two independent experiments is shown. F, Hypoxia induces
HIF-1� phosphorylation in both PINK1 �/� and PINK1 �/� cells. PINK1 �/� and PINK1 �/�

MEFs and primary cortical neurons were treated with 0.1% O2 for 0, 2, and 8 h. Cell lysates were
analyzed by Phos-tag Western blot for HIF-1� phosphorylation. P denotes phospho-form; 0
denotes unphospho-form. A representative figure from two independent experiments is
shown. A.U., arbitrary units.

Figure 5. PINK1 mediates protein translation. A, Loss of PINK1 leads to decreased HIF-1�
translation. PINK1 �/� and PINK1 �/� MEFs were starved for 30 min under either 21% or 0.1%
O2 followed by a 10 min pulse with 35S-met/cys-containing media under either 21% or 0.1% O2.
Radiolabeled HIF-1� was analyzed by radiography and the density of the HIF-1� was mea-
sured with Quantity One 1-D Analysis Software (Bio-Rad). A representative figure is shown from
five independent runs. B–D, PINK1 increases the relative ratio of IRES-dependent to cap-
dependent translation. PINK1 �/� and PINK1 �/� MEFs were transfected with pcDNA3-RLUC-
POLIRES-FLUC and then treated with 0.1% O2 for 24 h. Cell lysates were analyzed for (B) IRES
activity by firefly luciferase, (C) cap activity by Renilla luciferase, and (D) the ratio of IRES/CAP.
Samples for each assay were normalized to protein concentration and readings from three
independent experiments were pooled. *p value � 0.05, **p value � 0.01, #p value �0.001.
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lational machineries on the 5�GTP cap of mRNA. 7-Methyl-GTP
immunoprecipitation pulled down more 4E-BP1 and less eIF4G
in PINK1�/� MEFs under hypoxia than PINK1�/� MEFs (Fig.
6E), suggesting a mechanism for increased IRES translation by
eIF4G shifting from CAP to IRES. The total level of eIF4E served
as loading control of immunoprecipitation and showed no dif-
ference between the two genotypes. These data suggest that the
loss of PINK1 impedes hypoxia-induced 4E-BP dephosphoryla-
tion and thus reduces the dissociation of eIF4G from eIF4E and
less availability to activate IRES translation.

4E-BP1 overexpression restores translation deficits in
PINK1 �/� cells
Active 4E-BP1 (�-form) binds to eIF4E to suppress cap-
dependent translation and results in a relative protein translation
switch from cap-dependent to IRES-dependent translation. We
hypothesized that the lack of increase in IRES/CAP ratio in
PINK1�/� MEFs, due to the increase in hyperphosphorylated

4E-BP1 �-form (inactive 4E-BP1), can be restored with 4E-BP1
overexpression. Once again using the dual-promoter luciferase
construct, we observed that 4E-BP1 overexpression in PINK1�/�

MEFs increased IRES activity, decreased CAP activity, and re-
sulted in an overall increase in IRES/CAP ratio (Fig. 7A–C, black
bars). 4E-BP1 overexpression in PINK1�/� MEFs failed to sig-
nificantly increase IRES activity, although CAP activity was
decreased (Fig. 7A–C, white bars). Therefore, 4E-BP1 overex-
pression still increased IRES/CAP ratio in PINK1�/� MEFs, not
as robust as in PINK1�/� MEFs since its effect was mainly
through decreasing CAP activity. Consistent with the data that
the absence of PINK1 blunts the hypoxia-induced regulation
that increases the �-form of 4E-BP1 (Fig. 6B), overexpression
of 4E-BP1 in the absence of PINK1 does not correct the defi-
ciency in switching translation mechanism, potentially under-
mining the ability to activate adaptive responses mediated
through IRES-dependent translation and to obtain sufficient
functional rescue.

Figure 6. Loss of PINK1 increases 4E-BP1 hyperphosphorylation. A, C, (A) PINK1 �/� MEFs and (C) PINK1 �/� primary cortical neurons express similar level of proteins involved in translation.
PINK1 �/� and PINK1 �/� cells were treated with 0.1% O2 for 0 and 2 h. Cell lysates were analyzed by Western blot for eIF4G, eIF4E, and 4E-BP1 or 4E-BP2. �-actin serves as a loading control. A
representative figure is shown from two independent experiments. B, D, Less active 4E-BP1 during hypoxia in (B) PINK1 �/� MEFs and (D) PINK1 �/� primary cortical neurons. PINK1 �/� and
PINK1 �/� cells were treated with 0.1% O2 for 0 and 2 h. Cell lysates were analyzed by Phos-tag Western blot and quantified for 4E-BP1 phosphorylation for MEF or 4E-BP2 for primary cortical
neurons, and �-actin as protein loading control. A representative figure from three independent experiments is shown. E, Loss of PINK1 reduces 4E-BP1 binding to 5� cap of mRNA during hypoxia.
PINK1 �/� and PINK1 �/� MEFs were treated with 21% O2 or 0.1% O2 for 2 h. Proteins binding to 5� cap were analyzed by immunoprecipitation using m 7 GTP beads and Western blot was
quantified for eIF4G or 4E-BP1, and eIF4E as IP loading control. A representative figure from three independent experiments is shown. *p value � 0.05, **p value � 0.01. A.U., arbitrary units.
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Discussion
Significance of PINK1-HIF-1� pathway in PD
Multiple etiologies are thought to contribute to PD pathogenesis
(Davie, 2008). Various abnormalities such as mitochondrial dys-
functions, oxidative and endoplasmic reticulum stress, inflam-
mation, and protein processing abnormalities have been
implicated in both sporadic and genetic forms of PD (Seidl and
Potashkin, 2011). The PINK1-associated recessive form of PD
further bolstered the causal relationship for mitochondrial dys-
functions and perturbation in bioenergetics in PD pathogenesis.
The hypoxic model provides a physiological perturbation that
increases ROS, alters mitochondrial homeostasis, and leads to
disruption in energy metabolism (Majmundar et al., 2010). In
addition, given the implication of HIF-1� in PD and other neu-
rodegenerative conditions, we asked whether and how PINK1
plays a protective role under hypoxia as a model for these distur-
bances. Loss of PINK1 led to increased caspase-3 activation and
enhanced intracellular ROS accumulation, consistent with the
idea that PINK1 is needed for cell viability. Hypoxic treatment of
PINK1�/� cells showed attenuation in HIF-1� induction and
subsequently HIF-1� transcriptional activity, compared with
PINK1�/� cells. Our data support the idea that PINK1 is a posi-
tive regulator of the HIF-1� pathway.

Because HIF-1� is a major transcriptional factor that upregu-
lates metabolic genes, decrease in HIF-1� activity can have major
consequences on homeostasis and bioenergetics. HIF-1� activa-
tion allows for metabolic reprogramming, primarily by switching
from the ROS-generating OXPHOS to glycolysis and by activat-
ing glucose metabolism genes. The switch to glycolysis reduces
ATP production, and it also prevents additional oxidative dam-
ages (Semenza, 2007). HIF-1� also increases the HRE gene
BNIP3, a gene associated with mitophagy (Wenger et al., 2005).
HIF-1�-dependent BNIP3 and autophagy activation were asso-
ciated with a decrease in ROS, mitochondrial mass, oxygen con-
sumption, and ATP levels during hypoxia (Zhang et al., 2008).
HIF-1�/BNIP3 may represent an alternative pathway for PINK1-
dependent mitophagy.

One hypothesis for the selective neuronal vulnerability in PD
suggests that substantia nigra (SN) dopaminergic neurons have
greater energy dependence, as demonstrated by functional study
(Kweon et al., 2004) and microarray data from rodents compar-
ing SN and ventral tegmental area (VTA; Grimm et al., 2004;

Chung et al., 2005; Greene et al., 2005). Gene profiling illustrates
that SN expresses more metabolism-related genes (especially en-
ergy metabolism), more mitochondrial genes, and less growth
factors. When the gene profile of SN dopaminergic neuron is
compared with VTA dopaminergic neurons, SN expresses more
hypoxic response genes, such as lactate dehydrogenase and eno-
lase. Additionally, HIF-1� and its targets such as VEGF are
needed to maintain dopaminergic cell integrity primarily in the
substantia nigra pars compacta (SNc) (Milosevic et al., 2007).
Thus it is plausible that HIF-1� plays an integral role in regulat-
ing the metabolic environment of dopaminergic neurons in the
SNc, making the neurons more susceptible to attenuation in
HIF-1� activity. Our finding on PINK1/HIF-1� pathway sup-
ports the notion that loss of PINK1 would increase the sensitivity
of cells to metabolic stress. Future studies into the specific role of
HIF-1� in dopaminergic neurons will elucidate how loss of
HIF-1� can promote neurodegeneration in PD.

PINK1 mediates protein translation through 4E-BP1
When cells experience stress, particularly ones that disrupt en-
ergy metabolism, a major part of the stress response is mediated
through regulation of protein translation. Under hypoxic condi-
tions, inhibition of mRNA translation is both rapid and reversible
(Lang et al., 2002; Koritzinsky et al., 2006). This allows for a shift
in energy expenditure toward upregulating the factors needed to
combat stress, such as chaperones, antioxidants, and transcrip-
tional factors. A deregulation in the translation, whether through
an impairment in the signaling or mutations in the translation
machineries, will result in dire consequences. The connection
between translation and PD is strengthened by a recent study that
linked mutations in eIF4G1 with a familial case of PD (Chartier-
Harlin et al., 2011) and by the findings that 4E-BP1 may be a
target of LRRK2, another PD-associated protein (Tain et al.,
2009). As PD is of multiple etiologies, impairment in translation
offers a potential convergence of pathways.

In an effort to uncover the mechanism underlying the atten-
uated HIF-1� level in PINK1�/� cells, we discovered that
HIF-1� translation was decreased in PINK1�/� MEFs under
hypoxia. We correlate this decrease in translation to the increase
in hyperphosphorylated 4E-BP1 in the PINK1�/� MEFs. The
mechanism of HIF-1� translation during hypoxia may be IRES
dependent (Yee Koh et al., 2008) and 4E-BP1 facilitates the switch

Figure 7. 4E-BP1 overexpression rescues translation impairments in PINK1 �/� MEFs. A–C, PINK1 �/� and PINK1 �/� MEFs were cotransfected with pcDNA3-RLUC-POLIRES-FLUC and vector
or FLAG-4E-BP1 plasmid and then treated with 0.1% O2 for 24 h. Cell lysates were analyzed for (A) IRES activity by firefly luciferase, (B) cap activity by Renilla luciferase, and (C) the ratio of IRES/CAP.
Samples for each assay were normalized to protein concentration and readings from three independent experiments were pooled. *p value � 0.05, **p value � 0.01, #p value �0.001.
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from cap-dependent to IRES-dependent translation by associat-
ing with eIF4E to inhibit general translation (Braunstein et al.,
2007). As 4E-BP1 activity can be rapidly regulated by phosphor-
ylation, the increase in hyperphosphorylated 4E-BP1 �-form in
PINK1�/� MEFs at 2 h hypoxia suggests that there is an impair-
ment in hypoxia-induced 4E-BP1 dephosphorylation and that
these cells cannot properly regulate the translational switch as
4E-BP1 �-form fails to associate with eIF4E (Gingras et al., 1999).
In addition to examining the early changes in translation control,
we demonstrated the impairment in translational switch with
luciferase reporter assay at 24 h hypoxia. We found that WT
4E-BP1overexpression enhanced IRES-dependent translation
and inhibited cap-dependent translation, but in the absence of
PINK1, it failed to upregulate IRES-dependent translational ac-
tivity significantly. This observation is consistent with an impor-
tant role of PINK1 mediating dephosphorylation of 4E-BP1. In
addition, while prolonged hypoxia is known to decrease global
translation, our luciferase data showing an increase in cap-
dependent activity during 24 h hypoxia (Fig. 5C), consistent with
the literature that cell types, growth conditions, and hypoxic
state, can all affect the degree and time course of inhibition on
protein synthesis under hypoxia (Liu et al., 2006).

Our data provide further insights into findings in the Dro-
sophila model of Pink1 that showed a genetic interaction between
4E-BP1 and Pink1, where overexpression of 4E-BP1 ameliorated
abnormal wing posture (Liu and Lu, 2010), locomotor deficits,
and muscle degeneration (Tain et al., 2009) in Pink1 mutant flies.
In addition, overexpression of eIF4E exacerbated abnormal wing
posture in Pink1 mutant flies, suggesting a deregulated transla-
tion in the absence of Pink1 (Liu and Lu, 2010). When Tain et al.
(2009) examined 4E-BP1phosphorylation state in Pink1 mutant
flies, they showed a relative decrease in phosphorylated 4E-BP1
over unphosphorylated 4E-BP1 as a result of a less active AKT/
mTOR pathway. This decrease in phosphorylated 4E-BP1 ap-
pears to contradict our finding of 4E-BP1 in PINK1�/�

mammalian cells; however, it can be explained by the use of
phospho-specific antibodies against 4E-BP1. 4E-BP1 exists as a
pool of different phosphorylated species and can be identified by
using phospho-specific antibodies and IEF gels. The unphos-
phorylated 4E-BP1 that exclusively binds eIF4E is termed
�-form. The �-form is positive for phospho-Ser65 and contains
all phosphorylated sites representing the hyperphosphorylated
state. 4E-BP1 dissociation from eIF4E is generally associated with
�-form and/or phospho-Thr37/Thr46/Thr70-positive �-forms,
but never with the �-form or phospho-Thr37/Thr46-positive
�-forms (Gingras et al., 2001; Ayuso et al., 2010). While Tain et al.
(2009) believed that PINK1 deficiency led to a decrease in hyper-
phosphorylated 4E-BP1, they used antibodies against phospho-
Thr37/Thr46 sites. This may mask the true amount of �-form
present. Therefore, we used the Phos-tag technique to character-
ize the phosphorylation profile of 4E-BP1. The Phos-tag gel anal-
ysis revealed that hypoxia induced �-form while decreasing
�-form in PINK1�/� MEFs but not PINK1�/� MEFs; thus the
ratio of phospho-4E-BP1/unphospho-4E-BP1 is actually in-
creased in PINK1�/� MEFs. The consequence of increased 4E-
BP1 �-form is confirmed by the m 7 GTP immunoprecipitation,
which showed less 4E-BP1 association to eIF4E at the 5� cap of
mRNA complex in PINK1�/� MEFs. By overexpressing WT 4E-
BP1, we effectively increased the unphosphorylated 4E-BP1 level,
which is the species needed to facilitate the translational switch.
Consistent with findings in Drosophila Pink1, our experiments
involving 4E-BP1 overexpression also rescued the PINK1-
deficient phenotype. Future studies on the PINK1– 4E-BP1 sig-

naling pathway may elucidate our understanding of PINK1
function.

Regulation of mRNA translation by 4E-BP1 represents only
one of the mechanisms for translational control during hypoxia
(Wouters et al., 2005; Koritzinsky et al., 2006; Liu et al., 2006).
Although our data suggest a link between PINK1 and 4E-BP1, we
do not exclude the possibility that PINK1 may also be influencing
other regulators of translation, such as S6K, eIF4E, eIF4G, eEF2,
and eIF2�. Future experiments examining PINK1 and other
mechanisms of translational control will delineate the specific
role of PINK1 in mRNA translation. In conclusion, we propose a
novel PINK1 mechanism where PINK1 participates in stress re-
sponse by regulating an important translational switch and by
activating the HIF-1� pathway. Both aspects play an important
role in maintaining energy metabolism and cell survival. These
findings stimulate further studies on the role of HIF-1� and protein
translation in PD pathogenesis and the exact pathway in which
PINK1 can mediate protein translation through 4E-BP1 regulation.
These future findings may ultimately lead to better understanding of
PD pathogenesis and neuroprotective strategies.
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