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A fundamental goal of the human auditory system is to map complex acoustic signals onto stable internal representations of the basic
sound patterns of speech. Phonemes and the distinctive features that they comprise constitute the basic building blocks from which
higher-level linguistic representations, such as words and sentences, are formed. Although the neural structures underlying phonemic
representations have been well studied, there is considerable debate regarding frontal-motor cortical contributions to speech as well as
the extent of lateralization of phonological representations within auditory cortex. Here we used functional magnetic resonance imaging
(fMRI) and multivoxel pattern analysis to investigate the distributed patterns of activation that are associated with the categorical and
perceptual similarity structure of 16 consonant exemplars in the English language used in Miller and Nicely’s (1955) classic study of
acoustic confusability. Participants performed an incidental task while listening to phonemes in the MRI scanner. Neural activity in
bilateral anterior superior temporal gyrus and supratemporal plane was correlated with the first two components derived from a
multidimensional scaling analysis of a behaviorally derived confusability matrix. We further showed that neural representations corre-
sponding to the categorical features of voicing, manner of articulation, and place of articulation were widely distributed throughout
bilateral primary, secondary, and association areas of the superior temporal cortex, but not motor cortex. Although classification of
phonological features was generally bilateral, we found that multivariate pattern information was moderately stronger in the left com-
pared with the right hemisphere for place but not for voicing or manner of articulation.
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Introduction
The phonemes that constitute the basic sound structure of spo-
ken language can be defined according to their particular combi-
nation of phonological features, such as voicing, manner, and
place of articulation. Psychophysical investigations of speech per-
ception have attempted to discover how these distinctive features
are represented in “psychological space” by examining the pat-
terns of confusability between individual phonemes (Miller and
Nicely, 1955; Shepard, 1972). Such studies have shown that the
underlying psychometric representation of English consonants is
imperfectly related to a taxonomic structure based only on dis-
tinctive features. The psychological representation of speech
must reflect an underlying neural code, and with recent develop-
ments in multivariate approaches to functional neuroimaging
(Kriegeskorte et al., 2008; Brouwer and Heeger, 2009), we can

now ask how the perceptual organization of speech emerges from
neural patterns of activation.

Recent work with electrode recordings from human superior
temporal gyrus (STG; Mesgarani et al., 2014) has made signifi-
cant strides in this endeavor, showing that areas within the left
STG are sensitive to specific phonological features. There is still
debate, however, regarding the nature of such representations in
regions outside of the left auditory cortex. Motor theories of
speech perception have ranged from the strong view that the
motor system is critical for speech perception (Liberman et al.,
1967; Meister et al., 2007) to more nuanced positions that the
motor system supports speech perception under some circum-
stances (D’Ausilio et al., 2009; Du et al., 2014). Functional neu-
roimaging studies have shown that areas in the frontal-motor
speech system are often active during speech perception (Wilson
et al., 2004; but see Szenkovits et al., 2012), although we still know
little about the representational nature of such activation.

Some authors have argued that, on the contrary, the auditory
cortex is sufficient for speech perception under normal listening
conditions (Hickok, 2009; Lotto et al., 2009). According to the
asymmetric sampling in time (AST) hypothesis (Poeppel, 2003),
speech is processed bilaterally in primary auditory cortex and then
elaborated in either left or right nonprimary auditory areas, depend-
ing on the length of the temporal integration window. AST predicts
that distinctive features that are processed on faster time scales (Fig.
1) would be left lateralized while those that are processed on slower
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time scales would be right lateralized. It is unclear whether the
frontal-motor system possesses the fine-scale temporal precision re-
quired for the detection of acoustic–phonetic features.

Here we investigate the relative contributions of auditory and
motor regions to the distributed neural patterns supporting the
perception of phonemes. We propose that the classic perceptual
confusability patterns derived from psychophysical judgments
should be statistically related to brain activity in regions important
for phonological speech discrimination, offering a strong test for
both motor and auditory theories of speech perception. We also
investigate the extent to which distinctive features are coded in su-
perior temporal and frontal cortices, and whether the patterns of
lateralization in auditory cortex are consistent with the AST
hypothesis.

Materials and Methods
Experimental methods
Participants. Twenty-five healthy young adults (mean age, 24.28 years;
SD, 4.69 years; 14 females) were recruited from the Baycrest Hospital
participant database. All were right-handed fluent English-speakers with
no known neurological or psychiatric issues and no history of hearing or
speech disorders. Participants gave informed written consent according
to guidelines established by Baycrest’s Research Ethics Board. One par-
ticipant (28-year-old male) was excluded from imaging data analysis due
to excessive movement (�5 mm maximum displacement from reference
volume), leaving a sample of 24 participants.

Stimuli. Stimuli consisted of the following 16 phonemes followed by
the vowel /a/ as in father: /p/, /t/, /k/, /f/, /�/ (“th” as in thumb), /s/, / � /
(“sh” as in shoe), /b/, /d/, /g/, /v/, /ð/ (“th” as in that), /z/, / � / (“s” as in
measure), /m/, and /n/. The recordings were tokens from the standard-
ized University of California, Los Angeles, version of the Nonsense Syl-
lable Test (Dubno and Schaefer, 1992). Each consonant–vowel syllable
(CV) was produced by four different speakers (two male, two female)
and each speaker produced three different recordings of each sound.
Thus, 12 different versions of each CV were used, ensuring that there was
some acoustic variability across tokens of the same type. The sounds were
played at a comfortable volume for participants through electrodynamic
MR-Confon headphones. As depicted in Table 1, the stimuli spanned the
major distinctive features.

Procedure. Testing occurred in a single 2 h session at Baycrest Hospital.
All participants completed a practice block of 17 trials (16 CVs plus 1
silent trial) with feedback before the experiment began. Using Eprime
2.0, stimuli were presented sequentially while participants were in the
MRI scanner and were first-order counterbalanced using a type 1, index
1 randomization algorithm (Aguirre, 2007) to minimize carryover ef-
fects. As seen in Figure 2, a crosshair appeared on the screen for the
duration of the trial and went off for 200 ms to signify the beginning of a

new trial. Participants were instructed to fixate on the crosshair for the
duration of the experiment. One CV was heard during each sound trial
(1300 ms) and no sound was played during silent trials (4000 ms). Silent
and sound trials were intermixed, with all 16 CVs and silent trials occur-
ring with equal frequency (once every 17 trials). To ensure that partici-
pants focused on the sound stimuli without requiring explicit judgments
about the acoustic–phonetic features of interest, participants were asked
to respond to each sound trial with the gender of the speaker via button
press. They were instructed to respond as quickly and accurately as pos-
sible after the onset of the speech stimulus. Half of the sounds were
produced by male speakers and half by female speakers.

The short duration of trials required participants to respond very
quickly; thus, even though the task itself involved making a simple deci-
sion, doing well on the task required a relatively high degree of attention.
Participants were informed of their percentage of correct trials at the end
of each block. Ten blocks of 204 trials each (total, 2040 trials) were
presented such that the 16 CVs and silent trials were presented 120 times
each throughout the experiment.

Imaging methods
MRI set-up and data acquisition. Participants were scanned with a 3.0 T
Siemens Magnetom Trio MRI scanner using a 12-channel head coil sys-
tem. High-resolution gradient-echo multislice T1-weighted scans (160
slices of 1 mm thickness, 19.2 � 25.6 cm field of view) coplanar with the
echo-planar imaging scans (EPIs) as well as whole-brain magnetization
prepared rapid gradient echo (MP-RAGE) 3-D T1-weighted scans were
first acquired for anatomical localization, followed by T2*-weighted EPIs
sensitive to BOLD contrast. Images were acquired using a two-shot
gradient-echo EPI sequence (22.5 � 22.5 cm field of view with a 96 � 96
matrix size, resulting in an in-plane resolution of 2.35 � 2.35 mm for
each of 26 3.5 mm axial slices with a 0.5 mm interslice gap; repetition
time, 1.5 s; echo time, 27 ms; flip angle, 62°).

MRI preprocessing and whole-brain univariate regression analyses.
Functional images were converted into NIfTI-1 (Neuroimaging Infor-
matics Technology Initiative-1) format, motion-corrected, and realigned
to the first image of the first run with AFNI’s (analysis of functional
neuroimages; Cox, 1996) 3dvolreg program. All image volumes were
then smoothed with a 4 mm FWHM Gaussian kernel. Single-subject
multiple-regression modeling was performed using the AFNI program
3dDeconvolve. Each of the 16 phonemes was modeled by convolving a
hemodynamic response function (statistical parametric mapping canon-
ical function as implemented in AFNI) with a delta function formed from
the vector of speech stimulus onsets. An additional set of five nuisance
regressors (a constant term plus linear, quadratic, and higher-order poly-
nomial terms) was included for each scanning run to model low-
frequency noise in the time series data. Separate regression analyses were
performed for each of the 10 scanning runs, yielding a set of 16 (one per
CV) � regression weights for each run. The regression models were com-
puted separately for each run so that we would have independent samples
for cross-validation in the multivariate analyses.

Figure 1. Temporal elements of phonological features. The role of the three main temporal
cues for speech— envelope, periodicity, and fine structure—in the perception of distinctive
features. Each element’s dominant fluctuation rate is listed in hertz and increases in frequency
from left to right. The size of the diamonds indicates the extent to which a particular element
contributes to a particular phonological feature, with a blank space indicating very weak or
nonexistent cues. While all three temporal elements are relevant to voicing and manner of
articulation, the envelope (slowest dominant fluctuation rate) is particularly informative of
manner, and periodicity (intermediate dominant fluctuation rate) is particularly informative
of voicing. Spectral shape, which is characterized by fine structure (fastest dominant fluctuation
rate), is the primary acoustic cue for place. Adapted from Rosen (1992).

Table 1. Descriptions and selected examples of phonological features

Feature Description
Selected
categories

English
examples

Voicing Whether or not the
vocal cords vibrate
during speech production

Voiced /z/, /v/
Voiceless /s/, /f/

Manner of articulation The configuration of
articulators during
speech production

Fricatives /f/, /ʃ/
Stops /p/, /k/
Nasals /m/, /n/

Place of articulation Where the major
constriction of the vocal
passage occurs

Labial /b/, /m/
Dental /ð /, /�/
Alveolar /d/, /t/
Palatoalveolar /ʃ/, /�/
Velar /k/, /g/

The selected categories were those that were investigated in the current study. Note that with the exception of
voicing, the list does not include all possible categories, but rather those especially relevant for English consonants.

Arsenault and Buchsbaum • Distributed Phonological Feature Representations J. Neurosci., January 14, 2015 • 35(2):634 – 642 • 635



All statistical analyses, both voxelwise and
region-of-interest (ROI) based, were first con-
ducted on the spatially smoothed and realigned
functional images in the participant’s native
EPI space. The MP-RAGE anatomical scan was
normalized to the Montréal Neurological In-
stitute (MNI) template using nonlinear sym-
metric normalization implemented in Advanced
Normalization Tools (ANTs; Avants et al., 2008).
An equivalent transformation was then applied
to maps of univariate statistical results (see Vox-
elwise correlation of MDS dimensions with fMRI
activation) derived from functional images using
ANTs to normalize these maps to MNI space for
multisubject analyses. Statistical significance at
the group level was determined using Monte
Carlo simulations of expected cluster sizes under
the null hypothesis using the AFNI program Al-
phaSim. For a voxelwise threshold of p � 0.005,
only clusters with �13 voxels were determined to
be significant at the cluster-corrected (p � 0.05)
level.

Data analysis
Behavioral data. Trials with reaction times of
�400 ms were removed from behavioral anal-
yses. Trials for which the participant did not
respond within 1500 ms of stimulus onset
were scored as incorrect. A 16 (syllable) � 4
(speaker) repeated-measures ANOVA was per-
formed on accuracy scores. We conducted fur-
ther ANOVAs to test for an effect of manner
(stops, fricatives, and nasals) and place of artic-
ulation (labial, dental, alvolar, palatoalveolar,
and velar), as well as a paired-sample t test to
assess voicing effects (voiced vs voiceless).

Multidimensional scaling analysis. Miller and
Nicely (1955) recorded phonemic identifica-
tion data (how often each CV stimulus was in-
correctly identified as another CV) from
participants using the 16 phonemes used in the
current study to establish confusability matri-
ces at different levels of noise. They found that
while the number of confusions is affected by
noise, the overall pattern is not. Thus, the fact
that, for example, /m/ is more confusable with
/n/ than it is with /k/ is both reliable and infor-
mative—it tells us something about the way in
which our brains process speech sounds. Fol-
lowing Shepard (1972), nonmetric multidi-
mensional scaling [MDS; using isoMDS from
the MASS (Modern Applied Statistics with S)
package in the R programming language; Ven-
ables and Ripley, 2002] was applied to the pho-
nemic confusion data taken directly from
Tables 1– 6 in Miller and Nicely’s (1955) report (noise levels: �18, �12,
�6, 0, �6, �12 dB). The acoustic confusion data were first converted
to distances using a logarithmic transformation of the normalized con-
fusion probabilities (Shepard, 1972). Nonmetric MDS was then applied to
the resultant distance matrix and a two-dimensional solution was com-
puted, resulting in a continuous and empirically derived map reflecting
the relative positions of each phoneme in coordinate space. The result of
this analysis closely resembles Shepard’s original solution (Fig. 3; cf.
Shepard, 1972, Fig. 4).

The first dimension, plotted on the x-axis, approximately corresponds to
the feature known as voicing, with unvoiced stimuli on the left side and
voiced stimuli on the right. The second dimension, plotted on the y-axis, is
related to manner of articulation, with nasals occupying the upper half of the
graph and fricatives and stops occupying the lower half.

Voxelwise correlation of MDS dimensions with fMRI activation. To ex-
amine the relation between the two MDS-derived dimensions based on
perceptual distance (Fig. 3, x-axis and y-axis) and brain activation, we
computed separate Spearman rank correlations between each of the first
two dimensions and the corresponding � estimates, averaged over runs,
for the 16 CVs. This produced rank correlations for each MDS dimension
for all voxels in the brain and all participants in the group. To test for
reliable effects at the group level, these correlation images were
z-transformed, spatially normalized to MNI space, and submitted to a
voxelwise one-sample t test.

Multivariate analyses. Although perceptual confusability offers a
means of investigating the representational basis of acoustic–phonetic
speech perception, MDS coordinate maps derived from such data are
dominated by only two of the three major distinctive features, namely,
voicing and manner of articulation. However, because place of articula-

Figure 2. Task design. Two sound trials (1300 ms each) and one silent trial (4000 ms) are depicted in slides with crosshairs.
Participants hear a single CV during every sound trial and must respond with the gender of the speaker. Silent trials contain only a
visual crosshair, thus requiring no response and allowing the hemodynamic response function to return to homeostatic levels.

Figure 3. Multidimensional scaling of 16 consonants. Two-dimensional spatial representation of 16 phonemes based on
pooled data from Miller and Nicely (1955). Voicing is represented on the x-axis, with unvoiced phonemes occupying the left side
and voiced phonemes occupying the right side. Manner of articulation is approximately represented on the y-axis, with nasals
occupying the top half of the figure and fricatives and stops occupying the bottom. A clear division is observed between the
unvoiced stops and fricatives, while overlap exists between voiced stops and fricatives. /�/, “th” in thumb; /�/, “sh” in shoe; /ð/,
“th” in that; /�/, “s” in measure.
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tion (or something akin to it) must be represented at some level in the
brain— otherwise sounds that share voicing and manner but differ in
place (such as “tan” and “can”) would be indistinguishable from one
another—perceptual confusability does not fully reflect the information
contained in the underlying neural code. Moreover, from a theoretical
and empirical standpoint, place of articulation has played a prominent
role in studies of acoustic–phonetic speech perception (see Discussion).
Furthermore, place of articulation is associated with rapid fluctuations in
spectrotemporal fine structure and, unlike manner and voicing features,
is not easily recognized on the basis of lower-frequency envelope infor-
mation (Shannon et al., 1995). Thus, according to AST and other theories
of speech perception that posit left hemisphere specialization for rapid
temporal processing, place of articulation should be more robustly rep-
resented in the left auditory cortex than in the right. We therefore inves-
tigated the distribution of patterns of activity associated with the major
distinctive features of voicing, manner, and place of articulation directly,
rather than through the lens of perceptual confusability.

To do so, we used a class of techniques known as multivoxel pattern
analysis (MVPA). The basic premise of MVPA is to identify reliable
patterns of activation rather than relying on subtraction logic that is
typical of univariate approaches. The main benefit of MVPA is that it
takes advantage of systematic variance distributed across voxels rather
than being based only on the average activity within a single voxel. Thus,
we can train pattern classifiers to discriminate spatial patterns associated
with one feature (i.e., voiced) from those associated with another feature
(i.e., unvoiced) and then test these classifiers on independent test trials.

To identify reliable patterns of distributed brain activity associated
with each feature, a series of MVPA analyses was carried out. We used
Freesurfer’s (Dale et al., 1999) automatic anatomical labeling (“aparc
2009”; Destrieux et al., 2010) algorithm to define a set of 148 cortical and
subcortical ROIs. These ROIs were defined using each participant’s high-
resolution anatomical scan and therefore group analyses could be
performed without applying any spatial normalization. We used ana-
tomically defined ROIs rather than a moving “searchlight” (Kriegeskorte
et al., 2006) procedure because we wished to preserve borders between
spatially adjacent regions along the sylvian fissure (e.g., ventral frontal
cortex and superior temporal cortex). This was especially important in
light of one the major aims of this study, namely, to quantify the contri-
bution of temporal and prefrontal regions—portions of which are adja-
cent in volumetric space—to the neural representations underlying
phoneme perception.

For all MVPA analyses we used shrinkage discriminant analysis (SDA)
as implemented in the R package “sda” (http://cran.rproject.org/web/
packages/sda/). SDA is a form of linear discriminant analysis that esti-
mates shrinkage parameters for the variance– covariance matrix of the
data, making it suitable for high-dimensional classification problems. It
has the advantage of these shrinkage parameters being estimated analyt-
ically from the data, obviating a doubly nested cross-validation scheme
(Ahdesmäki and Strimmer, 2010). To evaluate classifier performance, we
used 10-fold cross-validation where each fold of data consisted of the �
regression weights of nine of the 10 runs, with one run held out for
testing. Thus, during cross-validation, observations drawn from the
same scanning run were never part of both the training and test datasets.
MVPA analyses were performed within each anatomical ROI, or in
groups of ROIs (see below), yielding regional estimates of classifier per-
formance. The SDA classifier produces both a categorical prediction (i.e.,
the label of the test case) as well as a continuous probabilistic output (the
posterior probability that the test case is of label x). The continuous
outputs were used to compute area-under-the-curve (AUC) metrics and
the categorical predictions were used to compute classifier accuracy.

To test for statistical significance at the group level, classifier perfor-
mance for each ROI was evaluated with a one-sample t test where the null
hypothesis assumed a theoretical chance AUC of 0.5. To validate this
assumption, we performed permutation analyses in which we randomly
shuffled the labels in the training set for each cross-validation fold and
repeated the process 100 times for each subject, ROI, and phonological
feature category. The grand mean, over subjects and ROIs, of these
permutation-based AUC values was 0.50000219, which by the exact bi-
nomial test was not significantly different from the theoretical chance

level of 0.5. We therefore concluded that for null hypothesis testing we
could assume that an AUC of 0.5 is the expected value when the classifier
is performing at chance.

Because classification analyses were conducted in anatomically de-
fined ROIs specific to each subject, no spatial normalization was applied
to the subject-specific classifier performance scores. To display statistics
at the group level, the statistic of interest was projected on the parcellated
(aparc 2009; Destrieux et al., 2010) cortical flat map associated with the
Freesurfer average template (“fsaverage”).

Exploratory MVPA of individual feature subcategories. To investigate
the relative contributions of each brain area to the neural pattern of
activity associated with distinctive features, separate classifiers were
trained to detect the subcategories of voicing (voiced and voiceless),
manner of articulation (nasals, stops, and fricatives), and place of artic-
ulation (labial, dental, alveolar, palatoalveolar, and velar). Because the
full phonological feature matrix is not orthogonal for the set of 16 CVs—
and thus feature dimensions are confounded across phonemes—we used
a subsampling approach to ensure that classification for one feature cat-
egory (e.g., nasal) could not be driven by a correlated feature category
(e.g., voiced). To achieve this, we trained classifiers to discriminate each
feature category from a subset of phonemes matched across the other
feature dimensions. For example, a classifier was trained to discriminate
labials from the subset of nonlabials matched on voicing and manner of
articulation. Thus, nine classifiers (voiced, stop, fricative, nasal, labial,
dental, alveolar, palatoalveolar, velar) were trained for each ROI. Note
that because voicing consists of only two categories—voiced and voice-
less—training two classifiers would be redundant as one is essentially the
inverse of the other. We computed both classification and AUC as per-
formance metrics. However, we preferred the latter metric for group
statistics due to its increased sensitivity (Bradley, 1997). To test for sig-
nificant group classifier performance using AUC, we used a one-sample
t test where the null hypothesis (chance performance) assumed an AUC
of 0.5, which is the expected value for the AUC when there is no relation-
ship between the continuous classifier output and the category labels of
the test cases. We then counted the number of significant feature subcat-
egories ( p � 0.05, uncorrected) for each ROI. Regions with �3 signifi-
cant features ( p � 0.0083, by the binomial probability distribution) were
deemed significant in this exploratory analysis.

MVPA of distinctive features in speech-sensitive cortex. The overall per-
formance for a feature (voicing, manner, and place of articulation) was
then computed as a weighted average of the individual category classifi-
ers, where the weights were determined by the frequency of each cate-
gory. For example, the performance score for manner of articulation was
calculated by averaging classifier performance for stops (N � 6), frica-
tives (N � 8), and nasals (N � 2) with the following weights: 0.375, 0.5,
and 0.125. Statistical significance at the group level was evaluated with a
one-sample t test corrected for multiple comparisons using a false dis-
covery rate of q � 0.05.

In this analysis we limited the ROI search space to regions known to be
sensitive to tasks involving the production and perception of speech. We
used Neurosynth (http://neurosynth.org/; Yarkoni et al., 2011) to create
a meta-analytic mask using the search term “speech” (http://neurosynth.
org/features/speech/). This resulted in a coordinate-based activation
mask constructed from 424 studies and encompassing the language-
related areas in the temporal and frontal lobes. We intersected this meta-
analytic mask with the Freesurfer aparc 2009 ROI mask as defined in
MNI space. If any of the intersected ROIs had �10 voxels, we included
that ROI in our search space. To ensure hemispheric symmetry, if a left
hemisphere ROI was included so too was its right hemisphere homolog.
This resulted in an ROI mask consisting of 38 ROIs (19 left hemisphere
and 19 right hemisphere), which are shown in Figure 4.

Hemispheric differences in the superior temporal lobe. To test for later-
alization effects in MVPA measures within broadly defined auditory pro-
cessing structures of the superior temporal lobe, paired-samples t tests
were performed on a subset of left versus right auditory cortex ROIs for
classification performance of voicing, manner, and place. Auditory cor-
tex was defined as any region in the temporal lobe extending inferiorly to
the middle temporal gyrus, medially to the posterior insula, anteriorly to
the planum polare, and posteriorly to the lateral fissure. According to this
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definition, the following ROIs were included:
transverse temporal gyrus [Heschl’s gyrus
(HG)], transverse temporal sulcus, STG, mid-
dle temporal gyrus, planum polare, planum
temporale (PT), lateral fissure, insula, and su-
perior temporal sulcus (Fig. 4, 1–9). Based on
the AST hypothesis (Poeppel, 2003), our pre-
diction was that features that are processed on
faster time scales would be left lateralized while
those that are processed on slower time scales
would be right lateralized. As reviewed in
Rosen (1992), the three main temporal cues for
speech are the envelope, periodicity, and fine
structure, each of which is based on varying
fluctuation rates and have a differential impact
on the perception of phonological features
(Fig. 1). Thus, because voicing and manner of
articulation are based on all three temporal
cues, it was predicted that these features would
be represented bilaterally in the superior tem-
poral cortices, while place would be left lateral-
ized due to its requirement for rapid temporal
processing.

Deriving neural confusability matrices
through classification of individual phonemes. In
a final analysis, we examined whether individ-
ual phonemes could be reliably classified from
patterns of activity across the left and right su-
perior temporal lobe and whether the pattern
of confusions made by the classifier is corre-
lated with the original perceptual confusability
matrices reported in Tables 1– 6 of Miller and
Nicely’s (1955) classic study. Using the com-
bined ROI sets defining the superior temporal
lobe described in the previous section, we
trained three classifiers (one for each hemi-
sphere and one for both hemispheres com-
bined) to distinguish among each of the 16
CVs, and recorded classification accuracy
(chance performance, 0.0625; or 1 of 16) and
the full matrix of phoneme confusions pro-
duced by the classifier predictions. The raw
confusion counts were then normalized by the
row totals (i.e., the number of times the classi-
fier predicted each phoneme), yielding condi-
tional probabilities for each ordered phoneme
pair. Confusion probabilities between the same
pairs (e.g., m ¡ n and n ¡ m) were then aver-
aged to generate a symmetric probability ma-
trix. This matrix was converted to a distance
matrix using Shepard’s log transformation (see
Multidimensional scaling analysis) and then
rank correlated with the distance matrix shown in Figure 2. To evaluate
statistical significance for phoneme classification across the group, we
computed three (left, right, both hemispheres) one-sample t tests against
a null hypothesis of chance accuracy (0.0625).

Results
Behavioral performance
The average accuracy for the gender judgment task was 97% (SD,
2.7; range, 87–100%). A 16 (syllable) � 4 (speaker) repeated-
measures ANOVA showed no significant main effects or interac-
tions for accuracy data (p � 0.05). Further ANOVAs showed no
significant effects on accuracy scores for manner (F(2) � 0.269,
p � 0.766) and place of articulation (F(4) � 2.185, p � 0.076); a
paired-samples t test revealed no significant difference between
voiced and voiceless stimuli (t(24) � 0.327, p � 0.746). Thus,
participants were highly accurate for the behavioral task and

showed approximately equivalent performance across speakers,
syllables, and phonological features.

Correlation of MDS dimensions with fMRI activation
As can be seen in Figure 5, brain activity that correlated with the
first MDS dimension was found in the midanterior portion of the
STG, bilaterally. Positive t statistics correspond to activation pos-
itively correlated with the MDS coordinates, and are indicated in
warm colors. Thus, because voiced phonemes have positive val-
ues on the first dimension, activation in the midanterior STG
essentially increased as a function of voicing. The second MDS
dimension, which distinguished among syllables based on man-
ner of articulation, was significantly correlated with clusters lo-
cated anterior and posterior to HG. Here, warm-colored clusters
approximately indicate areas where activity was significantly
greater for nasals than for fricatives or stops. No significant effects

Figure 4. ROIs in speech-relevant areas of the temporal and frontal lobes. An ROI mask was created by intersecting a Neu-
rosynth automated meta-analysis (search term: “speech”; Yarkoni et al., 2011) and the 148 Freesurfer ROIs (aparc 2009 atlas;
Destrieux et al., 2010). The final set of 38 ROIs (19 left, 19 right) spanned cortical areas in the temporal and frontal lobes important
for the perception and production of speech.

Figure 5. Brain activity related to MDS dimensions. Activation maps of MDS results rendered onto MNI template showing
clusters of �13 voxels at p � 0.005. The figures on the top display clusters correlating with positive values on Dimension 1
(approximately corresponding to the continuum of voicing information), with activation in bilateral anterior STG; the bottom
images display clusters correlating with positive values on Dimension 2 (approximately corresponding to manner of articulation),
with activation in bilateral HG and right PT. Both sagittal images represent right hemisphere templates.
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were found outside of the auditory cortex. The peak coordinates
for all significant clusters are listed in Table 2.

Multivariate results
MVPA of individual feature subcategories
To investigate distributed patterns of activity associated with ma-
jor distinctive features, rather than perceptual confusability per se,
MVPA was used to classify groups of phonemes based on the pho-
nological category to which they belonged. To get a general overview
of areas sensitive to abstract phonological features, we tallied for each
ROI the number of individual subcategories (e.g., labial, fricative,
nasal, etc.) that were reliably classified at p � 0.05 at the group level.
ROIs with significant classification accuracy for �3 categories (cor-
responding to an uncorrected p value � 0.0083 by the binomial
distribution) are listed in Figure 6A. Figure 6B displays the signifi-
cant ROIs projected onto an inflated surface of the brain.

The right STG was associated with the highest number of
categories for which significant classification was observed, with

seven of the nine categories being represented. The vast majority
of ROIs with significant classification accuracy in �3 categories
were contained within the temporal lobes, with the exception of
the left subcentral gyrus (Brodmann area 43 at the ventral post-
central gyrus; Fig. 6B, 11) and right inferior frontal gyrus (IFG)
opercularis (Brodmann area 44; Fig. 6B, 16), which were each
associated with significant classification of four feature catego-
ries, three of which were from the place of articulation feature.

MVPA of distinctive features
ROIs within our speech-sensitive mask with significant (false dis-

covery rate, 0.05) classification accuracy
for distinctive features (voicing, manner,
place) are displayed in Figure 7. As stated
in the Materials and Methods, this analy-
sis is based on the frequency-weighted
means of the performance measures de-
rived from the individual category
classifier.

In this analysis, with the exception of
the subcentral gyrus/sulcus (Brodmann
area 43), only areas in the superior tempo-
ral lobe show significant classification
accuracy to one or more of the three dis-
tinctive features. Specifically, information
regarding voicing and place is prominent
throughout the left STG, with voicing in-
formation extending anteriorly along me-
dial auditory cortex and posteriorly into
PT, and place information throughout
auditory cortex and perisylvian areas. All
three features overlap in the left HG. In
the right hemisphere, voicing and manner
are more prominent in the PT and HG,
with manner extending into posterior lat-
eral fissure. Overlap of all three features
can be seen in right STG. Note the absence
of significant feature classification in the
right IFG, as was seen in the analysis of
individual categories from the previous
section. This area showed high but sub-
threshold t values for place of articulation
in the weighted feature analysis (t(23) �
2.16, p � 0.04), so the discrepancy is more
apparent than real.

Hemispheric differences in the superior temporal lobe
A subset of nine ROIs (left and right; Fig. 4, 1–9) was used to
further investigate the role of hemispheric lateralization specific
to the bilateral superior temporal cortex. To test the prediction of
the AST model that place of articulation should be left biased, we
computed a one-tailed t test comparing classification perfor-
mance across hemispheres. A significant one-tailed effect was
found for place (t(23) � 1.87, p � 0.038). A comparison of the
hemispheric differences for the other features was not significant,
however (voicing, t(23) � �0.726, p � 0.4; manner, t(23) � �0.31,
p � 0.6). To further investigate which ROIs were driving the
laterality effect for place of articulation, one-tailed t tests were
performed on each ROI listed above. In seven of the nine ROIs,
greater classification accuracy was observed on the left versus
right hemisphere, although the difference was statistically reliable
only in the posterior temporal lobe along the lateral fissure
(t(23) � 1.874, p � 0.037). The difference scores for the mean
AUC values for each ROI are displayed in Figure 8.

Figure 6. ROIs with significant classification accuracy in �3 categories. A, The number of categories for which each ROI
obtained significant (equivalent to a p value � 0.0083) classification accuracy is displayed on the y-axis, with ROIs listed across the
x-axis. Gray represents voicing information, warm colors indicate place, and cool colors indicate manner of articulation. B, ROIs
associated with significant classification in �3 categories projected onto an inflated surface. Colors represent number of phono-
logical categories significantly classified per region (note that the scale is not continuous). Vcd, Voiced; Vel, velar; Pal, palatoal-
veolar; Lab, labial; Dent, dental; Alv, alveolar; Nas, nasal; Fric, fricative; 2, inferior insula; 3, HG; 4, transverse temporal sulcus; 5,
STG; 7, middle temporal gyrus; 8, PT; 9, posterior lateral fissure; 11, subcentral gyrus/sulcus; 16, inferior opercular gyrus.

Table 2. Peak voxels correlated with MDS dimensions

Region X Y Z Cluster size t

Dimension 1
Right anterior STG 60 �9 4 44 9.32
Left anterior STG 61 12 7 31 5.24

Dimension 2
Left anterior HG 43 21 4 18 6.83
Right PT 57 �27 16 15 4.65
Right anterior HG 48 �15 1 14 4.69

MNI coordinates for peak voxels of increased activation during speech perception that correlate with Dimension 1
and 2.
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MVPA classification of
individual consonants
The restricted set of nine superior tempo-
ral cortex ROIs described above was com-
bined as a single superior temporal lobe
mask to classify individual phonemes in
each participant. Three classifiers were
trained: one for the left hemisphere, one
for the right hemisphere, and one that
pooled ROIs across hemispheres. Classifi-
cation accuracy (chance accuracy, 0.0625)
for the combined set of left and right
hemisphere superior temporal lobe ROIs
was reliable across participants (mean ac-
curacy, 0.088; t(23) � 7.18, p � 0.0001).
Classification accuracy for both the left and right hemisphere
ROI sets was also reliable (left hemisphere mean accuracy, 0.084;
t(23) � 4.6, p � 0.0001; right hemisphere mean accuracy, 0.076;
t(23) � 2.91, p � 0.008). Although the left hemisphere had a
marginally higher rate of classification, the difference was not
significant (left–right, t(23) � 1.2, p � 0.23), indicating that
phoneme-specific information was contained in neural activity
patterns to an approximately equal extent in both the left and
right superior temporal cortices during speech perception.

Comparison of neural and behavioral phonemic
confusion matrices
To evaluate whether the neural phonemic confusion matrix de-
rived from the MVPA classification analysis of individual sylla-
bles in the superior temporal lobe described in the previous
section resembles the perceptual confusion matrix from Miller
and Nicely (1955; for MDS representation of these data, see Fig.
3), we tested whether the two matrices share significant variance
by correlating their respective interitem distances. Thus, a Spear-
man rank correlation coefficient was computed between lower
diagonal elements of the two distance-transformed confusion
matrices, yielding a correlation of 0.44. Because the set of interi-
tem distances are not independent, statistical significance was
assessed using the permutation-based Mantel test (Abdi, 2010).
Using 1000 permutations to derive a null distribution of the rank
correlation between the perceptual distance matrices, the corre-
lation of 0.44 was determined to be significant (p � 0.0009). This
analysis confirms a substantial shared structure in the confusabil-
ity of phonemes in neural and psychological space.

Discussion
The objective of the current study was to investigate both local and
distributed neural codes associated with phonological feature repre-
sentations during speech perception. We began with the premise
that perceptual confusability—the behavioral tendency to confuse
one phoneme with another—should be evident as patterns of neural
similarity in brain structures critical for acoustic–phonetic percep-
tion (Shepard and Chipman, 1970; Kriegeskorte et al., 2008). The
foregoing logic was used first to evaluate the resurgent idea that the
motor system directly contributes to acoustic–phonetic speech per-
ception (Meister et al., 2007; D’Ausilio et al., 2009). We showed on
the contrary that the orthogonal axes derived from an MDS analysis
of Miller and Nicely’s (1955) phonemic confusability data were sig-
nificantly correlated with regions in the bilateral auditory cortices,
but not in motor/premotor cortices. Specifically, the first MDS di-
mension, which separates voiced from unvoiced consonants, was
positively related to bilateral activity in the midanterior portion of
the STG, a region that has previously been implicated in acoustic–

phonetic perception (Formisano et al., 2008; Moerel et al., 2012).
The second MDS dimension, which separates nasals from stops and
fricatives, was significantly correlated with voxels in the bilateral su-
pratemporal plane both anterior and posterior to HG. In short, this
univariate correlational analysis relating measures derived from a
classic behavioral dataset published six decades ago offers the first
evidence to date that the underlying dimensions describing
the patterns of phonemic confusability of consonants are cap-
tured by local variation in BOLD activity in the bilateral audi-
tory— but not frontal-motor—cortices.

Although perceptual confusability captures aspects of the psy-
chological representation of speech stimuli, it is weakly related to
place of articulation, the feature that has played a central role in
neuroscience studies of acoustic–phonetic speech perception. In the
context of assessing motor contributions to speech perception, in-
vestigations using fMRI (Lee, et al., 2012; Chevillet et al., 2013) and
transcranial magnetic stimulation (TMS; Meister et al., 2007;
D’Ausilio et al., 2009) have usually focused on place of articulation
variables because of the generally straightforward hypothesis that,
for example, labials and alveolars should preferentially activate lip
and tongue areas of somatotopically defined motor cortex. More-
over, place of articulation requires rapid temporal processing and is
theoretically relevant to the AST model of speech perception, which
predicts that phonological features that require the detection of
rapid spectrotemporal fluctuations should show a left hemisphere
bias in the auditory cortex. Thus, we used the distinctive features of
voicing, manner, and place of articulation for the MVPA analyses,
rather than relying on perceptual confusability patterns.

Using a regional MVPA approach, we found significant clas-
sification of distinctive features throughout the left and right
auditory cortices. Voicing was the most robustly classified, ap-
pearing as a significant feature in the majority of the auditory
cortex ROIs in both hemispheres. Manner and place were also
reliably classified in several auditory cortical zones. While there
have been few investigations of the neural basis of manner of
articulation, our results confirm research using electrocorticog-
raphy showing that distributed areas of the left STG selectively
respond to stops, fricatives, and nasals (Mesgarani et al., 2014).
Previous research on place of articulation has broadly implicated
STG (Pulvermüller et al., 2006; Steinschneider et al., 2011; Chev-
illet et al., 2013), as well as some areas of the motor cortex (Pul-
vermüller et al., 2006; D’Ausilio et al., 2009; Möttönen et al.,
2013). Recently, Kilian-Hütten and colleagues (2011) used a pat-
tern classifier to distinguish perceptual differences between sylla-
bles that vary along the place of articulation dimension (labial vs
alveolar). The authors found discriminative voxels along left HG
and sulcus, which is consistent with the pattern that we observed.

Figure 7. Brain activity related to phonological features. Overlapping information of voicing (green), place (red), and manner (blue) in
ROIs within the speech mask projected onto inflated surface. Notably, all three phonological features are represented in right STG as well as
left HG (yellow). 2, Inferior insula; 3, HG; 4, transverse temporal sulcus; 5, STG; 8, PT; 9, posterior lateral fissure; 11, subcentral gyrus/sulcus.
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Role of motor cortex in speech processing
In contrast to some previous work (Pulvermüller et al., 2006;
D’Ausilio et al., 2009; Möttönen et al., 2013), we did not observe
reliable classification of place of articulation in the left motor/
premotor cortex. We did, however, find modest evidence for
place sensitivity in the subcentral gyrus and right IFG (Fig. 6).
These effects were present in the tally of individual significant
categories (�3 categories with significant effect) but right IFG
was not significant when place was treated as a single overarching
feature and defined as a weighted average of its constituent categories
(Fig. 7). Nevertheless, it is interesting to note that in monkeys, the
secondary somatosensory and parietal ventral areas of the postcen-
tral gyrus contain neurons that respond to somatosensory stimula-
tion to the mouth, lips, and teeth (Padberg et al., 2005), an
observation that may have relevance to the current finding but re-
quires further investigation. In humans, Raizada and Poldrack
(2007) used an adaptation approach and found sensitivity to cate-
gorical perception along the /ba/ to /da/ continuum in a similar
region of the ventral parietal cortex.

While the univariate and multivariate analyses used in the cur-
rent study provided slightly different types of information, neither
provided positive evidence that the motor/premotor cortex is in-
volved in phonological feature representation. Alternative roles that
have been proposed for the motor system during speech perception
have included turn taking (Scott et al., 2009), categorical processing
(Lee et al., 2012), providing acoustic templates to aid in perceiving
speech in noisy circumstances (Du et al., 2014), speech segmentation
(Sato et al., 2009), and the automatic activation of articulatory infor-
mation (Yuen et al., 2010). There is also recent evidence suggesting
that motor/premotor cortex is specifically involved in phonological
categorization. Krieger-Redwood and colleagues (2013) compared
the effects of TMS to premotor cortex and STG using a phonological
versus semantic categorization task that used the same stimuli (spo-
ken words whose ending phoneme distinguished between two real
words, such as “cart” and “carp”). They found that TMS to premotor
cortex interfered with the phonological judgments but not the se-
mantic task. Perhaps, then, the motor/premotor cortex is assisting in
fine-grained categorical decisions by aiding participants in “sound-
ing it out.” When sounds cross perceptual boundaries, we often
resort to subvocal rehearsal to repeat these sounds and make deci-
sions on them. This notion is supported by fMRI evidence from
Papoutsi and colleagues (2009), which identified the dorsal pars
opercularis as being involved in syllabification.

Interestingly, the above example as well as other fMRI and TMS
studies that have implied a role for the motor cortex in speech per-

ception (Meister et al., 2007; D’Ausilio et al., 2009) use stimuli that
vary according to place of articulation, which is most intuitively
connected to the motor system but least empirically connected to
behavioral measures of speech perception (as evidenced in the MDS
analysis above, as well as in Peters, 1963; Shepard, 1972; and Rosen,
1992). Thus, it remains unclear whether the frontal-motor system is
sensitive to phonological categorization in general or to the place of
articulation feature in particular. One caveat to our null effects in
motor cortex and other ROIs is that the use of multiple genders and
a gender discrimination task potentially could have influenced pat-
tern discrimination accuracy unequally across phonological catego-
ries (Ryalls et al., 1997; Munson, 2011; Bonte et al., 2014), a
possibility that we are currently evaluating in an fMRI study that uses
MVPA in a passive listening task.

Role of bilateral auditory cortices in speech processing
We further examined laterality differences for each distinctive
feature to test the prediction of the AST model of speech percep-
tion that place of articulation should be preferentially processed
in the left hemisphere, whereas manner and voicing features,
which can be distinguished even in high-pass filtered signals
(Shannon et al., 1995), need not show a left-hemisphere bias. We
confirmed that the pooled effect across all auditory cortical ROIs
was significantly greater in the left than in the right hemisphere
for place of articulation, but not for manner or voicing. The
laterality effect was pronounced around the transverse temporal
sulcus and lateral fissure, regions that have previously been im-
plicated with rapid temporal analysis of sounds (Zatorre and Be-
lin, 2001; Meyer et al., 2005). It should be noted, however, that
although the overall effect in auditory cortex was left biased, the
right STG showed significant sensitivity to place of articulation
and indeed showed nonsignificantly higher classification perfor-
mance than the left STG. Thus, although modest hemispheric
differences in pattern activity appear to be associated with the
place of articulation feature, this general bias does not hold for
every region of the superior temporal cortex.

Conclusion
We have found neural codes related to both perceptual confus-
ability and phonological features throughout the bilateral audi-
tory, but not frontal-motor, cortices. Our results suggest a
modest functional asymmetry in the auditory cortex based on the
time scales on which voicing, manner, and place are processed,
which is consistent with the AST hypothesis (Poeppel, 2003).
Further, we have shown that the neural representations associ-

Figure 8. Hemispheric differences (left–right) in classification accuracy for place of articulation across nine auditory cortex ROIs. Although the general tendency reflects a leftward bias, only
lateral fissure achieved significance ( p � 0.05 one-tailed) on individual t tests. Error bars represent SEM. LF, Lateral fissure; TTS, transverse temporal sulcus; MTG, middle temporal gyrus; PP, planum
polare; STS, superior temporal sulcus.
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ated with speech perception are well captured by patterns of per-
ceptual confusability arising from classic work detailing the
organization of consonants in “psychological space.”
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