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The Increased Sensitivity of Irregular Peripheral Canal and
Otolith Vestibular Afferents Optimizes their Encoding of
Natural Stimuli

Adam D. Schneider,”* Mohsen Jamali,?* Jerome Carriot,2 ©“Maurice J. Chacron,'? and ©“Kathleen E. Cullen?
Department Physics and 2Department Physiology, McGill University, Montreal, Quebec, H3A 0G4, Canada

Efficient processing of incoming sensory input is essential for an organism’s survival. A growing body of evidence suggests that sensory
systems have developed coding strategies that are constrained by the statistics of the natural environment. Consequently, it is necessary
to first characterize neural responses to natural stimuli to uncover the coding strategies used by a given sensory system. Here we report
for the first time the statistics of vestibular rotational and translational stimuli experienced by rhesus monkeys during natural (e.g.,
walking, grooming) behaviors. We find that these stimuli can reach intensities as high as 1500 deg/s and 8 G. Recordings from afferents
during naturalistic rotational and linear motion further revealed strongly nonlinear responses in the form of rectification and saturation,
which could not be accurately predicted by traditional linear models of vestibular processing. Accordingly, we used linear-nonlinear
cascade models and found that these could accurately predict responses to naturalistic stimuli. Finally, we tested whether the statistics of
natural vestibular signals constrain the neural coding strategies used by peripheral afferents. We found that both irregular otolith and
semicircular canal afferents, because of their higher sensitivities, were more optimized for processing natural vestibular stimuli as
compared with their regular counterparts. Our results therefore provide the first evidence supporting the hypothesis that the neural

coding strategies used by the vestibular system are matched to the statistics of natural stimuli.
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Introduction
Efficient processing of sensory input is critical for an organism’s
survival. Because some stimuli are more likely to be encountered
than others, it is commonly assumed that the statistics of the
natural sensory environment influence the brain’s coding strate-
gies (Attneave, 1954; Laughlin, 1981; Barlow, 2001; Simoncelli
and Olshausen, 2001). However, this hypothesis remains un-
tested for the vestibular system, which processes head motion
information and thus plays a vital role in the stabilization of gaze
and control of balance and posture, as well as perception of spa-
tial orientation and self-motion. Notably, addressing whether the
coding strategies used by the vestibular system are optimized to
process natural stimuli first requires knowledge of the head mo-
tion experienced during natural behaviors.

The vestibular system is phylogenetically the oldest part of the
inner ear and is highly conserved throughout evolution (Wall-
man et al., 1982). Vestibular end organ sensors detect head mo-
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tion across six dimensions (three axes of translation detected by
the otoliths and three axes of rotation detected by the semicircu-
lar canals; Angelaki and Cullen, 2008; Cullen, 2011). In the ab-
sence of motion, afferents display a wide range of resting
discharge variability and are characterized as regular or irregu-
lar—a classification that correlates with differences in morpho-
logical features and response dynamics (Baird et al., 1988;
Fernandez et al., 1988; Goldberg, 2000; Straka et al., 2005). Affer-
ent response dynamics have been traditionally measured using
artificial self-motion stimuli such as sinusoids or noise with low
intensity to ensure that neurons are constrained to their linear
ranges (Goldberg, 2000; Sadeghi et al., 2007b; Jamali et al., 2013).
To date only a few studies have reported nonlinear responses to
high-intensity vestibular stimuli (Ferndndez and Goldberg, 1976;
Sadeghi et al., 2007a). However, a recent study performed in
humans has revealed that vestibular stimuli can reach large inten-
sities during everyday activities that could elicit nonlinear re-
sponses from afferents (Carriot et al., 2014).

Thus, it currently remains unknown whether peripheral ves-
tibular neural responses to natural input can be determined from
those to artificial stimuli and whether coding strategies are con-
strained by the statistics of the natural environment. Here we
characterized for the first time the structure of self-motion signals
that are experienced by rhesus monkeys during typical natural
behaviors. Existing linear models of peripheral processing incor-
rectly predicted that such stimuli elicit neural responses outside
of the physiological range. Accordingly, we then recorded from
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afferents and developed new models incorporating static non-
linearities that accurately described responses to naturalistic
stimuli. Finally, using these models, we tested whether coding
by peripheral afferents is constrained by natural stimulus sta-
tistics. We found that irregular afferents, because of their
higher sensitivities, were more optimized to process natural
stimuli than their regular counterparts. Our results therefore
have important implications for understanding the contribu-
tions of different classes of peripheral sensory neurons to the
encoding of natural stimuli, and further provide evidence sup-
porting the hypothesis that the neural coding strategies used
by the vestibular system are matched to the statistics of natural
stimuli.

Materials and Methods

Experimental preparation. All experimental protocols were approved by
the McGill University Animal Care Committee and were in compliance
with the guidelines of the Canadian Council on Animal Care. Two male
macaque monkeys (Macaca fascicularis) were prepared for chronic extra-
cellular recording using aseptic surgical techniques. The surgical prepa-
ration was similar to that previously described (Dale and Cullen, 2013).
Briefly, using aseptic surgical techniques and under isoflurane anesthesia
(0.8-1.5%), a stainless steel post was secured to the animal’s skull with
stainless steel screws and dental acrylic resin, allowing complete im-
mobilization of the head during the experiments. The implant also
held in place a recording chamber oriented stereotaxically toward the
vestibular nerve where it emerges from the internal auditory meatus.
Finally, an 18 —-19 mm diameter eye coil (three loops of Teflon-coated
stainless steel wire) was implanted in the right eye behind the con-
junctiva. After the surgery, buprenorphine (0.01 mg/kg, i.m.) was
administered as postoperative analgesia every 12 h for 2-5 d depend-
ing on the animal’s pain level, and Anafen (2 mg/kg, then 1 mg/kg
subsequent days) was used as an anti-inflammatory. In addition, ce-
fazolin (25 mg/kg, i.m.) was injected twice daily for 10 d. Animals
were given at least 2 weeks to recuperate from the surgery before any
experiments began.

Head movement recording. Head movements were recorded using a
microelectromechanical systems (MEMS) module (iINEMO platform,
STEVAL-MKI062V2; STMicroelectronics), as done recently for humans
(Carriot et al., 2014). The module combined three linear accelerometers
(recording linear accelerations along the fore-aft, lateral, and vertical
axes) and three gyroscopes (recording angular velocity about pitch, roll,
and yaw). To extend the velocity range to =2000 deg/s, the MEMS mod-
ule was augmented with a STEVAL-MKI107V2 three-axis gyroscope.
The MEMS module, a battery, and an microSD card were encased in an
extremely light (64 g) and small (35 X 35 X 15 mm) enclosure, which was
firmly secured to the head posts of two macaque monkeys. Specifically,
the plane spanned by the fore-aft and lateral axes of the MEMS module
was set parallel to the horizontal stereotaxic plane (i.e., the plane passing
through the inferior margin of the orbit to the external auditory meatus;
Carriot et al., 2014). Data from each of the six sensors were sampled at
100 Hz and recorded wirelessly on an microSD card. Since we were
interested in afferent responses to linear motion, we recorded the total
gravito-inertial acceleration (GIA; i.e., the sum of gravity and linear mo-
tion), which is henceforth referred to as linear acceleration. Note that the
data were reported in sensor coordinates in Figures 1 and 2.

Each monkey was released separately into a large familiar play cage
(9.5 m?, with a multilevel wooden platform) where it was able to
freely move and interact with another monkey from our colony for
160 min while a camera was recording its behavior. We segregated
activities into three groups: (1) behaviors associated with low levels of
activity that included monkey sitting observing its environment,
holding and playing with objects, or grooming; (2) behaviors associ-
ated with medium levels of activity that included walking around and
foraging; and (3) behaviors associated with high levels of activity
that included running, jumping, and climbing, as well as rapid head
shaking.
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Single-unit recording. During the experiment, the head-restrained
monkey was seated in a primate chair mounted on top of a vestibular
table in a dimly lit room. The vestibular nerve was approached through
the floccular lobe of the cerebellum, as identified by its eye-movement-
related activity (Lisberger and Pavelko, 1986; Sadeghi et al., 2007b; Jamali
etal., 2013); entry to the nerve was preceded by a silence, indicating that
the electrode had left the cerebellum. Extracellular single-unit activity of
semicircular canal and otolith afferents was recorded using glass micro-
electrodes (2427 M()), the depth of which was controlled using a pre-
cision hydraulic microdrive (Narishige). Rotational head velocity and
linear acceleration were measured using an angular velocity sensor (Wat-
son) and a linear accelerometer (ADXL330Z; Analog Devices) sensor
firmly secured to the animal’s head post. Note that vestibular afferents
could not be recorded during natural movements due to the technical
difficulty of maintaining isolation from single eighth nerve afferents us-
ing high-impedance glass micropipettes while the animal underwent
such complex and high-intensity dynamic stimuli. Therefore, we used
naturalistic stimuli whose time course mimicked that of the natural
stimuli. These were generated as done previously (Jamali et al., 2009;
Brooks and Cullen, 2013; Carriot et al., 2013). As both naturalistic
and natural stimuli tended to consist of excursions whose time course
was approximately bell shaped, we quantified them using the follow-
ing measures: intensity I (maximum value), the full width at half
maximum (FWHM), and area under the curve (AuC), which were all
computed from the absolute value of the stimulus.

Natural rotation stimuli displayed large heterogeneities as all three
quantities were distributed over large intervals (I: 100—-1500 deg/s,
FWHM: 84-582 ms, AuC: 13-173 deg). The characteristics of our natu-
ralistic rotation stimuli were all within these ranges (I = 356 = 41 deg/s,
FWHM = 277 = 19 ms, and AuC = 100 * 8 deg). Natural translation
stimuli also displayed large heterogeneities (I: 0.8—8 G, FWHM: 24228
ms, and AuC: 0.9-5.8 m/s). The characteristics of our naturalistic trans-
lational stimuli were also all within these ranges (I = 0.87 = 0.35 G,
FWHM = 146 = 30 ms, and AuC = 1.2 = 0.3 m/s).

These stimuli were applied manually since the required velocities and
accelerations were beyond the range of our controller. We focused our
analysis on horizontal canal afferents (N = 11 regular and N = 25 irreg-
ular) and utricle otolith afferents (N = 26 regular and N = 27 irregular),
since our motion platform was designed to apply stimuli along these axes
of motion. For each afferent, stimuli were applied along the preferred axis
of rotation (i.e., yaw) or translation (horizontal) as previously described
(Sadeghi et al., 2007b; Jamali et al., 2013). For otolith afferents, this was
achieved by rotating the monkey’s head such that the neuron’s preferred
direction was aligned with the apparatus’ axis of translation. During
experimental sessions, unit activity, horizontal and vertical eye positions,
and head-velocity signals were recorded on digital audiotape for later
playback. During playback, action potentials from extracellular record-
ings were discriminated using a windowing circuit (BAK Electronics).
Eye position and head-velocity signals were low-pass filtered at 250 Hz
(eight-pole Bessel filter) and sampled at 1 kHz.

We generated binary spike trains, with 1 kHz sampling rate for each
afferent. Periods of spontaneous activity (i.e., no head movement) were
used to classify afferents as regular or irregular according to the variabil-
ity in their baseline spiking activity as quantified by the coefficient of
variation, CV = o7 g// s Where g, is the mean interspike interval (ISI)
and oy, is the SD of the ISIs. Because CV varies with mean, the mean
IS, a normalized coefficient of variation (CV*), was computed using the
ISI distribution to quantify resting discharge variability as described pre-
viously (Goldberg et al., 1984). Afferents with CV* < 0.1 were classi-
fied as regular, while those with CV* = 0.1 were classified as irregular as
done previously (Sadeghi et al., 2007b; Jamali et al., 2013). The firing rate
r(t) was obtained by convolving the binary spike train with a Gaussian
centered on the spike time with 10 ms SD. For the purposes of illustration
only, we computed the cross-correlation function between the firing rate
r(t) and the stimulus s(f) and noted the lag at which it was maximal. This
lag was then used to align the response with the stimulus.

Statistical analysis of natural head movements. To test whether natural
head movement signals were characterized by probability distributions
that differed significantly from Normal, surrogate datasets of the same
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length with the same mean and variance but drawn from a Gaussian
distribution were generated. Probability distributions for both the data
and the surrogate datasets were generated with bin widths of 20 deg/s for
angular velocities and 0.1 G for linear accelerations. The deviation from

((x(®) — )

normality was quantified using the kurtosis k = p , where

x(t) is the signal, w is the mean, and o is the SD. We note that k = 3 for a
Gaussian distribution. The signals were divided into 20 segments each
lasting ~8 min and the kurtosis values were obtained for each segment.
The kurtosis values obtained from our dataset were then compared with
kurtosis values obtained from the Gaussian surrogates.

Linear models of vestibular afferent responses. We first used previously
established linear models to predict afferent responses to the experi-
mentally recorded natural stimuli. Specifically, we assumed that the
output firing rate r(#) in response to stimulus s(¢) is given by the
following: r(t) = (H * s)(t) + r,, where the asterisk denotes a convo-
lution with a filter H(t) and r, is the baseline (i.e., in the absence of
stimulation) firing rate. We used r, = 104 Hz for canal afferents and 79
Hz for otolith afferents, which corresponds to average baseline firing
rates observed experimentally (Sadeghi et al., 2007a; Jamali et al., 2013).
Before filtering with these transfer functions, natural angular velocity
recorded was projected onto the horizontal semicircular canal plane as
done previously (Carriot et al., 2014) using an angle of 22° nose down
(Sadeghi et al., 2009).

For canal afferents, the Fourier transform of H(t) (i.e., the transfer
function) is given by the following:

. . S(S+ 1/T)) 1
anal(f) = (S+ 1/T)(S + 1T, W

with S = i27f. For regular afferents, parameter values were as follows: k =
2.83 (spikes/s)/(deg/s), T, = 0.0175 s, T, = 0.0027 s, and T, = 5.7 s. For
irregular afferents, parameter values were as follows: k = 27.09 (spikes/s)/
(deg/s), T, = 0.03s, T, = 0.0006 s, and T, = 5.7 s. Overall, these parameter
values are similar to those used previously (Hullar et al., 2005) and were
chosen to best match available experimental data (Ramachandran and Lis-
berger, 2006; Sadeghi et al., 2007a).

For otoliths, we used the following transfer function (Angelaki and
Dickman, 2000):

SH(1 + aS)k
Howoin(f) = k=74 p5) )
with k = 59.0106 (spikes/s)/G; k; = 0.0643, k, = 2.208,a = 0.0138 s, and
b = 0.0255 s for regular afferents; and k = 112.7417 (spikes/s)/G, k; =
0.3084, k, = 2.6834,a = 0.0136 s,and b = 0.0318 s for irregular afferents.
As for canal afferents, parameter values were chosen to best match avail-
able experimental data (Jamali et al., 2013). These expressions were used
to generate the linear predictions of firing rate responses to natural stim-
uli shown in Figure 3.

Linear—nonlinear cascade models. To characterize our experimentally
observed nonlinear responses of vestibular afferents to naturalistic stim-
uli, we used linear—nonlinear (LN) cascade models (Chichilnisky, 2001;
Massot et al., 2012) in which the firing rate response r(t) is given by the
following:

r(t) = T((H * 5)(1) + ro), (3)

where T is a nonlinear function. We note that, unlike previously used
one-stage nonlinear models in which the firing rate at a given time is a
nonlinear function of the current stimulus value (Fernandez and Gold-
berg, 1976; Sadeghi et al., 2007a), LN models explicitly take into account
neuronal temporal filtering properties (Chichilnisky, 2001) that are
known to be prevalent in vestibular afferents (for review, see Goldberg,
2000). The LN model was fit to each individual recorded afferent and was
used in Figures 4 and 5.
We first estimated the transfer function H(f) using:

H(f) = P,(H/Pu(f), (4)
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where P,,(f) is the cross-spectrum between the stimulus s(#) and binary
spike train response, and P (f) is the power spectrum of the stimulus s(¢).
Note that we only used low-amplitude portions of the stimulus to ensure
that the afferent was constrained to its linear regime. The baseline firing
rate was then added to this to form the linear prediction r; (), which was
then plotted as a function of the experimentally observed firing rate (t)
to reveal the shape of the nonlinear function T as done previously (Mas-
sotetal,, 2012). We found that the experimental data could be well fit by
a sigmoidal function:

Tyo(x) = %[1 + erf(xi\%;)} (5)

in which ¢y, ¢,, and ¢;, are fit parameters, and erf(*) is the error function.
Based on published results ( Fernandez and Goldberg, 1976; Sadeghi et
al., 2007a) the parameter c;, which determines the maximum firing rate,
was always >270 spikes/s. We also found that the variance of the firing
rate distribution could be well fit by a combination of error functions:

Vix) = c1<er <M> + er %)) (6)

2¢3

In practice, the first half of the experimental data was used to obtain the
transfer function and the shape of the nonlinear function T. The LN
model was then used to generate a prediction of the response to the
second half of the stimulus that was compared with the experimental
data. The model’s performance was quantified using R2 The linear
model was generated by assuming that T(x) = x instead and was used to
generate a linear prediction of the response that was then also compared
with the experimental data and its performance was also quantified using
R?. Note that the functions plotted in Figure 5 are population averages.

Optimal stimulus distribution that maximizes information. We used the
LN model described above for which the response is given by the following:

r(t) = To((H * 5)(8) + 1), (7)

with T, as a nonlinear sigmoidal function. Assuming a stimulus with
probability distribution p(s) and a response with probability distribution
p(r), the mutual information between stimulus and response is given as

follows (Cover and Thomas, 1991; Rieke et al., 1996):

I(s, r) = H(r) — H(r | 5)

= ffds dr p(r | s)p(s)log, pg(il)s{

where H(r) = —fdrp(rlogp(r) is the response entropy,
H(r|s) = —Jdsp(s)Sdrp(r|s)log,p(r]|s) is the noise entropy, and
p(r|s) is the conditional response probability. As deterministic linear
transformations preserve information, we have I(s, r) = I(r;, r). Thus, we
will only consider the information between the linear prediction r,(t) =
(H * 5)(t) + ryand the response r(t) = Tsig(rL(t)).

In the noise-free case, there is a deterministic relationship between the
linear prediction and the response and we have p(r | ;) = Tgg(r)(r — 1p).
The mutual information is then given by the following: I(r;, r) = H(r) and is
maximum when (Laughlin, 1981; Wark et al., 2007):

(8)

p(r) = poprr) = Tiilr1)/ f dzT(2), 9)

where T, is the derivative of T,

If we consider that there is noise, it is not possible to find an analytical
expression for the probability distribution p,,,(r;) for which the mutual
information is maximum. However, previous studies have found an ap-
proximate solution if we assume that r = Ty (r;) + /V(r;)§ where &
is a Normally distributed random variable with zero mean and variance
unity. If the variance V(r;) is sufficiently small, then the optimal distri-
bution is given by the following (Brunel and Nadal, 1998; McDonnell
and Stocks, 2008):
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In comparing the expressions obtained with and without noise, it is
interesting to note that the noise only appears as a normalization factor.
Thus, if the noise variance is constant, then any noise intensity will not
alter the shape of the optimal probability distribution.

Finally, to compute the optimal stimulus distribution p,,,(s), we in-
verse filtered a signal with probability distribution p,,,(r;) whose power
spectrum was equal to that of the filtered natural stimulus.

Quantifying the distance between probability distributions. To quantify
the distance between two probability distributions p(x) and g(x), we used
the Jensen—Shannon (JS) divergence defined by the following:

Dys(p || 9) = [Dra(p | m) + Dialq [ m)]/ 2,

where m(x) = (p(x) + q(x))/2and Dy, is the Kullback-Leibler diver-
gence defined by the following:

= ()
Di(p |l g) = f ) dxp(x)logz%. (11)

Results
Statistics of natural vestibular stimuli
We recorded the vestibular input experienced by freely moving
rhesus monkeys during natural behaviors usinga MEMS module
that was attached to their heads (Fig. 14; see Materials and Meth-
ods). The MEMS module consisted of three linear accelerometers
measuring linear acceleration along the fore-aft, lateral, and ver-
tical axes and three gyroscopes measuring angular velocity of
rotations along these axes (i.e., pitch, roll, and yaw). We note that
the linear acceleration signals that we recorded correspond to the
total GIA (i.e., the sum of gravity and linear motion). We found
that natural vestibular stimuli reached large intensities in all six
axes of motion (Fig. 1B, left), and were described by probability
densities that were not Gaussian as they displayed characteristi-
cally long tails (Fig. 1B, right). This was quantified by large kur-
tosis values that were all significantly greater than that obtained
for a Gaussian distribution (Fig. 1C, compare black and red bars),
as seen in other sensory modalities (Simoncelli and Olshausen,
2001).

To test whether specific behaviors influence stimulus statis-
tics, we next grouped behaviors into three categories associated
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with low, medium, and high levels of activity and quantified the
statistics of the vestibular input corresponding to each category
(Fig. 2A; see Materials and Methods). Specifically, periods where
the monkey was sedentary and observing its environment, hold-
ing and playing with objects, or grooming behaviors were associ-
ated with low levels of activity, while those where the monkey was
walking around and/or foraging were associated with medium
levels of activity. Periods where the monkey was running, jump-
ing, climbing, and was rapidly shaking its head were associated
with high levels of activity. Overall, low, medium, and high levels
accounted for 63, 28, and 9% of all activities, respectively. We
found that the vestibular input experienced during behaviors as-
sociated with all three categories displayed probability densities
that were for the most part not Gaussian (Fig. 2B) as quantified by
large kurtosis values (Fig. 2C). As expected, vestibular signals
associated with low, medium, and high levels of activity were
distributed over progressively larger ranges across all six motion
dimensions (Fig. 2B). The mean, SD, and kurtosis values ob-
tained across low, medium, and high levels of activity for all six
motion dimensions are given in Table 1.

Traditional linear models of vestibular processing cannot
accurately predict responses to natural stimuli

We next tested whether previously published models of early
vestibular processing that have been shown to accurately repro-
duce the responses of peripheral otolith and semicircular canal

afferents to artificial stimuli (Goldberg, 2000; Cullen, 2004, 2011;
Sadeghi et al., 2007b; Massot et al., 2011, 2012; Jamali et al., 2013)
could accurately predict responses to natural stimuli. Linear sys-
tems identification techniques were used to find the optimal
transfer function that best captures the input—output relation-
ship between head motion and firing rate and predict the firing
rate response, henceforth referred to as the linear prediction (Fig.
3A). We used established expressions for the transfer functions of
regular and irregular semicircular canal and otolith afferents
(Angelaki and Dickman, 2000; Massot et al., 2012) and fitted
these to available data (Sadeghi et al., 2007a; Jamali et al., 2013).
Specifically, prior studies have shown striking differences be-
tween the neural coding strategies used by semicircular canal and
otolith afferents (Sadeghi et al., 2007b; Jamali et al., 2013). Most
notably, while the neural sensitivities for irregular afferents are
larger than those of their regular counterparts, this difference is
much more pronounced for otolith than for semicircular canal
afferents (Fig. 3B).

To test whether these linear models could give rise to physio-
logically realistic responses during natural behaviors, we used all
stimulus waveforms measured during low, medium, and high
levels of activity for both rotations and translations. Example
stimulus waveforms used are shown in the top of Figure 3C for
yaw rotations (left) and fore-aft translations (right). We found
negative linear firing rate predictions for both otolith and semi-
circular canal afferents, which is of course outside of the physio-
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Table 1. Averaged mean, SD, and kurtosis values of natural movements during
low, medium, high, and all levels of activity

Mean = SE SD = SE Kurtosis = SE
Fore-aft
Al 0.34 + 0.05 0.44 + 0.02 718 = 0.72
Low 0.37 = 0.06 0.31 % 0.02 430 %+ 0.56
Medium 0.36 = 0.04 0.48 £ 0.02 2.81 £0.20
High 0.28 = 0.05 0.68 = 0.03 7.86 = 1.13
Lateral
Al 0.12 £ 0.03 0.25 £ 0.02 42,00 = 10.84
Low 0.12 = 0.03 0.17 = 0.01 6.80 = 0.71
Medium 0.07 = 0.03 0.20 = 0.01 7.69 = 2.11
High 0.11 £ 0.03 0.41 £ 0.03 18.59 =+ 3.03
Vertical
Al —0.71 = 0.05 0.27 = 0.02 3257 £10.73
Low —0.71 = 0.06 0.22 £ 0.03 20.26 = 10.24
Medium —0.72 = 0.02 0.23 = 0.01 836+ 1.93
High —0.70 = 0.02 0.36 = 0.02 20.89 * 3.45
Yaw
Al —0.04 = 0.02 4207 +3.77 96.69 = 25.77
Low —0.13 = 0.07 2545 = 2.08 31.00 = 6.07
Medium 0.23 £0.26 43,05 + 2.43 17.71 £ 277
High —0.58 = 0.93 74.08 = 7.87 1275 £ 1.49
Pitch
Al 0.05 £ 0.01 3134 =222 39.72 = 4.66
Low 0.04 = 0.04 17.94 + 1.45 36.31 = 6.82
Medium 0.18 = 0.09 3540 = 191 2416 = 2.57
High —0.34 =045 65.02 = 3.05 11.47 £ 0.96
Roll
All —0.04 = 0.01 2545 = 2.09 233.11 £ 7532
Low 0.05 £ 0.06 13.10 £ 0.97 27.35 = 6.55
Medium —0.00 = 0.19 2435+ 1.26 11.34 +0.93
High —0.65 = 0.58 51.43 =539 15.64 + 3.06

Values are expressed in G for translations (i.e., fore-aft, lateral, and vertical) and deg/s for rotations (yaw, pitch, and
roll).

logical range. The middle and bottom of Figure 3C show the
responses of regular and irregular semicircular canal (left) and
otolith (right) afferents to the example waveforms, respectively.
Moreover, the models’ tendency to incorrectly predict negative
firing rates was greater for stimuli encountered during high levels
of activity (e.g., 1500 deg/s and 8 G). For the same stimulation,
linear models also showed a greater tendency to incorrectly pre-
dict negative firing rates for irregular afferents due to their larger
sensitivities. Quantification of the percentage of time during
which the firing rate prediction is negative revealed low values
(<5%) across all six motion dimensions for regular afferents.
However, for irregular afferents, these values exceeded 20% for
high levels of activity (Fig. 3D). We conclude that existing linear
models of vestibular afferent responses (for review, see Goldberg,
2000) cannot reliably predict responses to natural stimuli, and
that this is especially the case for irregular afferents during the
high-amplitude stimuli associated with high levels of activity.

Building LN models of peripheral vestibular afferent
responses to naturalistic stimuli

It follows that if our conclusion above is correct, then natural
stimuli will elicit nonlinear responses from vestibular afferents.
To explicitly test this, we recorded afferent responses to high-
intensity naturalistic stimuli consisting of either rotation or linear
motion whose time course mimicked that seen during natural
movements (Fig. 1B, insets). We then used LN models (Chi-
chilnisky, 2001) to characterize the nature of the nonlinearity in
the input—output relationship of vestibular afferents (Fig. 4A).
These models assume that the output firing rate is calculated by
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first linearly filtering the input stimulus via a transfer function
and then passing the resulting linear prediction through a static
nonlinear function (Fig. 4A, nonlinear prediction; see Materials
and Methods). In practice, for each canal and otolith afferent
(Fig. 4B), we estimated the transfer function from the response to
the low-amplitude portions of the stimulus (see Materials and
Methods). We then estimated the shape of the nonlinearity by
plotting the actual firing rate as a function of the linear prediction
from the whole dataset. Figure 4C compares the performance of
both linear and LN models when predicting the firing rate re-
sponse of an example irregular otolith afferent to naturalistic
stimuli. We found that both models provided comparable pre-
dictions for low-amplitude stimulus segments (Fig. 4C, left). In
contrast, we found that the LN model gave a better prediction of
the response to high-amplitude stimulus segments (Fig. 4C,
right) as quantified by more than a twofold larger R* value (Fig.
4D, inset). This is because the afferent displays cutoff (i.e., ceases
to fire action potentials) and saturation during the large negative
and positive portions of the stimulus, respectively, which cannot
be predicted from the linear model alone (Fig. 4C). Conse-
quently, the firing rate response as a function of the linear pre-
diction showed strong deviations from the identity line that were
well fit by a sigmoidal function (Fig. 4D). Qualitatively similar
results were seen for an example irregular canal afferent (Fig.
4E,F). Thus, LN cascade models can accurately predict afferent
responses to high-amplitude naturalistic stimuli mimicking nat-
ural signals. Figure 5 shows the results of this same analysis for
our populations of canal and otolith afferents where the
population-averaged actual firing rate is plotted as a function of
the linear prediction. On average, the goodness of fit of LN mod-
els was always significantly larger than that of linear models for
both regular (Fig. 5A,C) and irregular (Fig. 5B,D) afferents.
However, this difference was most striking for irregular afferents
(Fig. 5, compare A, Band C, D). Accordingly, consistent with our
original hypothesis, we conclude that vestibular afferents do in-
deed display nonlinear responses to high-amplitude naturalistic
stimuli that can be accurately described by LN models.

Neural heterogeneities in tuning and in trial-to-trial
variability influence optimal coding

Our above analyses of canal and otolith afferents demonstrated
that those with more irregular resting discharges are likely to be
driven into a nonlinear regime during naturalistic stimulation.
Thus, peripheral vestibular neural responses to natural input
cannot be predicted from those to low-intensity artificial stimuli.
We next asked whether, and if so, how the observed differences in
coding between regular and irregular afferents (i.e., likelihood of
entering the nonlinear regime) as well as those seen between canal
and otolith afferents (i.e., differences in sensitivity) are con-
strained by the statistics of natural sensory input to optimize
information transmission. Specifically, are differences in resting
discharge variability optimized to code for different features of
natural input? Moreover, is such optimization different for canal
and otolith afferents?

Theoretically, one potential optimal coding strategy is to de-
vote the most neural resources to code for stimuli that will occur
most frequently in the natural environment, which maximizes in-
formation transmission (Laughlin, 1981; Simoncelli and Olshausen,
2001; Wark et al., 2007). If we neglect trial-to-trial variability in the
neural response (i.e., deterministic), then information is maxi-
mized when the firing rate response is uniformly distributed (see
Materials and Methods). In this case, the stimulus distribution
that maximizes information transmission (i.e., the optimal stim-
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ulus distribution; see Eq. 9) is simply the derivative of the neu-
ron’s input—output relationship (Fig. 6A). Figure 6B shows two
different hypothetical sigmoidal input—output relationships
characterized by different levels of steepness. It is thus ex-
pected that regular and irregular afferents will have different
optimal stimulus distributions due to their differences in sen-
sitivity (Fig. 3B).

Additionally, it is well known that regular and irregular affer-
ents display different amounts of trial-to-trial variability. It is
thus important to consider the influence of such variability on the
optimal stimulus distribution. Theoretical studies have derived
an approximate expression for the optimal stimulus distribution
taking into account trial-to-trial variability in the form of vari-
ance in the firing rate response to a given stimulus (Brunel and
Nadal, 1998; McDonnell and Stocks, 2008; see Materials and
Methods). Figure 6C shows different distributions for the firing
rate variance and how they influence the optimal stimulus distri-
bution for the input—output relationship shown in Figure 6A. In
particular, if the firing rate variance is normally distributed, then
the optimal stimulus distribution is wider than that obtained in
the deterministic case (Fig. 6C, compare black and gray curves).
In contrast, a uniform firing rate variance distribution does not
alter the optimal stimulus distribution (Fig. 6C, compare black
and dashed curves).

Thus, to compute the optimal stimulus distributions for dif-
ferent afferent classes, it is first necessary to characterize—from
experimentally recorded afferent responses—the firing rate vari-
ance as a function of the stimulus to naturalistic motion. Figure
7A shows the firing rate variance as a function of the stimulus for
regular canal (top left), irregular canal (bottom left), regular oto-
lith (top right), and irregular otolith (bottom right). Notably, as
expected, irregular afferents displayed larger firing rate variances
than regular afferents. Importantly, however, the firing rate vari-
ance decreased sharply for stimulus intensities that elicit either
rectification or saturation (Fig. 5). This effect was most pro-
nounced for irregular afferents. Figure 7B shows the optimal
stimulus distribution neglecting trial-to-trial variability (black
curves) and taking into account the variance distributions shown
in Figure 7A (dashed curves). While some differences are appar-
entin that the distributions taking into account trial-to-trial vari-
ability had slightly larger extent than those obtained by neglecting
trial-to-trial variability, both distributions had the same shape
and largely overlapped for all afferent classes. To quantify the

<«

Figure 3.  Traditional linear models cannot accurately predict vestibular afferent responses
to natural stimuli. A, Traditional linear models assume, to obtain the output firing rate, the
stimulus is filtered by a transfer function to which a baseline value is added. B, Sensitivity of
reqular (dotted) and irreqular (dashed) afferents as a function of frequency for canal (left) and
otolith (right) afferents. C, Top, Example time series showing natural stimuli associated with
low (blue), medium (green), and high (red) levels of activity, for yaw rotations (left) and fore-aft
translations (right). Middle, Predicted firing rate responses from the linear model for reqular
canal (left) and otolith (right) afferents. In all cases, the model incorrectly predicts negative
firing rates (denoted by the shaded red region) during large-amplitude stimulation associated
with high levels of activity. Bottom, Predicted firing rate responses from the linear model for
irregular canal (left) and otolith (right) afferents. In all cases, the model incorrectly predicts
negative firing rates (denoted by the shaded red region) during large-amplitude stimulation
associated with high levels of activity. D, Probability distributions of the linear model predic-
tions with the shaded red region showing negative firing rates (top) and percentage of time that
the firing rate signal is negative (bottom) for canal and otolith afferents for periods of low,
medium, and high levels of activity (i.e., blue, green, and red curves, respectively). Data for
reqular and irreqular afferents are shown on the left and right, respectively. Note that, in Cand
D, we only show data from yaw and fore-aft motion for simplicity. Similar results were observed
for the other four motion dimensions.
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similarity between distributions, we computed the JS divergence
(see Materials and Methods). We found that the JS divergence
between regular and irregular afferents with variability was sig-
nificantly greater than that obtained for either regular or irregular
afferents with and without variability (p << 1072 in all cases,
Wilcoxon rank sum tests with Bonferroni correction; Fig. 7B,
insets). Thus, we conclude that the different levels of trial-to-trial
variability displayed by both regular and irregular canal and oto-
lith afferents have minimal influence on the stimulus distribu-
tions that maximize information transmission.

Irregular afferents are better optimized to code for natural
stimuli than regular afferents

We next explicitly tested whether and how the neural coding
strategies used by the peripheral vestibular system are con-
strained by the statistics of stimuli encountered in the natural
environment by comparing the optimal stimulus distributions
obtained for each afferent class to the natural distributions. While
differences in the trial-to-trial variability do not have much im-
pact on the shape of the optimal distribution (Fig. 7B), we hy-
pothesized that the large differences in sensitivity observed for
regular and irregular afferents should strongly impact their opti-
mal stimulus distributions. Specifically, as illustrated above in
Figure 6B, we expected that the larger sensitivities of irregular
afferents should lead to narrower optimal stimulus distributions.
Figure 8A shows the population-averaged optimal stimulus dis-
tributions with variability for regular (red) and irregular canal
afferents (green), as well as when both populations are combined
(cyan), with the natural stimulus distribution (black) superim-
posed. To facilitate comparison with Figure 7, these distributions
are also plotted on a linear scale in the inset of Figure 8A. Consis-
tent with our hypothesis, the optimal stimulus distribution for
irregular afferents was indeed narrower than that obtained for
regular afferents. Importantly, we further found that the optimal
stimulus distribution of irregular afferents was closer to natural
stimulus distribution. Overall, the JS divergence between the op-
timal stimulus distribution with variability and the natural dis-
tribution was always significantly lower for irregular afferents
than regular afferents. This was true when we considered either
the stimuli arising from all levels of activity or the stimuli arising
from either low, medium, or high levels of activity alone (Fig. 8B).
We performed a comparable analysis on our population of oto-
lith afferents and obtained qualitatively similar results. Notably,
the optimal stimulus distribution (with variability) of irregular
otolith afferents was significantly narrower and better matched to
the natural distribution in the fore-aft direction when compared
with that obtained for regular afferents (Fig. 8C) as quantified by
significantly lower JS values (Fig. 8D). Qualitatively similar re-
sults were obtained when comparing the optimal stimulus distri-
butions of irregular and regular otolith afferents to the natural
distribution in the lateral direction (population-averaged JS di-
vergence values for irregular vs regular afferents; low: 0.39 = 0.08
vs 0.73 * 0.05, medium: 0.33 = 0.07 vs 0.70 * 0.04, high: 0.15 =
0.06 vs 0.56 = 0.07, all: 0.30 = 0.07 vs 0.67 = 0.05, p < 0.05 in all
cases). Further, the optimal stimulus distributions obtained by
pooling across all afferents (i.e., including both regular and irreg-
ular subgroups) were not better matched to the natural stimulus
distribution than those obtained when only considering irregular
afferents (Fig. 8 A, C, compare green and cyan curves). Finally, we
note that irregular otolith afferents were more optimized than
irregular canal afferents (Fig. 8, compare A, C) as quantified by
significantly lower JS values (p << 107 in all cases, Wilcoxon
rank sum tests).
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Discussion

Summary of results

Here we studied the statistics of natural vestibular signals experi-
enced by monkeys to determine whether coding is optimized for
such stimuli. We found that natural vestibular inputs reached
large intensities as evidenced by probability distributions with
long tails across all six motion dimensions, similar to those de-

<«

(Figure legend continued.) and canal afferent responses to naturalistic rotational and transla-
tional stimuli, respectively. VN, Vestibular nuclei. C, Low-amplitude (upper left) and high-
amplitude (upper right) segments of naturalistic linear acceleration stimuli (compare with
insets in Fig. 1B). The bottom part shows the actual responses of an example otolith afferent
(red), the linear prediction (green), and the nonlinear prediction (blue) to the low-amplitude
segment (left) and to the high-amplitude segment (right). The dashed line indicates a firing
rate of zero and the shaded red region indicates negative firing rates that are of course physio-
logically unrealistic. Also shown is the actual spiking response of the afferent (black bars). D,
Actual firing rate response as a function of the linear prediction for this otolith afferent reveals
that the nonlinear function can be fitted by a sigmoid (black line) and deviates from the unity
line (dashed). Inset, Performance as quantified by RZ of the linear (black) and nonlinear (blue)
predictions. E, Low-amplitude (upper left) and high-amplitude (upper right) segments of nat-
uralistic head velocity stimuli (compare with insets in Fig. 1B). Bottom, Shows the actual re-
sponses of an example canal afferent (red), the linear prediction (green), and the nonlinear
prediction (blue) to the low-amplitude segment (left) and to the high-amplitude segment
(right). The dashed line indicates a firing rate of zero and the shaded red region indicates
negative firing rates that are of course physiologically unrealistic. Also shown is the actual
spiking response of the afferent (black bars). F, Actual firing rate response as a function of the
linear prediction for this canal afferent reveals that the nonlinear function can be fitted by a
sigmoid (black line) and deviates from the unity line (dashed). Inset, Performance as quantified
by R? of the linear (black) and nonlinear (blue) predictions.

scribed by Carriot et al. (2014) for human. We further found that
well established linear models of early vestibular processing could
not predict semicircular canal or otolith afferent responses to
natural vestibular stimuli. Instead they incorrectly predicted
physiologically impossible negative firing rates in response to
large-amplitude “off-direction” movements. This was particu-
larly true for the coding of high-intensity activities (e.g., running,
jumping, climbing, etc.) by irregular afferents. Accordingly, to
develop accurate models, we recorded from afferents during nat-
uralistic rotational and linear motion. We found that linear—non-
linear cascade models could accurately describe neural responses.
Thus, we used these models to determine whether afferent coding
strategies are constrained by natural stimulus statistics by com-
puting the optimal stimulus distribution that maximizes infor-
mation. We found that irregular otolith and semicircular canal
afferents, due to their higher sensitivities, were better optimized
to process natural stimuli. It is therefore likely that the neural
coding strategies used by the vestibular system have developed to
match the statistics of natural stimuli.

Irregular afferents are better optimized to process natural
stimuli

There is growing evidence that sensory systems have evolved
coding strategies that are adapted to optimally process natural
sensory input (Laughlin, 1981; for review, see Wark et al,,
2007). For example, in the fly visual system, Laughlin (1981)
compared the experimentally measured neuronal input—out-
put relationship to that which maximizes information trans-
mission about the natural luminance distribution and found
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excellent agreement between the two. Here we used a similar
approach to compare the natural stimulus distribution to that
which maximizes information transmission given the experi-
mentally measured neuronal input—output relationship (Fig.
8) and found that irregular afferents better optimized to code
for natural stimuli.

Interestingly, the evolution from stem tetrapods to am-
niotes was accompanied by the appearance of type I vestibular
hair cells and a novel afferent terminal with a calyceal ending
(for review, see Eatock and Songer, 2011). Previous studies
have shown that afferents supplied by type I hair cells tend to
be more irregular in their resting discharges (Goldberg and

Fernéandez, 1977; Si et al., 2003; Xue and Peterson, 2006). It
has been hypothesized that type I hair cells evolved in am-
niotes as an adaptation to changes in natural stimulus statis-
tics resulting from (1) the transition from water (i.e.,
characterized by resistive hydrodynamic forces) to a land-
based environment (Eatock and Songer, 2011) and (2) neck
elongation in amniotes (Steinacker, 2004). While it has been
suggested these two factors lead to higher amplitude motion in
amniotes, at least some anamniote species experience vestib-
ular stimuli with extremely large intensities during natural
self-motion (e.g., >1000 deg/s in the spiny dogfish (Domenici
et al., 2004) and 15 G in the swimming pike (for review, see
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Effects of experimentally measured trial-to-trial variability on information transmission. 4, Firing rate variance as a function of stimulus amplitude for canal (left) and otolith (right)

afferents. Regular afferents (top) displayed less firing rate variance than irregular afferents (bottom). The red lines show the best fits (see Materials and Methods). B, Including the effects of the
measured firing rate variance only has minor effects on the shape of the optimal stimulus distribution as can be seen by comparing the dashed (with variability) and black (without variability) curves
for reqular (top) and irregular (bottom) canal (left) and otolith (right) afferents. The insets show that the population-averaged JS divergence values between reqular afferents (with and without
variability) and irreqular afferents (with and without variability) are significantly greater than those computed between regular and irreqular afferents (with variability). *p = 0.05 level using a

Wilcoxon rank sum test with Bonferroni correction.

Domenici and Blake, 1997). Thus, it is possible that other
factors also contributed to the evolution of the vestibular pe-
riphery. For example, aquatic species might experience more
constant vestibular stimulation due to water currents. Further
studies comparing the statistics of natural motion across am-
niotes versus anamniotes are needed to address this important
issue.

Nature of the neural code used by the vestibular system to
transmit information about natural stimuli

It is generally thought that neurons within early vestibular
pathways transmit information about head-motion stimuli in
a linear fashion through their time-varying firing rates (i.e., a
rate code) rather than through precise timing of action poten-
tials (i.e., a temporal code) (Goldberg, 2000; Sadeghi et al.,
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Irregular afferents are better optimized to code for natural stimuli than regular afferents. 4, Population-averaged optimal stimulus distribution for regular (red) and irregular (green),

as well as for both (cyan) canal afferents. The natural stimulus distribution (solid black) is also shown. The bands show =1 SEM. The inset shows the same distributions plotted on a linear scale. B,
Population-averaged JS divergence values quantifying the distance between the optimal stimulus distribution and the natural stimulus distribution for regular (solid bar) and irregular (empty bar)
canal afferents for low (blue), medium (green), high (red), and all (black) activities. C, D, Same as A and B, but for otolith afferents, respectively. *p = 0.05 level using a Wilcoxon rank sum test.

2007b; Massot et al., 2011, 2012). However, previous studies
have mostly focused on characterizing neuronal responses to
low-amplitude artificial stimuli. As a result modulations in the
firing rate were largely constrained to the neuron’s linear re-
gime and did not elicit static nonlinearities such as saturation
or rectification. Interestingly, our results show that this is also
often applicable to the afferent coding of natural vestibular
stimuli because monkeys spend much of their time engaged in
activities characterized by relatively low-amplitude head mo-
tion (i.e., sitting, grooming). However, we found that this was
not true for the vestibular stimuli experienced during inter-
mittent high-activity behaviors, such as running, because of
their large amplitudes. For such behaviors, the likelihood of
nonlinearities (e.g., rectification, phase locking, saturation),
open the interesting possibility that the neural code used by
the vestibular system to process high-amplitude stimuli is in-
herently different than that used for low-amplitude stimuli.
Further studies will also be needed to test this interesting
hypothesis.

Role of variability in neural coding
Neural variability is seen ubiquitously in the CNS but its role in
neural coding is highly debated (Stein et al., 2005; Faisal et al.,

2008). The peripheral vestibular system is particularly well suited
for studying the effects of variability on neural coding because
regular and irregular afferents display low and high amounts of
variability, respectively. While previous studies have found that
variability plays an important role in vestibular coding (Gold-
berg, 2000; Sadeghi et al., 2007b; Massot et al., 2011, 2012; Jamali
et al.,, 2013), our results show that sensitivity largely deter-
mines the corresponding optimal stimulus distribution (Figs.
7, 8). Thus, from this point of view, the increased variability of
irregular afferents might just be a consequence of their in-
creased gain: the detrimental effects of such increased variabil-
ity on coding and feature detection can then be reduced by
averaging the activities of large afferent populations (Sadeghi
et al., 2007b; Jamali et al., 2013). The fact that the increased
variability and sensitivity are strongly correlated in the vestib-
ular system (Jamali et al., 2013), as they most likely originate
from intrinsic properties (Smith and Goldberg, 1986; Kalluri
et al., 2010), support this hypothesis. Alternatively, it is theo-
retically possible that there is a source of sensory noise that is
common to all afferents and that is greater for irregular affer-
ents because of their larger sensitivity. Further studies will be
needed to test these possibilities.
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Coding natural stimuli by otolith versus semicircular canal
afferent populations

Previous results have shown that the coding strategies used by
otolith afferents to encode linear motion differ markedly from
those used by semicircular canal afferents to encode rotational
motion (Sadeghietal., 2007b; Jamali et al., 2013). Notably, strong
correlations between trial-to-trial variability and sensitivity in
otolith afferents are such that their ratio remains constant. As a
consequence, neural detection thresholds (i.e., the minimum
stimulus intensity that elicits a detectable change in neural activ-
ity) are independent of either resting discharge variability or fre-
quency (Jamali et al., 2013). In contrast, although a strong
positive correlation between variability and sensitivity is also ob-
served for semicircular canal afferents (Goldberg, 2000), the in-
creased sensitivity displayed by irregular semicircular canal
afferents is not sufficient to compensate for their substantially
higher trial-to-trial variability. As a result, irregular semicircular
canal afferents display higher detection thresholds than regular
ones (Sadeghi et al., 2007b; Massot et al., 2011). Interestingly,
supporting these differences, we found that irregular otoliths are
more optimized than irregular canal afferents, which was primar-
ily due to the fact that the differences in sensitivity are far more
pronounced in the otolith system. Nevertheless, despite these
differences, we further found that both irregular semicircular
canal and otolith afferents are more optimized to process natural
stimuli when compared with regular afferents, thereby suggesting
that both the semicircular and otolith systems have adapted to
natural stimulus statistics through common principles.

Implications for higher order processing of natural

vestibular stimuli

Our results have important implications for downstream pro-
cessing and behavior. We have recently shown that vestibular
sensory information encoded by eighth nerve afferents is nonlin-
early integrated by postsynaptic neurons at the first central stage
of vestibular processing (i.e., in the vestibular nuclei; Massot et
al.,, 2012). Notably, this nonlinearity generates an intensity-
dependent bias in the output firing rate, when low- and high-
amplitude (or frequency) stimuli are presented concurrently. We
speculate that this nonlinear effect will be particularly significant
for high-intensity natural behaviors.

Finally, we note that although irregular afferents are better
optimized to encode natural stimuli, the combined activities of
both regular and irregular afferents most likely contribute to ves-
tibular perception. Previous results obtained using artificial stim-
uli have led to the hypothesis that regular afferents are better
suited to estimate the detailed time course of the stimulus while
irregular afferents are instead better suited to detect high-
frequency features (Goldberg, 2000; Sadeghi et al., 2007b; Massot
etal.,, 2011). Such parallel processing of sensory information is a
common strategy used across modalities including auditory
(Takahashi et al., 1984; Oertel, 1999; Gelfand, 2004), visual
(Marr, 1982; Livingstone and Hubel, 1987; Merigan and Maun-
sell, 1993), and electrosensory (Carr and Maler, 1986; Bell and
Maler, 2005; Kawasaki, 2005), to code for different stimulus at-
tributes. Further studies are needed to test the interesting hypoth-
esis that the vestibular system uses distinct channels of peripheral
input to encode different features of natural vestibular stimuli.
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