See You In CHICAGO

Neuroscience 2015

October 17-21
Who’s on NeurOnLine?

Joanne Berger-Sweeney
SfN’s Professional Development Committee Co-chair
Tufts University

Emanuel DiCicco-Bloom
SfN Public Education and Communication Committee Member
Robert Wood Johnson Medical School

Erich Jarvis
SfN’s Professional Development Committee Member
Duke University

Emma Duorden
SfN 2009 Next Generation Award Winner
The Hospital for Sick Children

Join the Conversation

NeurOnLine is an SfN members-only online community where you can share great science, network, forge collaborations, and keep in touch—anytime, anywhere—within a trusted forum. As with the SfN annual meeting and The Journal of Neuroscience, NeurOnLine’s content and discussions will be generated by members, for members.

- Discuss emerging scientific findings
- Explore new tools and techniques
- Network year-round within the global community, nearly 42,000 members worldwide
- Share experiences and receive or provide mentoring on different career paths, stages, and challenges
- Get involved in public outreach, from Brain Awareness and science teaching to advocacy

NeurOnLine will help you advance your science and career on your schedule.

neuronline.SfN.org
This Week in The Journal

Slow-Wave Sleep Rhythms May Induce LTD

Romain Pigeat, Patrick Chausson, Fanny M. Dreyfus, Nathalie Leresche, and Régis C. Lambert
(see pages 64–73)

As we sleep, our brains progress through stereotypical patterns of activity that define different sleep stages. The functions of these activity patterns are not fully understood, but they might contribute to memory consolidation. Indeed, different types of memory appear to be consolidated during different sleep stages. Evidence suggests, for example, that slow-wave sleep (SWS) is particularly important for consolidating declarative memories, and it has been hypothesized that newly acquired memories are transferred to long-term storage and integrated with older memories during this stage.

SWS is characterized by widespread synchronous oscillations between hyperpolarized down-states and depolarized up-states that include high-frequency firing. The oscillations are generated primarily by reciprocally connected excitatory thalamocortical (TC) neurons and inhibitory neurons in the thalamic reticular nucleus (NRT). High-frequency spiking in NRT neurons causes hyperpolarization of TC neurons, thus de-inactivating low-threshold T-type calcium channels. These channels open when IPSPs subside, resulting in calcium elevation, depolarization, and rebound spiking in TC neurons. Feedback from TC neurons to NRT neurons evokes subsequent rounds of inhibition.

Note that the pattern of activity that occurs in NRT–TC pairs during SWS is similar to that underlying synaptic plasticity throughout the CNS; presynaptic action potentials lead to postsynaptic calcium elevation. In fact, Pigeat et al. report that stimulating NRT fibers in rat brain slices while depolarizing postsynaptic TC neurons from −80 to −30 mV—a protocol meant to mimic the NRT bursts and TC depolarization during SWS—resulted in long-term depression of IPSCs (I-LTD). Buffering calcium or blocking T channels prevented the induction of I-LTD, but blocking other calcium channels types did not, indicating that T channels were necessary and sufficient for I-LTD induction. Blocking metabotropic glutamate receptors blocked I-LTD, suggesting there was a heterosynaptic component (activation of glutamatergic synapses was required to alter GABAergic synapses), but stimulating a subset of GABAergic inputs to a cell-produced I-LTD selectively at those synapses, indicating there was also a homosynaptic component. Finally, I-LTD required activation of GABA$_A$ receptors and the Ca$^{2+}$/calmodulin-dependent phosphatase calcineurin, which has been previously shown to mediate LTD through interactions with GABA$_A$ receptor subunits.

FGF Drives Neurogenic Fate in the Otic Placode

Jialiang Wang, Ying Wu, Feng Zhao, Yuting Wu, Wei Dong, et al.
(see pages 234–244)

During development, peripheral sensory neurons and their associated structures arise from the neural crest and cranial placodes—specialized ectodermal regions that border the neural plate that forms the CNS. The otic placode forms neural (VIIth ganglion neurons), sensory (hair cells), and nonneural structures of the inner ear, including both auditory and vestibular components. As in all tissues, this development proceeds through a sequential process of fate restriction, proliferation, and differentiation controlled by numerous genes and signaling pathways.

Fibroblast growth factors (FGFs) are required to specify neurogenic fate early in otic development, and they also appear to contribute to specification of some hair cell types. In zebrafish, knocking down Fg8a or Fg3 greatly reduces the size of the statoacoustic ganglia (SAG), and knocking down both proteins prevents ear formation altogether. To further elucidate the role of FGF signaling at different stages of otic development, Wang et al. used heat-activated mutants and inhibitors of various signaling pathways.

Expressing a dominant-negative form of the FGF receptor (Fgfr1) 10–12 hours post fertilization (hpf) greatly reduced SAG area, whereas overexpressing Fgf8 at this stage modestly increased SAG area. Importantly, neither manipulation affected overall ear development and neither affected SAG area when applied after 14 hpf, suggesting that FGF signaling selectively affects otic neurogenesis at 10–14 hpf. But applying an FGFR antagonist at 10–14 hpf reduced the number of ultricular hair cells as well as reducing SAG area, confirming that FGF signaling is required to specify at least some hair cell fates.

Interestingly, FGF appeared to affect neurogenesis and hair cell development through different downstream effectors: inhibiting phosphoinositide 3-kinases (PI3Ks) reduced SAG area without affecting hair cell number, whereas disrupting ERK1/2 signaling reduced hair cell numbers without affecting SAG area. Given this divergence, it is somewhat surprising that Atoh1a, a transcription factor involved in hair cell determination, was found to contribute to SAG neurogenesis and to be regulated by FGF–PI3K signaling. As expected from previous research, the transcription factor Sox9a also contributed to SAG neurogenesis downstream of FGF–PI3K signaling. By investigating the shared targets of these transcription factors, Wang et al. identified two previously unrecognized contributors to otic neurogenesis: thx2 and eya2.
NeuroJobs — the premier online neuroscience career center — helps you find jobs and manage your career. NeuroJobs is now part of the National Healthcare Career Network providing access to even more career opportunities.

For your next career search, visit NeuroJobs first!

SfN.org/neurojobs

“The National Healthcare Career Network (NHCN) is a consortium of healthcare association job boards working together to provide the most effective recruitment resource.
THE HISTORY OF NEUROSCIENCE IN AUTOBIOGRAPHY

THE LIVES AND DISCOVERIES OF EMINENT SENIOR NEUROSCIENTISTS
CAPTURED IN AUTOBIOGRAPHICAL BOOKS AND VIDEOS

The History of Neuroscience in Autobiography Series
Edited by Larry R. Squire
Outstanding neuroscientists tell the stories of their scientific work in this fascinating series of autobiographical essays. Within their writings, they discuss major events that shaped their discoveries and their influences, as well as people who inspired them and helped shape their careers as neuroscientists.

The History of Neuroscience in Autobiography, Vol. 1

The History of Neuroscience in Autobiography, Vol. 2

The History of Neuroscience in Autobiography, Vol. 3

The History of Neuroscience in Autobiography, Vol. 4
Per Andersen, Mary Bunge, Jan Bures, Jean-Pierre Changeux, John Dowling, Oleg Hornykiewicz, Andrew Huxley, Jac Sue Kehoe, Ed Kravitz, James McGaugh, Randolf Menzel, Mircea Steriaide, Richard Thompson, W. Maxwell Cowan (completed by Brent Stanfield).

The History of Neuroscience in Autobiography, Vol. 5

The History of Neuroscience in Autobiography, Vol. 6

Autobiographical Video (Available in DVD Format)
PBS personality Richard Thomas interviews eminent senior neuroscientists who reflect upon their lives, their dreams, and their work, and share their insights on what’s ahead in the field of neuroscience.

Julius Axelrod/Theodore H. Bullock
Viktor Hamburger/
Rita Levi-Montalcini
Seymour S. Kety/Louis Sokoloff
Robert Galambos/Vernon Mountcastle
Eric Kandel/Paul Greengard
Seymour Benzer/Horace Barlow
Masakazu Konishi/Mortimer Mishkin
Herbert Jasper/Brenda Milner
David Hubel/Torsten Wiesel
Max Cowan/Francis Crick
Gunther Stent/Gerald Edelman
Sydney Brenner/Gerald Fischbach
Michael Posner/William Dement
Nicole Le Douarin/Arvid Carlsson
Edward Kravitz/Peter Marler

SfN’s History of Neuroscience in Autobiography Video and Book Collections are freely available at SFN.org/history
Read *The Journal of Neuroscience* every week to keep up on what’s happening in the field.

- The number one cited journal in neuroscience
- The most neuroscience articles published each year—nearly 1,800 in 2011
- Impact factor 7.12
- Published 50 times a year

Learn more about member and institutional subscriptions at JNeurosci.org/subscriptions.

ISI Journal Citation Reports, 2011
Share the wonders of the brain and mind with BrainFacts.org

A PUBLIC INFORMATION INITIATIVE OF:

Seeking resources to communicate with the public about neuroscience? Educating others through Brain Awareness activities?

BrainFacts.org can help you communicate how the brain works.

Explore BrainFacts.org for easy-to-use, accessible resources including:

- Information about hundreds of diseases and disorders
- Concepts about brain function
- Educational tools
- Multimedia tools and a social media community
- Interviews and discussions with leading researchers; and more

Visit BrainFacts.org
The Journal of Neuroscience is mobile!

Access all of your journal resources wherever you go

- *The Journal of Neuroscience* is available for comprehensive and universal mobile access.
- Gain quick access to *The Journal* articles, table of contents, and the features you have come to expect from the premier journal in the field
- Connect to *The Journal* from virtually any mobile device, anywhere a web connection is available