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Activation of Group I and Group II Metabotropic Glutamate
Receptors Causes LTD and LTP of Electrical Synapses in the
Rat Thalamic Reticular Nucleus

Zemin Wang,"? Ryan Neely,> and ©“/Carole E. Landisman'?

'Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115, and 2Center for Brain Science, Harvard University, Cambridge,
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Compared with the extensive characterization of chemical synaptic plasticity, electrical synaptic plasticity remains poorly understood.
Electrical synapses are strong and prevalent among the GABAergic neurons of the rodent thalamic reticular nucleus. Using paired
whole-cell recordings, we show that activation of Group I metabotropic glutamate receptors (mGluRs) induces long-term depression of
electrical synapses. Conversely, activation of the Group II mGluR, mGluR3, induces long-term potentiation of electrical synapses. By
testing downstream targets, we show that modifications induced by both mGluR groups converge on the same signaling cascade—
adenylyl cyclase to cAMP to protein kinase A— but with opposing effects. Furthermore, the magnitude of modification is inversely
correlated to baseline coupling strength. Thus, electrical synapses, like their chemical counterparts, undergo both strengthening and
weakening forms of plasticity, which should play a significant role in thalamocortical function.

Key words: electrical synapses; gap junctions; mGluRs; synaptic plasticity

Introduction
Electrical synapses (gap junctions) are widespread throughout
the mammalian brain (Bennett and Zukin, 2004; Connors and
Long, 2004; Sohl et al., 2005). The thalamic reticular nucleus
(TRN) is composed of GABAergic inhibitory neurons that com-
municate among each other primarily via gap junctional synapses
(Landisman et al., 2002). More than 50% of closely apposed TRN
neurons interact via electrical synapses (Landisman et al., 2002;
Long et al., 2004) and <1% of these coupled neuronal pairs use
GABAergic inhibitory chemical communication (Landisman et
al., 2002). The TRN receives excitatory glutamatergic input from
corticothalamic (CT) and thalamocortical (TC) axons and
projects all of its inhibitory efferent fibers to the thalamic relay
nuclei (Scheibel and Scheibel, 1966; Steriade et al., 1997;
Crabtree, 1999; Deleuze and Huguenard, 2006). Within the TRN,
activation of metabotropic glutamate receptors (mGluRs), either by
briefly tetanizing CT feedback fibers or by applying the nonspecific
mGluR agonist 1-aminocyclopentane-1,3-dicarboxylic acid (ACPD),
causes long-term depression of electrical synapses (eLTD; Land-
isman and Connors, 2005). However, the underlying mecha-
nisms of this plasticity are still unknown.

mGluRs are G-protein-coupled receptors, and the TRN has
significant expression of group I and group II proteins (Lourencgo

Received Sept. 3, 2014; revised March 19, 2015; accepted March 20, 2015.
Author contributions: Z.W. and C.E.L. designed research; Z.W. and R.N. performed research; Z.W. analyzed data;
Z.W.and C.E.L. wrote the paper.
This work was supported by the Milton Fund, Harvard University.
The authors declare no competing financial interests.
Correspondence should be addressed to Carole E. Landisman at the address. E-mail: carole.landisman@gmail.com.
DOI:10.1523/INEUR0SCI.3688-14.2015
Copyright © 2015 the authors ~ 0270-6474/15/337616-10515.00/0

Neto et al., 2000). Generally, group II mGluRs (mGluR2 and
mGluR3) couple to Gi/o protein, which decreases cAMP accu-
mulation by inhibition of adenylyl cyclase (AC; Coutinho and
Knopfel, 2002). Group I mGluRs (mGluR1 and mGluR5), mean-
while, couple to either Gq protein, which activates protein kinase
C (PKC) by phospholipase C (PLC), or they couple to Gs, which
activates protein kinase A (PKA) by increasing cAMP production
(Coutinho and Knopfel, 2002; Kim et al., 2008). Activation of
group I mGluRs leads to an increase in membrane input resis-
tance (R;,) and depolarization of TRN neurons, whereas activa-
tion of group II (mGIuR3) causes a decrease in R;, and
hyperpolarization (Cox and Sherman, 1999; Alexander and God-
win, 2006). Both studies demonstrate that these changes to R;,
and membrane voltage (V,,) are due to changes in potassium
conductances.

The nonspecific mGluR agonist ACPD causes eLTD in the
TRN (Landisman and Connors, 2005). Hughes and Crunelli
(2006) suggested that group I and group II mGluRs could induce
electrical synaptic plasticity in the TRN by phosphorylating and
dephosphorylating gap junction proteins, respectively. This
would be achieved by activation of groups I and II converging on
the same intracellular signaling pathway (AC-cAMP-PKA), but
with opposing modulatory effects (Fig. 1). However, the specific
mGluRs involved in gap junctional long-term plasticity have not
been demonstrated.

To study the potential signaling cascades underlying the long-
term modification of electrical synapses in TRN neurons, we used
dual whole-cell recordings in rat TC slices (Fig. 1 A, B) combined
with pharmacology. Our results indicate that activation of group
I mGluRs causes eLTD. Conversely, activation of mGluR3 (group
IT) induces long-term potentiation of electrical synapses (eLTP).
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Figure 1.  Experimental methods and design. A, Low-magnification infrared differential in-
terference contrast image of TC slice preparation with two recording electrodes in the TRN and
their respective recorded somata, labeled TRN 1 and TRN 2. IC, Internal capsule; VPL, ventral
posterolateral nucleus; VPM, ventral posteromedial nucleus; S1 cortex, primary somatosensory
cortex. B, High-magpnification image showing an electrically coupled pair of neurons in the TRN
with their whole-cell recording electrodes. €, Schematic of an electrically coupled pair of TRN
neurons with their recording electrodes and their voltage responses to alternating hyper-
polarizing current (I;,;) injected to each cell. The passive resistor is used as a symbol for the
gap junctional (electrical) synapse. During /., TRN 1 responded with a direct voltage
deflection (left gray trace), and TRN2 responded passively through the gap junctional
synapse (left black trace). On the right is the reverse: TRN 2 received direct stimulation
(black trace), and TRN 1 responded via the gap junctional synapse. Voltage traces from an
actual recorded pair. D, Schematic diagram showing metabotropic glutamatergic (mGluR)
G-protein-coupled signal cascades involved in the modulation of gap junctional synapses.
Activation of group | (plum) and group Il (teal) mGluRs, via Gs (purple), or Gi/o (aqua)
proteins respectively converge on the same intracellular signaling pathway. ATP, Adeno-
sine triphosphate. The question mark indicates the unknown effect on gap junctional
strength of PKA phosphorylation.

To our knowledge, this is the first electrophysiological evidence
of mGluR activation inducing eLTP. Both mGluR-dependent
eLTD and eLTP involve the same signaling cascade, AC—cAMP-
PKA, but with opposing actions. Finally, the magnitude of the
induced modification of electrical synapses was found to be in-
versely related to baseline coupling strength.

Materials and Methods

Slice preparation. TC slices were taken from Sprague Dawley rats of either
sex, as described previously (Agmon and Connors, 1991). All experimen-
tal procedures were approved by Harvard University and were per-
formed in accordance with guidelines of the National Institutes of
Health. Briefly, rats, age 11-14 postnatal days, were killed with isoflurane
and quickly decapitated. The brains were then extracted and submerged
in 305 mOsm, 0—4°C slicing solution (in mm: 72 sucrose, 83 NaCl, 2.5
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KCl, 1 NaH,PO,, 3.3 MgSO,7H,0, 26.2 NaHCO;, 22 dextrose, and 0.5
CaCl,) saturated with 95% O, and 5% CO,. TC slices 400 um thick were
cut using a Vibroslice (World Precision Instruments). The slices were
incubated in the same oxygenated slicing solution for 20 min, and then
held at room temperature for another 30 min before recording. Slices
remained viable for recording for 4—6 h.

Dual whole-cell recording. Prepared TC slices were transferred to a
recording chamber superfused with artificial CSF (ACSF), containing the
following (in mm): 126 NaCl, 3 KCl, 1.25 NaH,PO,, 2 MgSO,7H,0, 26
NaHCOs, 10 dextrose, and 2 CaCl,. The ACSF was adjusted to ~305
mOsm and pH ~7.2 at 34 = 0.5°C, saturated with oxygen and was
bubbled with 95% oxygen/5% CO,. The chamber was superfused at a
rate of 2 ml/min. Slices were visualized using an Olympus Optical
BX50WI microscope with a QImaging CCD camera, using infrared dif-
ferential interference contrast while in the submerged recording
chamber.

Whole-cell recording pipettes were pulled from borosilicate glass on a
P-97 micropipette puller (Sutter Instruments) and had resistances of 5-7
M{). mGluRs are known to modulate potassium channels, which in turn
can change R, and V,,, (Golshani et al., 1998; Cox and Sherman, 1999;
Alexander and Godwin, 2005). To prevent these changes, we used
cesium-based internal solution in the recording electrodes for experi-
ments involving mGluRs and their coupled G-proteins. The internal
solution contained the following (in mwm): 120 CsOH, 120 gluconic acid,
10 HEPES, 0.2 EGTA, 2 MgCl,, 0.1 CaCl,, 4 NaCl, 4 ATP-Mg, 0.3 GTP-
Tris, 10 phosphocreatine-Tris, and 5 QX-314. pH was adjusted to 7.25
with CsOH, and osmolarity was 290 mOsm. Thus, the CsOH and QX-
314 effectively blocked potassium and sodium channels so that R;,, and
V., remained constant before and after drug washes. In addition, we used
holding current to ensure that V,, was stable throughout all recordings.
For the remaining experiments, recording electrodes were filled with
potassium gluconate internal solution, which contained the following (in
mM): 135 K-gluconate, 2 KCI, 4 NaCl, 2 MgCl,, 0.1 CaCl, 10 HEPES, 0.2
EGTA, 4 ATP-Mg, 0.3 GTP-Tris, and 10 phosphocreatine-Tris. Osmo-
larity was adjusted to ~290 mOsm, and pH was adjusted to 7.25 using 1
M CsOH.

Isolating the activity of electrical synapses. To isolate the activity of
electrical synapses from those of chemical synapses, the antagonists
DNQX (20 um) and APV (50 um) were used to silence glutamatergic
AMPA and NMDA transmission, respectively. Additionally, V,, was held
constant at —70 mV with current injection for the duration of each
experiment to avoid changes in R;, due to the activation or inactivation
of voltage-dependent ion channels.

We did not observe GABAergic transmission between electrically cou-
pled TRN cells, presumably because these synapses are extremely rare for
closely apposed TRN cells (Landisman et al., 2002; Long et al., 2004; but
see Deleuze and Huguenard, 2006), so we did not use specific GABA
blockers. In addition to blocking K+ channels, cesium and QX-314 also
block potassium channels and GABAj, receptors (McLean et al., 1996).
Thus with chemical transmission removed, and sodium and potassium
channels blocked, we were able to determine that any changes we mea-
sured after introducing the various pharmacological agents were due
exclusively to changes in electrical coupling strength.

Isolating the effects of specific mGluRs. Since NAAG is an endoge-
nous peptide expressed in TRN neurons (Henderson and Salt, 1988;
Moffett and Namboodiri, 2006) and can be hydrolyzed into glutamate
and N-acetylaspartate by the enzyme N-acetyl-alpha-linked-acidic-
dipeptidase (NAALADase; Fuhrman et al., 1994), we added mGluR an-
tagonists to the bath solution to block non-group Il mGluRs: the mGluR1
antagonist 7-(hydroxyimino)cyclopropa[b] chroma-1la-carboxylate ethyl
ester (CPCCOE; 50 um), the mGluR5 antagonist MPEP (20 um), and the
group III mGluR antagonist MAP4 (200 um).

Data acquisition and analysis. The two recording electrodes were con-
trolled by Patchstar micromanipulators (Scientifica). After whole-cell
patching, electrophysiological signals were recorded in current clamp
using Axoprobe-1A amplifiers (Molecular Devices). Axoprobe data were
digitized with a Digidata 1322A analog to digital converter (Molecular
Devices). Data were acquired and stored using Clampex 9.0 software
(Molecular Devices).
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The reported coupling coefficient (cc) and average baseline coupling
strength [coupling conductance (G); explained below] are the average
values obtained from voltage responses to 5-10 sets of alternating hyper-
polarizing current stimuli. Each group of the 5-10 sets of stimulus—
response data was collected every 2 min. The pooled data are expressed as
means * SE. Statistical analyses included two-tailed paired  tests and
one-tailed unpaired t tests. More specifically, each set of time-course data
from a single pair of neurons was analyzed using one-tailed unpaired ¢
tests to determine whether responses following the offset of drug washes
showed significant changes in gap junctional conductance compared
with the baseline G: [data binned for time points during 10 min before
drug wash]| versus [data binned for time points 20—30 min after the start
of the drug wash]. Then, a single value for each neuronal pair was calcu-
lated as a percentage change in baseline conductance.

For population analyses, data from each neuronal pair were collapsed
into two values: (1) the average baseline coupling strength (G.) for the 10
min before drug wash and (2) the average G for 20—-30 min after drug
wash. Each group of paired datasets for a specific drug wash was then
tested using a two-tailed paired ¢ test to determine whether each drug
caused significant changes in coupling strength over a population of
recorded pairs.

Coupling strength collection and measurement. To measure electrical
synaptic strength, alternating hyperpolarizing current steps (100 pA, 600
ms, 1 s interstimulus intervals) were injected into each cell 5-10 times
every 2 min before, during, and after drug application (Fig. 1C).

Voltage responses of both cells were collected and stored before, dur-
ing, and after drug application. Stored data were analyzed using Matlab
to measure gap junctional coupling strength and R;,,.

R;,, was measured as R;,, = AV/[,;, where AV is the average voltage
response of a neuron to injected current, I;,,;. R;, was monitored during
the entire experimental period. Data were discarded if access resistance
change was =15% during recording. It should be noted that no consis-
tent changes in R;, were observed following drug washes. The average R; |
over the population recorded with the cesium-based internal solution
was 342 M() pretest (n = 82). The average R, of neurons recorded with
K-gluconate internal solution was 162 M) pretest (n = 64).

The cc is a ratio of the postsynaptic (passive) voltage change (AV,)
divided by presynaptic voltage response (AV,) due to current injection,
under steady-state conditions. Thus the equation for cc is as follows:
cci, = AV,/AV.

Because electrical synapses are bidirectional, and current steps were
alternately delivered to each cell of a pair, the reported cc is the mean
value of cc calculated for each direction as follows: cc,,. = (cc;, + ccyy)/
2 = [(AV,/AV)) + (AV,/AV,)]/2.

Although cc measures the fraction of the signal conveyed through
electrical synapses, it is subject to the influence of the R;, of the two
coupled cells, and is thus not an accurate measure of the strength of the
gap junctional synapse. The electrical G, however, gives an accurate
measure of the strength of the isolated gap junction (Bennett, 1966). The
calculation of the G is based on a circuit model of two isopotential
neurons connected by a single electrical junction (Bennett, 1966). G is
estimated for each direction of current flow in a cell pair as follows:

The transfer resistance (R,,) is a measure of the passive voltage
response in one cell resulting from current injected into the other cell:
Ry, = Ry = AVy/Ly = AV, /L.

G, = 1/R_where Rc = (R|R, — R,,%)/R,,, where R, is the R
and R, is the R;, of cell 2. Thus, G = 1/R..

. ofcell 1,

in

Results

Activation of mGluR3 (group II) induces eLTP in TRN cells
To explore mGluR receptor specificity responsible for plasticity,
we targeted specific receptors with the highest expression pat-
terns in the TRN, starting with mGIuR3, a subtype of group II
mGluRs (Ohishi et al., 1993; Lourengo Neto et al., 2000; Tamaru
etal., 2001). Since it has been previously demonstrated that acti-
vation of groups I and II mGluRs change potassium conduc-
tances, causing changes in V,,, and R;,,, we blocked K-channels by
using cesium and QX-314 in our recording electrodes.
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Figure 2.  mGluR3 agonist NAAG induces eLTP of electrical synapses in the TRN. A, Example

single traces from a pair of coupled TRN neurons before (a), during (b), and after (c) NAAG
application (400 wm, 20 min). TRN 1 (bottom traces) received a hyperpolarizing current injec-
tion (—100 pA, 600 ms), which induced a gap junctional response in TRN 2 (top traces). B, Time
course measurements of cc (black solid circles) and G (gray squares) for the pair shownin A (a—c
mark the time points that correspond to the traces in A). , Population time course for ccand G
(mean = SE; n = 11 pairs; cc p = 0.04, G p = 0.004) before, during, and after NAAG
application. Y values are normalized to the average value of all baseline time points. X values are
binned every 2 min, and each time-point value is based on an average of 5-10 trials. 0 min =
start of drug wash. Black bars indicate duration of drug application. Arrow denotes n = 3 pairs
for =30 min (30— 44 min). D, Normalized population time course for cc and G (n = 9 pairs)
before, during, and after the group Il mGluR antagonist LY 341495 (1 wm, 20 min) with NAAG
application. Arrow indicates n = 2 pairs for last three time points (22—26 min). Red boxes in €
and D indicate the data points used to calculate the change in strength compared with the
pre-drug baselines.

We bath-applied the selective mGIuR3 agonist NAAG (Fig.
2A). In 11 electrically coupled pairs, baseline coupling strength
was stable (Fig. 2B,C). Though the voltage response of the
current-injected cell did not change significantly following
NAAG application (Fig. 24, TRN 1), the electrical synaptic volt-
age responses in the coupled cell increased significantly (Fig. 24,
TRN 2, B,C). Coupling strength potentiation reached steady-
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state values ~10 min after drug application (Fig. 2C). Because
NAAG washes out extremely quickly—on the order of seconds
(Westbrook et al., 1986; Kolodziejczyk et al., 2009)—these effects
are consistent with long-term plasticity. Over the entire popula-
tion, G increased 14 * 4% (mean = SE; n = 11 pairs, p = 0.004,
two-tailed paired ¢ test). Of the 11 pairs tested, seven showed
significant potentiation (one-tailed unpaired ¢ tests). Thus, acti-
vation of mGluR3 causes eLTP in the TRN.

To further confirm that the eLTP effects of NAAG were caused
by mGluR3 receptor activation, the experiments were repeated in
the presence of the group Il mGluR antagonist LY 341495. Of the
nine coupled pairs tested, none showed significant changes in
coupling strength: AG. = 0.7 = 4.4% (p = 0.88; Fig. 2D).

Activation of group I mGluRs causes eLTD

GroupsIand Il mGluRs have been shown to have opposite effects
on TRN neuronal excitability and R;, (Cox and Sherman, 1999).
Also, group I mGluRs converge on the same signaling cascade as
the group II receptors (Fig. 1D). Combining these results, we
hypothesized that group I receptors might also be involved in gap
junctional plasticity.

We applied the group I mGluR agonist (RS)-3,5-dihydro-
phenylglycine (DHPG) to test its effect on electrical coupling
strength. Note that R;, remained stable before versus after DHPG
application (Fig. 3A, TRN 1). The passive voltage responses of the
electrically coupled neighbor, however, decreased significantly
2-5 min following drug application and remained depressed for
the remainder of the recording period (Fig. 3A, TRN 2, B). For
the population of pairs tested with DHPG, coupling strength
depressed significantly: AG. = —23 * 6% (n = 11 pairs; p =
0.004, two-tailed paired t test; Fig. 3C). Of the 11 pairs tested,
eight showed significant depression (one-tailed unpaired ¢
tests). These results suggest that activation of group I mGluRs
causes significant eLTD between electrically coupled TRN
neurons.

Gi/o protein plays an important role in eLTP

Because group II mGluRs are primarily linked to Gi/o protein
(Pin and Acher, 2002), we reasoned that increasing Gi/o protein
activity could mediate the long-term modification induced by
group II mGluR activation. We selected mastoparan, a peptide
activator of Gi/o (Shpakov and Pertseva, 2006), to test whether it
could mimic the effect of NAAG on electrical synaptic strength.
After mastoparan application, electrical coupling strength poten-
tiated significantly (Fig. 44-C): AG = 18 = 6% (n = 10 pairs,
p = 0.03, two-tailed paired ¢ test); and of the 10 pairs tested, eight
showed significant eLTP (one-tailed unpaired ¢ tests). This effect
continued throughout the entire recording period, long after
washout. These results strongly suggest that the induction of
eLTP in the TRN via activation of mGluR3 is mediated by Gi/o
protein.

Activation of AC induces eLTD

Although group I mGluRs are dominantly linked to Gq protein,
which activates PLC and generates PKC (Conn and Pin, 1997;
Coutinho and Knépfel, 2002; Kim et al., 2008), in some cases,
group I mGluRs also couple to Gs (Hermans and Challiss, 2001;
Tateyama and Kubo, 2007), which increases PKA activity (Band-
rowski et al., 2001; Fig. 1D). Thus, group I and group II mGluRs
can converge on the AC-cAMP-PKA signaling pathway (Hughes
and Crunelli, 2006). However, due to the lack of a rapid and
effective agonist for Gs, we were unable to test its role in the
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Figure3.  Group|mGluR agonist DHPGinduces eLTD of electrical synaptic coupling strength.

A, Example single traces of a coupled pair before (a), during (b), and after (c) DHPG application
(50 um, 5 min); same layout as in Figure 2. B, Time course measurements of cc (black solid
circles) and G (gray squares) for the pair shown in A (a— c mark the time points that correspond
to the traces in A). C, Normalized population time course for cc and G before, during, and after
DHPG application (mean == SE;n = 11 pairs; ccp = 0.004, G p = 0.004). Arrow indicatesn =
4 pairs for last three time points (36 —40 min). Red box indicates regions of analysis following
drug washout.

induction of eLTD directly. Instead we examined the role of AC,
the downstream substrate of Gs (and Gi/o).

It has been reported that activation of AC intracellularly has
varying effects on gap junctional coupling and conductance. In
rabbit retinal amacrine cells and rat prefrontal cortex, incubation
in the cell-permeable AC activator forskolin decreases dye cou-
pling (Hampson et al., 1992; Rorig et al., 1995). Similarly, in rat
hippocampus, forskolin, while in the bath, decreases electrical
coupling between interneurons (Zsiros and Maccaferri, 2008).
Conversely, in hippocampal CA3 pyramidal cells, forskolin in-
creases electrical coupling between cells (Gladwell and Jefferys,
2001). Variants of gap junctional proteins that respond differ-
ently to the same modulators could explain these discrepancies,
as could other as yet unidentified sources of electrical coupling,
such as pannexin-based junctions.

Therefore, we tested the long-term effects of the AC activator
forskolin on electrical synaptic conductance in the TRN. As pre-
dicted, forskolin reproduced the effects of DHPG by inducing
eLTD (Fig. 4D-F). The coupling strength decreased 4 min after
the start of drug application and remained depressed after wash-
out for the duration of the recordings (Fig. 4 E, F). Over the entire
population of pairs tested with forskolin, electrical coupling
strength decreased significantly: AGo = —8 = 3% (p = 0.01,n =
16 pairs, two-tailed paired t test; Fig. 4F). Of the 16 cell pairs
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Effects of Gi/o protein activator mastoparan and AC activator forskolin on electrical synaptic coupling strength. A, Example single traces of coupled neurons before (a), during (b), and

after (c) mastoparan application (2 wm, 10 min). Stimulation and response parameters as in Figure 24. B, Time course measurements of cc and G for the pair of neurons shown in A before, during,
and after mastoparan application; a— ¢ are the data points corresponding to the traces in A. ¢, Normalized population time course of cc and G before, during, and after mastoparan application
(mean = SE; n = 10 pairs; ccp = 0.02, G, p = 0.03). D, Example traces of a single pair of coupled TRN neurons before (a), during (b), and after (c) forskolin application (10 rum, 20 min). E, Time
course of ccand G for the coupled pair shown in D. F, Normalized population time course data for ccand G before, during, and after forskolin application (n = 16 pairs; ccp = 0.02, G p = 0.01).
Arrow shows n = 9 pairs recorded past 36 min. Red hoxes indicate regions of analysis, as in Figures 2 and 3.

tested with forskolin, nine showed significant depression of gap
junctional strength. However, it should be noted that forskolin is
a cell-permeable compound, which may require additional wash-
out time. In conjunction with our other findings, these results
suggest that activation of group I mGluRs can cause the activa-
tion of AC intracellularly, and subsequently this activation in-
duces LTD of electrical coupling strength in TRN neurons.

cAMP mediates eLTD

Activation of AC is known to cause an elevation of intracellular
cAMP levels. The direct effects of cCAMP on electrical coupling
strength, however, vary between cell types. Our results show that
AC activation induces eLTD in the TRN. Therefore, we reasoned
that increasing cAMP directly should also depress electrical cou-
pling strength in the TRN.

To test this hypothesis, we raised cCAMP activity by using the
cell-permeable cAMP analog 8-bromo-cAMP (8-Br-cAMP). Af-
ter 8-Br-cAMP application and washout, gap junctional coupling
strength rapidly decreased and reached steady-state depression at
20 min after the start of the drug wash (Fig. 5A—C; also see Mitro-
poulou and Bruzzone, 2003). For all pairs tested with 8-Br-
cAMP, electrical coupling strength depressed significantly:
AG: = —18 £ 3% (n = 10 pairs, p = 0.0003; two-tailed paired ¢
test). Together, the above results indicate that activation of the
AC-cAMP signaling pathway induces eLTD when triggered by
group I mGluRs.

PKA is critical for induction of eLTP
Because the cell-permeable cAMP analog 8-Br-cAMP causes
eLTD in TRN, we inferred that an increase in PKA mediates this

effect (Mitropoulou and Bruzzone, 2003; Urschel et al., 20065
Kothmann et al., 2009; Li et al., 2009; Fig. 1D). To verify this
relationship, we tested the effect of KT 5720, a potent and selec-
tive cell-permeable PKA inhibitor. Application of KT 5720
strongly potentiated the average G (Fig. 5D-F; AG = 25 * 6%,
n = 6 pairs, p = 0.02, two-tailed paired ¢ test), and of the six pairs
tested, four showed significant potentiation of gap junctional
conductance. It should be noted, however, that since KT 5720 1is a
cell-permeable compound, it might take extra time for a full
washout. But we used a reasonably high flow rate (2 ml/min), so
it’s likely that these results are indicative of long-term effects.

These results indicate that inhibition of PKA primarily causes
eLTP in TRN, which is consistent with results from the activation
of group Il mGluRs and Gi/o protein. Together, the above results
suggest that PKA is a part of the AC—cAMP signaling pathway
that regulates long-term modification of electrical synapses in the
TRN. Activation or inhibition of any protein in this signaling
pathway will induce either potentiation or depression of electrical
G between TRN neurons. This implies that the state of gap junc-
tional conductance is sensitive to the actual concentration of
PKA, since blocking PKA not only prevents eLTD, but also causes
eLTP. Thus, activation of group I and group II mGluRs converge
on the same signaling cascade (AC-cAMP-PKA) but with op-
posing results (Fig. 6).

Response heterogeneity

The majority of pairs tested with the agonists and antagonists
responded in a consistent fashion, as predicted by the effects of
each stage of the signal cascade. However, within each group, we
observed a subset of pairs that either showed no significant re-



Wang et al. o Activation of Group | and Group Il Metabotropic Glutamate Receptors

A Control 8-Br-cAMP Washout
+10 min +30 min

& a{|1mv TRN 2

Q

[ 15 mv 400 ms \ r TRN 1
0.22
—
B 14 o [8-Br-cAMP
712 ﬁ'ﬁlﬁ:': ﬁ._._.___;._ 0.18
= b ] 3]
5 1.0 | % ¢ ) 3
9 g | c 0.14
ecc| |
0.6 {mG
g | : : 0.10
0 20 40
Time (min)
C
1.1 ‘ I
u 8-Br-cAMP
09
£
2 07 |
1ecc |
0.5 {mGc |
-10 0 10 20 30 40 50

Time (min)

Figure5.

J. Neurosci., May 13, 2015 - 35(19):7616 -7625 + 7621

D Control KT 5720

-4 min

Washo_ut

0.45 {®cc

Bosole |

& |

© 0.35 U

o | o o® 007 S

0 - o o :

. 0.25 _’:'f'iﬁ‘_' _______

a |  0.06
-10 o 1'0_ 20 30
F ime (min)
10 3% e

14 |

IS |

£ | ‘

212] gl ++i+++?l-+;
10##%‘” AR | S
08 |

0

10 20 30
Time (min)

Effects of the cAMP analog 8-Br-cAMP and the PKA inhibitor KT 5720 on electrical synaptic coupling strength. A, Single example traces from coupled neurons before (a), during (b), and

after (c) 8-Br-cAMP application (2 mm, 10 min); same layout as in Figure 2A. B, Time course measurements of cc and G for the pair of neurons shown in A before, during, and after 8-Br-cAMP
application; a— ¢ mark the data time points corresponding to the traces in A. €, Normalized population time course of ccand G, before, during, and after 8-Br-cAMP application (mean = SE;n = 10
pairs; ccp = 0.0003, G p = 0.0003). Arrow indicates n = 2 pairs recorded after 44 min. D, Single example traces before (a), during (b), and after (c) KT 5720 application (5 tm, 20 min). Stimulation
and response parameters as in Figure 2A. E, Time course measurements of cc and G, for the neuronal pair in D (a— c mark the data time points corresponding to the traces in D). F, Population time
course of ccand G before, during, and after KT 5720 application (mean = SE; n = 6 pairs; ccp = 0.04, G p = 0.02).

}_ﬁ

LY 341495 Gl[forskolin [DHPG|
+NAAG] /

0,
S

1
s
E?

T Pﬂ

cAMP\ KT 5720}

Figure6.  Summary of long-term modification of electrical synaptic coupling strength in TRN
via activation of mGluRs and their signaling pathways. Schematic diagram summarizing the
findings. Diagram line graphs indicate eLTP, eLTD, or no significant change for the drugs used to
test each stage of the signal cascade. Drugs are shown with white backgrounds and black text
for agonists and black backgrounds with white text for antagonists for their related receptors or
proteins. Membrane-spanning group | mGluRs and group Il mGluRs and their associated

G-proteins, Gi/o and Gs, are shown as in Figure 1D. Gap junction channels illustrated on the
right, in green, in the phosphorylated state (P).

mastoparan|
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sponse or a response profile opposite to that of the majority of
pairs tested (Fig. 7). To determine whether responses were signif-
icant for each pair, we used unpaired, one-tailed t tests of the time
points 10 min before versus 20—30 min after the start of drug
application (see Fig. 2C).

Here we describe the details of the response profiles for each
drug tested. Of the 11 pairs tested with the mGluR3 agonist
NAAG, only seven (64%) showed significant potentiation (Fig.
7A). G increased by 21 = 4% for those seven pairs. The remain-
ing four pairs showed no significant response. Of the 11 pairs
tested with the group I mGIuR agonist DHPG, eight (73%)
showed significant depression. For these eight pairs, AG, =
—32 * 4%. The remaining three pairs showed no significant
responses (Fig. 7B). Eight of 10 (80%) pairs tested with the Gi/o
protein activator mastoparan showed significant increases in
coupling strength: AG- = 25 * 6%. The remaining two pairs
showed no significant change in coupling strength (Fig. 7C).

Of 16 pairs exposed to the AC activator forskolin, nine (56%)
pairs showed depression of electrical coupling strength, two pairs
showed significant potentiation, and the remaining five pairs ex-
hibited no significant change. For the nine pairs that underwent
eLTD in response to forskolin, G, depressed 19 = 3% (Fig. 7D).
Four of six pairs (67%) tested with the PKA inhibitor KT 5720
showed potentiated coupling strength (AG. = 30 = 5%), and the
remaining two pairs showed no significant changes after drug appli-
cation (Fig. 7E). Finally, for pairs tested with the cAMP analog 8-Br-
cAMP, all 10 pairs underwent significant depression of electrical
coupling strength (AG. = —18 = 3%; Fig. 7F). It is unclear whether
these variations were due to differences in specificity of the chemicals
or due to heterogeneity among neurons within the TRN.

Modification of electrical coupling is inversely related to the
baseline coupling strength

To identify what effects contributed to the extent of plasticity
between cell pairs, we plotted change in coupling strength after
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All paired datasets of all pharmacological agents and network schematic. A-F, Scatter plots of the percentage change in coupling strength (G) for each pair after each drug wash,

plotted as a function of baseline coupling strength; pharmacological agents are labeled above and below their respective scatter plots. Gray squares represent pairs with no significant change in
coupling strength after drug application. G, Combined data from A—F for all pharmacological agents. Each dot represents a single recorded pair (n = 73 pairs). H, Schematic diagram showing an
electrically coupled neuronal circuit. Each oval represents a single neuron, and resistor symbols represent electrical synapses. Dark neurons and synapses represent the “scaffolding network,” with
strong electrical coupling, which undergo little to no plasticity. The lighter gray neurons and their electrical synapses represent weak to moderate strength synapses that can effectively be added to
or subtracted from the gap junctional network via strengthening or weakening of their synapses.

drug application as a function of control baseline coupling
strength. For most coupled pairs, baseline G varied between 0.15
and 1.2 nS. When the baseline G, was stronger than 1.2 nS, we
never observed significant change after drug application. In fact,
the most dramatic changes occurred in the pairs that were most

weakly coupled (Fig. 7G). Thus, the degree of plasticity induced
by the various agonists and antagonists is negatively correlated to
the baseline coupling strength: the weaker the initial Gce for a pair
of electrically coupled neurons, the more likely it is to be signifi-
cantly modified after drug application.
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Discussion

eLTD and eLTP share a common pathway

Long-term modification of synaptic strength by either activity or
pharmacological agents has been extensively studied in chemical
synapses. In contrast, very few studies have previously shown
long-term modification of electrical synapses (eLTP and eLTD)
in the mammalian CNS. In the current study, we investigated the
underlying mechanisms of eLTD in TRN neurons. We provide
the first electrophysiological evidence that electrical synapses in
the TRN can also undergo eLTP.

By testing the effects of downstream targets in the AC—cAMP—
PKA pathway, we found mechanisms similar to those seen in
mGluR-induced long-term modification of chemical synapses
(Collingridge et al., 2010; Le Duigou and Kullmann, 2011). Spe-
cifically, group I mGluRs induce eLTD, and group II mGluRs
induce eLTP. Both mGluR-receptor groups converge on the
same intracellular signaling pathway (AC-cAMP-PKA), but
have opposing effects on long-term modification of electrical

synapses.

eLTD is dominant in TRN, but eLTP can also be expressed
The nonspecific mGluR agonist ACPD induces depolarization of
all TRN neurons (Cox and Sherman, 1999; Long et al., 2004;
Landisman and Connors, 2005), which is consistent with the
effects of group I mGluR agonists alone (Cox and Sherman,
1999) and with the effects of tetanic stimulation of CT feedback
fibers (Landisman and Connors, 2005). All three perturbations—
ACPD application, group I mGluR agonist application, and stim-
ulation of CT fibers—induce eLTD (Figs. 3, 6; Landisman and
Connors, 2005). Thus, despite the high expression profile of
mGluR3 (group II) receptors in the TRN (Ohishi et al., 1993;
Lourenc¢o Neto et al., 2000; Tamaru et al., 2001), their ability to
induce eLTP is greatly overshadowed by the induction of eLTD
by group I mGluRs.

There are several possible explanations for these results. First,
glutamatergic afferents could activate both groups of receptors,
with the final effect depending on the integration of the opposing
effects of eLTD and eLTP. This may also explain why some pairs
showed no changes after drug application. Second, activation of
different mGluRs may require different concentrations of gluta-
mate, different input frequency, or different behavioral states.
For instance, group I mGluRs may require a lower level of gluta-
matergic input than group II mGluRs to induce synaptic modi-
fication either in general or in the baseline “state” of the in vitro
slice. This last hypothesis is supported by the fact that group II
mGluRs need higher concentrations of agonists to activate TRN
cells recorded in slices (Cox and Sherman, 1999).

G-proteins and the signaling cascades involved in the long-
term modification of electrical synapses in the TRN

Both group I and group II mGluRs are capable of influencing the
AC-cAMP-PKA signaling pathway. In general, the group II
mGluRs couple to Gi/o protein and inhibit cAMP formation
(Conn and Pin, 1997; Kim et al., 2008). Specifically, activation of
group Il mGluRs elevates Gi/o protein activity, which then inhib-
its the AC—cAMP-PKA signaling cascade, and induces eLTP in
TRN neurons. In addition, increasing evidence has shown that
group I mGluRs couple to Gs protein to increase AC—cAMP—
PKA signal transduction (Bandrowski et al., 2001; Hermans and
Challiss, 2001; Lu et al., 2004; Tateyama and Kubo, 2007; Kim et
al., 2008). Therefore, it is possible that induction of eLTD in TRN
by activation of group I mGluRs results from the Gs—AC-cAMP—
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PKA signaling cascade. As a result, the triggering or suppression
of AC by activation of group I or group II mGluRs will upregulate
or downregulate the activity of the downstream pathway, and
consequently induce eLTD or eLTP, respectively (Fig. 6).

Molecular mechanisms involved in the modulation of
electrical synapses in the TRN

The Cx36 protein provides most, if not all, of the structural basis
for electrical synapses among TRN neurons (Landisman et al.,
2002), as well as among other mammalian neurons with a similar
biochemical profile (Deans et al., 2001; Galarreta and Hestrin,
2001; Pereda, 2014). However, the mechanism by which PKA
affects Cx36 is still not understood. Possible mechanisms include
modifying the number of Cx36 channels in the neuronal mem-
brane (Gaietta et al., 2002), regulating channel conductance,
and/or changing the probability or duration of the connexin
channel open state (McMahon et al., 1989). For most of these
mechanisms (except modification of the number of channels), it
has been proposed that PKA mediates the direct phosphorylation
of Cx36 at its regulatory sites. Kothmann and colleagues (2009)
demonstrated that individual gap junctional plaques can have
different phosphorylation states, at different regulatory sites,
even within a single neuron. The direct phosphorylation of Cx36
has been shown to decrease tracer diffusion in mouse retina (Ur-
schel et al., 2006; Kothmann et al., 2009), as well as decrease
current conductance in expressed perch Cx35 hemichannels (the
ortholog of rat Cx36; Mitropoulou and Bruzzone, 2003).

The scaffolding network in TRN

GABAergic TRN neurons appear to be electrically coupled locally
(<40 wm) and in relatively small clusters (Long et al., 2004).
Calcium imaging reveals that networks of electrically coupled
TRN neurons contain =<8 cells (Haas et al., 2011). We found that
the modification of electrical coupling is inversely related to base-
line coupling strength (Fig. 7G; Szabo et al., 2010). Our hypoth-
esis is that there is a “scaffolding network” of strongly coupled
TRN neurons (Fig. 7H ). More specifically, even strong depres-
sion of a strongly coupled pair will not eliminate the synchrony of
these neurons within their electrically coupled network. This
would explain why strongly coupled pairs underwent little to no
observable modulation (Fig. 7). Thus, the scaffolding of a cou-
pled network is composed of these strongly coupled neurons that
provide a local anchor for more weakly coupled neurons. When
the electrical synapses of these weakly coupled cells are positively
modulated/potentiated, these cells can synchronize their activity
with the activity of the scaffolding network. Conversely, when
these weaker synapses are negatively modulated/depressed, their
affiliated neurons functionally leave the synchronized network
because their synapses are no longer strong enough to correlate
their activity to the scaffolding cells. Thus, the weaker players can
actually leave or join the network based on their plastic responses,
eLTD or eLTP, respectively. Because one TRN neuron alone can
inhibit =100 relay cells (McCormick and Contreras, 2001),
whether or not these coupled pairs are part of a synchronized
network can influence the activity of thousands of relay cells
within the TC system.

The potential function of modulation of electrical synapses

in TRN

If the thalamus is considered the gateway to the cerebral cortex,
then the TRN is the guardian of that gateway, due to its central
role in regulating TC interactions (Crick, 1984). The TRN is
known to participate in TC oscillations during many conditions,
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including sleep (sleep spindle rhythms), vigilance, and attention
(Llinas and Jahnsen, 1982; Deschénes et al., 1984; Jahnsen and
Llinas, 1984; Steriade et al., 1987). In the TRN, electrical synapses
are common among compact clusters of neurons, and they syn-
chronize the activity among these coupled neurons (Landisman
et al.,, 2002; Long et al., 2004; for review, see Bennett and Zukin,
2004; Connors and Long, 2004; Cruikshank et al., 2005). The
low-pass filter characteristics associated with electrical synapses
(Landisman et al., 2002; Long et al., 2004; Gibson et al., 2005; for
explanation see Sohl et al., 2005) regulate the transduction of
subthreshold rhythmic oscillations. We have demonstrated pre-
viously that low-frequency, subthreshold oscillations can be in-
duced by nonspecific activation of mGluRs (Long et al., 2004).

Therefore, modification of electrical coupling in the TRN po-
tentially plays an important role in state-dependent modification
of the temporal and spatial transmission of information within
the TC system. In states of low sensory input, such as during
sleep, activation of group I mGluRs could induce eLTD. This
would then allow the feed-forward and feedback chemical synap-
tic drive to control synchrony in the thalamocortical system. In
contrast, eLTP would presumably be induced by relatively higher
frequency patterns of inputs occurring during periods of selective
attention. Thus, the functions of inhibition generated in the TRN
almost certainly undergo dynamic changes as a result of the dynamic
plasticity of their gap junctional synapses.
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