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Brain regions that mediate action understanding must contain representations that are action specific and at the same time tolerate a
wide range of perceptual variance. Whereas progress has been made in understanding such generalization mechanisms in the object
domain, the neural mechanisms to conceptualize actions remain unknown. In particular, there is ongoing dissent between motor-centric
and cognitive accounts whether premotor cortex or brain regions in closer relation to perceptual systems, i.e., lateral occipitotemporal
cortex, contain neural populations with such mapping properties. To date, it is unclear to which degree action-specific representations in
these brain regions generalize from concrete action instantiations to abstract action concepts. However, such information would be
crucial to differentiate between motor and cognitive theories. Using ROI-based and searchlight-based fMRI multivoxel pattern decoding,
we sought brain regions in human cortex that manage the balancing act between specificity and generality. We investigated a concrete
level that distinguishes actions based on perceptual features (e.g., opening vs closing a specific bottle), an intermediate level that
generalizes across movement kinematics and specific objects involved in the action (e.g., opening different bottles with cork or screw
cap), and an abstract level that additionally generalizes across object category (e.g., opening bottles or boxes). We demonstrate that the
inferior parietal and occipitotemporal cortex code actions at abstract levels whereas the premotor cortex codes actions at the concrete
level only. Hence, occipitotemporal, but not premotor, regions fulfill the necessary criteria for action understanding. This result is
compatible with cognitive theories but strongly undermines motor theories of action understanding.
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Introduction
Neural populations capable of mediating action understanding
need to be action specific and at the same time generalize across
perceptual features from concrete actions to more abstract levels
(Fig. 1A). Whereas similar conceptualization problems have been
intensively studied in the object recognition domain (Konen and
Kastner, 2008; Mur et al., 2010; Fairhall and Caramazza, 2013;
Anzellotti et al., 2014; Cichy et al., 2014), the neural basis of
action abstraction remains unexplored.

There is an ongoing debate about the cortical substrates con-
taining neural populations that manage the balancing act be-
tween action specificity and feature generality. Mirror neurons in
ventral premotor cortex (PMv) were proposed to show such
properties and therefore have been suggested to represent the
central computational units of action understanding (Rizzolatti
and Craighero, 2004; Rizzolatti et al., 2014). However, criticism
has been raised that mirror neurons might not show the degree of
generality as originally claimed (Kilner, 2011; Cook and Bird,

2013). Alternatively, analogous to conceptualization in the object
domain, more posterior regions in closer proximity to the visual
system, e.g., lateral occipitotemporal cortex (LOTC), might gen-
eralize from perceptually variable instances of actions to abstract
action concepts (Oosterhof et al., 2013; Watson et al., 2013).
However, the degree of generality of action representations has
not yet been established in any of these regions.

Here, we used cross-conditional multivoxel pattern analysis
(MVPA) of fMRI data to identify action representations at three
levels of representation: concrete, intermediate, and abstract.
Participants watched videos of eight actions (open and close two
different exemplars of bottles and boxes, each requiring different
kinematics) and responded to occasionally occurring catch trials.
We decoded concrete actions by training a classifier with trials
that display the opening or closing of a particular bottle and
testing it on different trials from the same conditions, i.e., within
the same object exemplars and kinematics (Fig. 1B, top). To de-
code actions at an intermediate level, we trained the classifier with
trials that display the opening or closing of a particular bottle and
tested it with trials that display the opening or closing of a differ-
ent bottle, i.e., across object exemplars and kinematics (Fig. 1B,
middle). To decode actions at an abstract level, we trained the
classifier with trials that display the opening or closing of a bottle
and tested it with trials that display the opening or closing of a
box, i.e., across object category and kinematics (Fig. 1B, bottom).

Our design overcomes limitations of recent neuroimaging
studies that use object-directed actions to study action represen-
tations that generalize across kinematics (Hamilton and Grafton,
2006, 2008), hand posture (Oosterhof et al., 2010), or viewpoint
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(Oosterhof et al., 2012): by decoding not
only across kinematics but also across dis-
tinct objects and object categories, action
outcomes differ perceptually at interme-
diate and abstract levels, a condition that
is crucial to disambiguate whether identi-
fied representations are sensitive to the ac-
tion or to concrete perceptual features of
an object’s state (e.g., a specific closed
box). Importantly, the direct comparison
between different levels of abstraction al-
lows more relative estimations of the gen-
eralization capacities of action-coding
neural populations in different regions
that supposedly provide the basis for ac-
tion understanding.

Materials and Methods
Participants. Twenty-two healthy adults (11 fe-
males; mean age, 28 years; age range, 19 – 41
years) volunteered to participate in the experi-
ment. All participants were right-handed with
normal or corrected-to-normal vision and no
history of neurological or psychiatric disease.
Participants gave written informed consent be-
fore participation in the study. The experimen-
tal procedures were approved by the Ethics
Committee for research involving human sub-
jects at the University of Trento, Italy.

Stimuli. The stimulus set consisted of three
exemplars of eight actions (24 action videos in
total). The actions were opening and closing
(two-level factor Action) of four different ob-
jects (two bottles and two cosmetic boxes; two-
level factor Object Category). One object
exemplar of each object category had a screw
cap, hence requiring a wrist rotation; the other
object exemplar was opened and closed with
push and pull kinematics, respectively (two-
level factor Kinematics). Catch trials consisted
of three exemplars of the eight actions that
ended with an additional action step (moving,
tilting, or lifting the object; 24 catch trial videos
in total). Action videos were filmed from a 180°
third person perspective using a Canon 5D
Mark II camera and edited in iMovie (Apple)
and MATLAB (The MathWorks). All 48 videos
were identical in terms of action timing, i.e.,
the videos started with hands on the table mov-
ing toward the object, followed by the object
manipulation, and ended with hands moving
to the same position on the table. Videos were
in black and white, had a length of 2 s (30
frames per second), and had a resolution of
400 � 300 pixels.

For intermediate and abstract levels, we aimed at targeting neural
populations that are capable of differentiating perceptually similar but
conceptually dissimilar actions that, at the same time, generalize across
conceptually similar but perceptually dissimilar actions. Hence, “open a
water bottle” and “close a water bottle” should be perceptually more
similar than “open a water bottle” and “open a wine bottle” (intermedi-
ate level) or “open a bottle” and “open a box” (abstract level). To test if
our stimuli match these criteria, we estimated the visual similarity be-
tween the action videos. To this end, we correlated each video with each
other video frame by frame, i.e., we correlated frame 1 of video A with
frame 1 of video B, etc. We then averaged the correlation coefficients
across frames to obtain a mean correlation matrix of the 24 � 24 action

videos (2 actions � 2 kinematics � 2 object categories � 3 action exem-
plars). In a second averaging step, we computed the means of to-be-
classified actions (open vs close bottle A, open vs close bottle B, etc.), and
of same actions across object exemplar (intermediate; open bottle A vs
open bottle B, close bottle A vs close bottle B, etc.) and object category
(abstract; open bottle A vs open box B, close bottle A vs close bottle B,
etc.). The results demonstrate that, in line with our criteria, pixelwise
similarities of to-be-classified actions were substantially higher (r � 0.54)
than similarities of same actions at intermediate (r � 0.27) and abstract
levels (r � 0.12), suggesting that to-be-classified actions are perceptually
more similar (i.e., there is fewer perceptual information that can be ex-
ploited by the classifier) than the actions that are generalized at interme-
diate and abstract levels.

Figure 1. A, Investigated levels of abstraction. The concrete level (red) describes actions based on perceptual stimulus proper-
ties like concrete kinematics and object exemplars involved in the action. The intermediate level (green) generalizes across
kinematics and object exemplars. The abstract level (blue) generalizes across kinematics and object category. B, Decoding scheme.
Different abstraction levels were isolated by training a classifier to discriminate the opening and closing of a specific bottle or box
and tested it using actions involving either the same object (concrete), a different object from the same object category (interme-
diate), or an object from a different object category (abstract; see Materials and Methods for details of the procedure). Expected
patterns of results for different regions of coding actions at concrete but not intermediate and abstract levels (C); at concrete,
intermediate, and abstract levels (D); and at the abstract level only (E). Dotted line represents decoding accuracy at chance � 50%
(for details, see Materials and Methods, ROI MVPA).
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In the scanner, stimuli were back-projected onto a screen (60 Hz frame
rate, 1024 � 768 pixels screen resolution) via a liquid crystal projector
(OC EMP 7900; Epson) and viewed through a mirror mounted on the
head coil (video presentation 6.9 � 5.2° visual angle). Stimulus pre-
sentation, response collection, and synchronization with the scanner
were controlled with ASF (Schwarzbach, 2011) and the MATLAB
Psychtoolbox-3 for Windows (Brainard, 1997).

Design of the fMRI experiment. Stimuli were presented in an event-
related design. In each trial, videos (2 s) were followed by a 1 s fixation
period. Eighteen trials were shown per block. Each of the nine conditions
(eight action conditions plus one catch trial) was presented twice per
block. Five blocks were presented per run, separated by 12 s fixation
periods. Each run started with a 10 s fixation period and ended with a 16 s
fixation period. In each run, the order of conditions was first-order coun-
terbalanced (Aguirre, 2007). Each participant was scanned in a single
session consisting of 12 functional scans and one anatomical scan. For
each of the nine conditions there was a total of 2 (trials per block) � 5
(blocks per run) � 12 (runs per session) � 120 trials per condition.

Task. Participants were instructed to attentively watch the movies.
They were asked to press a button with the right index finger on a re-
sponse button box whenever an action was followed by an additional
action step (moving, tilting, or lifting the object). Participants could
respond either during the movie or during the fixation phase after the
movie. To ensure that participants followed the instructions correctly,
they completed a practice block outside the scanner.

Data acquisition. Functional and structural data were collected using a
4 T Bruker MedSpec Biospin MR scanner and an eight-channel birdcage
head coil. Functional images were acquired with a T2*-weighted gradient
EPI sequence with fat suppression. Acquisition parameters were a repe-
tition time of 2 s, an echo time of 21 ms, a flip angle of 75°, a field of view
of 192 mm, a matrix size of 64 � 64, and voxel resolution of 3 � 3 � 2
mm. We used 43 slices, acquired in ascending interleaved order, with a
thickness of 2 mm and 15% gap (0.3 mm). Slices were tilted to run
parallel to the superior temporal sulcus. We thereby covered the full
temporal lobe including the poles. In few participants the most superior
part of prefrontal and parietal cortex (�1 cm) was not covered. In each
functional run, 172 images were acquired. Before each run we performed
an additional scan to measure the point-spread function (PSF) of the
acquired sequence to correct the distortion expected with high-field im-
aging (Zaitsev et al., 2004).

Structural T1-weigthed images were acquired with an MPRAGE se-
quence (176 sagittal slices, TR � 2.7 s, inversion time � 1020 ms, FA �
7°, 256 � 224 mm FOV, 1 � 1 � 1 mm resolution).

Preprocessing. Data were analyzed using BrainVoyager QX 2.4 (Brain
Innovation) in combination with the BVQX Toolbox and custom soft-
ware written in MATLAB (The MathWorks).

Distortions in geometry and intensity in the EPIs were corrected on
the basis of the PSF data acquired before each EPI scan (Zeng and Con-
stable, 2002). The first four volumes were removed to avoid T1 satura-
tion. The first volume of the first run was aligned to the high-resolution
anatomy (six parameters). Data were 3D motion corrected (trilinear
interpolation, with the first volume of the first run of each participant as
reference), followed by slice time correction and high-pass filtering (cut-
off frequency of three cycles per run). Spatial smoothing was applied with
a Gaussian kernel of 8 mm FWHM for univariate analysis and 3 mm
FWHM for MVPA. Note that smoothing up to 8 mm FWHM can in-
crease the sensitivity in MVP correlation analysis whereas, in MVP de-
coding, smoothing between 0 and 8 mm showed no substantial increases
or decreases in decoding accuracy (Op de Beeck, 2010). A recent study,
however, revealed that smoothing between 2 and 3 mm FWHM had best
effects on MVP decoding (Gardumi et al., 2014). For group analysis, both
anatomical and functional data were transformed into Talairach space
using trilinear interpolation.

Cortex-based alignment. For each hemisphere and participant, surface
meshes of the border between gray and white matter were segmented and
reconstructed. Resulting surfaces were smoothed and inflated. In addi-
tion, spherical surface meshes were generated and morphed to a standard
spherical surface. On the basis of multiscale surface curvature maps
(which reflect the gyral/sulcal folding pattern) with four coarse-to-fine

levels of smoothing, the standardized spherical surfaces of all participants
were aligned to an average spherical surface using a coarse-to-fine mov-
ing target approach (Fischl et al., 1999; Goebel et al., 2006). Transforma-
tion matrices of the established correspondence mapping were used to
align surface maps entering statistical group analyses. In addition, aver-
age folded, inflated, and flattened group surfaces of both hemispheres
were created. Statistical maps were projected onto these group surfaces.

MVPA. MVPA was performed using a linear support vector machine
(SVM) classifier as implemented by LIBSVM (Chang and Lin, 2011).
Both ROI-based and searchlight-based MVPA were performed. The ROI
analysis (see Materials and Methods, ROI Analysis) was used to directly
investigate the level of abstractness (concrete, intermediate, and abstract)
represented in core regions involved in action observation, i.e., PMv,
anterior intraparietal sulcus/inferior parietal lobe (IPL), and LOTC.
Note that we included IPL because of its prominent role in action obser-
vation, despite the fact that it is not well suited to differentiate between
motor and cognitive theories. On one hand, IPL is typically counted to
the motor system as its homolog in the monkey has been reported to
contain mirror neurons (Fogassi et al., 2005) and is suggested to encode
motor and visuospatial aspects of actions such as object affordances
(Fagg and Arbib, 1998) as well as action outcomes and intentions (Fo-
gassi et al., 2005; Rizzolatti et al., 2014). On the other hand, IPL is con-
sidered to belong to a supramodal semantic system (Binder and Desai,
2011) and shows high degrees of abstraction in object recognition and
thus classical properties of the ventral “what” stream (Konen and Kast-
ner, 2008; Fairhall and Caramazza, 2013). Therefore, motor and cogni-
tive views do not offer opposing predictions regarding generalization
capacities in IPL. The searchlight analysis (see below, Surface-based
searchlight MVPA) was performed to identify putative additional re-
gions representing action concepts.

ROI definition. ROIs were defined separately for each participant on
the basis of univariate statistical maps using a similar approach as de-
scribed previously (Oosterhof et al., 2010). In brief, to constrain peak
cluster identification in individual contrast maps and thus to avoid pos-
sibly arbitrary selection decisions of the experimenter (Oosterhof et al.,
2012), individual ROIs were defined as circles around the peak vertex of
individual statistical surface maps that lie within a circle of 12 mm radius
centered around the group peak vertex. To this end, we first computed a
group random-effects GLM. Design matrices contained predictors of the
eight (Action � Object Category � Kinematics) conditions, catch trials,
and of six parameters resulting from 3D motion correction (x, y, z trans-
lation and rotation). Each predictor was convolved with a dual-gamma
hemodynamic impulse response function (Friston et al., 1998). Each trial
was modeled as an epoch lasting from video onset to offset (2 s). The
resulting reference time courses were used to fit the signal time courses of
each voxel. To identify the group peak vertices, we contrasted all eight
conditions versus baseline (where baseline is defined as all time points
not modeled in the design matrix). The resulting group contrast was
projected on the cortex-based aligned group surface and peak vertices
were identified in anatomically defined cortical regions in both hemi-
spheres (ventral precentral gyrus, anterior intraparietal sulcus, and pos-
terior middle temporal gyrus). To identify individual peak vertices, we
computed single-subject GLM contrasts [all eight conditions vs baseline]
in volume space using design matrices as described above. After project-
ing the resulting individual maps on the surface, peak vertices were iden-
tified within circles of 12 mm radius centered around the group peak
vertices. Finally, disk-shaped ROIs (12 mm radius) were defined around
the individual peak vertex of each participant.

ROI MVPA. The following steps were done for each participant and
ROI separately. Within each individual ROI (230 vertices on average),
�-weights were estimated on the basis of five trials per condition and run
resulting in two �-estimates per condition and run. Design matrices thus
contained 16 predictors of action conditions, two catch trials predictors,
and the six predictors of the 3D motion correction parameters. Predic-
tors were orthogonal to each other (highest correlation in any of the runs
and any of the participants was R 2 � 0.12; overall mean: R 2 � 0.009). In
total, there were 24 �-estimates per condition for each vertex (i.e., 24
multivariate �-patterns per condition). Classification accuracies were
computed using leave-one-out cross validation, i.e., the classifier was
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trained using the data of 23 patterns and tested on its accuracy at classi-
fying the unseen data from the remaining pattern. This procedure was
performed in 24 iterations, using all possible combinations of training
and test patterns. The classification accuracies from the 24 iterations were
averaged to give a mean accuracy score per test. To decode actions at the
concrete level, the classifier was trained to discriminate between open
and close bottle A and tested on open versus close bottle A (Fig. 1B, top).
The same classification procedure was repeated for the remaining three
objects and the mean of all four tests was computed. To decode actions at
the intermediate level, the classifier was trained to discriminate between
open and close bottle A and tested on open versus close bottle B (Fig. 1B,
middle). Again, the classification procedure was repeated for bottle B ¡
bottle A, box A ¡ box B, and box B ¡ box A, and the mean of the four
tests was computed. Decoding at the intermediate level therefore targeted
action representations that generalize across object exemplars (exemplar
A and B) and kinematics (screw and push/pull). To decode actions at the
abstract level, the classifier was trained to discriminate between open and
close bottle A and tested on open versus close box B (Fig. 1B, bottom).
The classification procedure was repeated for bottle B¡ box A, box A¡
bottle B, and box B ¡ bottle A, and the mean of the four tests was
computed. Decoding at the abstract level therefore targeted action rep-
resentations that generalize across object categories (bottles and boxes)
and kinematics (screw and push/pull). For the intermediate and abstract
levels (“across object” classification) we also used the leave-one-out cross
validation procedure to ensure that the results are as comparable as pos-
sible to the results of the concrete level (“within object” classification).
The mean classification accuracy for each abstraction level, ROI, and
participant was entered into a one-tailed one-sample t test against the
classification expected by chance (50%). Statistical results were FDR cor-
rected for the number of one sample t tests, i.e., 6 ROIs � 3 levels � 18
tests (Benjamini and Yekutieli, 2001).

To assess statistical significance of the differences between decoding
accuracies of different abstraction levels and regions, a repeated-
measures ANOVA with Abstraction Level, ROI, and Hemisphere and
post hoc paired samples t tests were used. Within each region, we consid-
ered the following three possible scenarios. (1) “Concrete-only” regions
encode action information at the concrete level but not at intermediate
and/or abstract levels (Fig. 1C). In this case, three criteria must be met:
significant decoding at the concrete level; no significant decoding at in-
termediate and/or abstract levels; and significant differences between
concrete and intermediate and/or abstract levels, respectively. (2) “All
levels” encode action information at all levels of abstraction (Fig. 1D). In
this case, two criteria must be met: significant decoding at concrete,
intermediate, and abstract levels and significant differences between con-
crete and intermediate and between intermediate and abstract levels,
respectively. A stepwise decrease from concrete to abstract is expected
because in the concrete decoding, action information from all three levels
can be exploited by the classifier whereas for the intermediate decoding
only information from the intermediate and abstract level can be ex-
ploited and for the abstract decoding only abstract action information
can be exploited. (3) “Abstract-only” regions encode action information
at the abstract level only (Fig. 1E). In this case, two criteria must be met:
significant decoding at concrete, intermediate, and abstract levels and no
significant differences between concrete and intermediate and between
intermediate and abstract levels, respectively. No differences between the
three levels are expected because in all three levels the same (abstract)
information is picked up by the classifier.

Across regions, we further examined double dissociations of abstrac-
tion level and region. To do so, we considered the following scenarios: in
case region X encodes concrete action information only and region Y
encodes abstract action information only (Fig. 1C,E, respectively), an
interaction of Abstraction Level and ROI is expected. However, in case
region X encodes concrete action information only and region Y encodes
actions at both concrete and more abstract levels (Fig. 1C,D, respec-
tively), no interaction of Abstraction Level and ROI is expected. This is
because region Y should show higher decoding accuracies for concrete
compared with abstract levels. Importantly, the relative differences be-
tween concrete and intermediate/abstract levels can be similar in region
X and Y, in which case no interaction would be observed. Hence, for the

case that region Y, but not region X, encodes actions at intermediate and
abstract levels the following criteria must be met: (1) presence of signif-
icant decoding accuracies for concrete, intermediate, and abstract levels
in region Y; (2) absence of significant decoding accuracies for interme-
diate and abstract levels in region X; (3) a significant main effect of
Abstraction Level; (4) a significant main effect of ROI; and (5) significant
decoding differences between region X and Y at intermediate and ab-
stract levels.

Surface-based searchlight MVPA. To identify any additional regions
coding actions at different levels of abstraction we performed a surface-
based (Oosterhof et al., 2010) searchlight pattern classification (Krieges-
korte et al., 2006). For each participant and hemisphere, we transformed
volume time courses into surface mesh time courses. Volume time
courses were sampled along the mesh vertex normal from �1 to 3 mm.
GLM computation and MVPA classification was performed using iden-
tical parameters and procedures as for the ROI MVPA. The classification
accuracy was assigned to the central vertex. Resulting individual surface
accuracy maps were anatomically aligned using the transformation pa-
rameters of the cortex-based alignment. Aligned maps were entered into
a one-sample t test to identify vertices where classification was signifi-
cantly above chance. We reasoned that wherever actions can be decoded
at the intermediate level (action classification across object exemplar)
actions should also be decodable at the concrete level (action classifica-
tion within object exemplar). Likewise, wherever actions can be decoded
at the abstract level (action classification across object class) actions
should also be decodable at both the concrete (action classification
within object exemplar) and the intermediate level (action classification
across object exemplar). We therefore entered statistical maps for the
intermediate and abstract levels into a conjunction analysis: for the in-
termediate level, a conjunction of the maps for concrete and intermedi-
ate level was computed. For the abstract level, a conjunction of the maps
for concrete, intermediate, and abstract level was computed. Conjunc-
tions were computed by outputting the minimum t value for each vertex
of the input maps (Nichols et al., 2005). Finally, maps were corrected for
multiple comparisons at p � 0.05 at the cluster level, using a cluster size
algorithm (Forman et al., 1995) based on Monte Carlo simulations (1000
iterations) as implemented in BrainVoyager 2.4. An initial voxelwise
threshold of p � 0.005 and an estimate of the spatial correlation of voxels
of the statistical maps were used as input in the simulations.

Results
Behavioral results
All participants identified catch trials with high accuracy. Mean
error rates were 5.0 � 0.8%, (SEM). Reaction times for correct
responses (measured with respect to video onset) were 1953 � 25
ms (SEM).

Univariate fMRI results
To determine ROIs for subsequent MVPA, we computed a group
contrast of all eight conditions (Action � Object Category �
Kinematics) versus baseline (see Materials and Methods, ROI
definition). This revealed widespread activations within left and
right ventral and dorsal premotor cortex, intraparietal sulcus
(IPS), and occipitotemporal cortex extending dorsally into pos-
terior IPS and ventrally into middle and inferior temporal gyrus.
Peak Talairach coordinates identified in the group contrast for
the ROI MVPA were as follows: �47/0/27 (left PMv), 53/0/36
(right PMv), �43/�36/39 (left IPL), 35/�35/46 (right IPL),
�43/�69/�2 (left LOTC), and 43/�65/1 (right LOTC).

In addition, we computed a univariate contrast “open” versus
“close” (collapsed across object category and kinematics) to test
for putative univariate effects. This contrast revealed no signifi-
cant effects (even after applying very liberal correction thresholds
of p � 0.05 at the voxel level). The lack of significant differences in
the univariate contrast suggests that the activation levels were
comparable over the two actions.
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ROI MVPA results
In a ROI-based MVPA, we investigated the degree of generality of
action representations (see Materials and Methods for details of
the procedure) in regions typically associated with action obser-
vation, i.e., PMv, IPL, and LOTC (Fig. 2).

In IPL and LOTC, we could decode actions at all levels of
abstraction, while in PMv, we could only decode actions at the
concrete level (FDR corrected � � 0.034). A three-way repeated-
measures ANOVA with the factors Abstraction Level � ROI �
Hemisphere revealed main effects of Abstraction Level (F(2,378) �
10.23, p � 0.001) and ROI (F(2,378) � 18.93, p � 0.001). No effects
of Hemisphere and no interactions were observed (all p � 0.1).
Post hoc paired samples t tests revealed that decoding accuracies
for intermediate and abstract levels were significantly higher in
IPL compared with PMv and in LOTC compared with PMv (Ta-
ble 1). In addition, accuracies in PMv differed significantly be-
tween concrete and abstract levels (Table 2). These results
demonstrate that IPL and LOTC, but not PMv, encode actions at
abstract levels of representation.

A second observation is that LOTC
showed significantly stronger decoding
for the concrete compared with interme-
diate and abstract levels, whereas IPL
showed relatively similar decoding accura-
cies across all levels (Table 2). This indicates
that LOTC contains both concrete and
more abstract representations whereas IPL
contains abstract action representations
only suggesting that generalization from
perceptual to conceptual action representa-
tions takes place in LOTC (see Materials and
Methods, ROI MVPA for a detailed descrip-
tion of expected patterns of results).

Finally, in all regions, decoding accuracies
for intermediate and abstract levels were at
similar levels and did not show significant dif-
ferences (Table 2), suggesting that generaliza-
tionfromconcrete(object-specific)toabstract
(object category-independent) action repre-
sentations does not require an additional, in-
termediate (object-independent but object
category-specific) abstraction step (see Mate-
rials and Methods, ROI MVPA for a detailed
description of expected patterns of results).

Searchlight MVPA results
A searchlight analysis corroborated the findings of the ROI
MVPA (Figs. 3, 4, Table 3): at the concrete level, we decoded
actions in both hemispheres throughout the occipitotemporal
cortex, postcentral sulcus (PoCS), IPS, and ventral as well as dorsal
premotor cortex. At intermediate and abstract levels, we decoded
actions in bilateral posterior middle temporal gyrus (pMTG)/infe-
rior temporal sulcus (pITS) and PoCS (at the junction to anterior
IPS), but not in areas anterior to the postcentral sulcus.

Discussion
Our results demonstrate that LOTC, but not PMv, encode the
actions open and close at abstract levels of representation, i.e.,
independently of the concrete objects and object categories in-
volved in the actions and the kinematics required to manipulate
these objects. This finding provides evidence that LOTC and IPL
contain neural populations that are action specific and at the
same time generalize across perceptually different instantiations
of an action and thus fulfill the necessary criteria for action un-
derstanding. On the contrary, PMv codes actions at a concrete
level only. We found no regions anterior to postcentral gyrus that
contain action representations that generalize across involved
object exemplars or categories. The presence of abstract action
representations in LOTC and the lack of such representations in
premotor cortex seriously questions the motor-centric view that
premotor and/or inferior prefrontal cortex provides the basis of
action understanding (Rizzolatti et al., 2014). Instead, our results
provide clear support for cognitive accounts that suggest action
understanding to be associated with perceptual functions, similar
to object recognition.

Our searchlight analysis at the intermediate and abstract level
revealed a cluster in left LOTC that closely overlapped with the
region identified in a meta-analysis on conceptual action process-
ing using picture compared with verbal stimuli (Watson et al.,
2013). This finding raises the question to which degree informa-
tion decoded at the intermediate and abstract levels can be re-
garded perceptual versus conceptual. Based on our design, we can

Figure 2. ROI MVPA results. Mean classification accuracies for decoding at concrete (red), intermediate (green), and abstract
(blue) levels. Error bars indicate SEM, asterisks indicate statistical significance (different from 50% � chance, red � FDR corrected
for the number of tests). Dotted line represents decoding accuracy at chance � 50%.

Table 1. Results of post hoc paired samples t test between ROIs

PMv-IPL PMv-LOTC IPL-LOTC

t(21) P t(21) P t(21) P

Concrete �1.784 0.088 �4.450 �0.001* �2.845 0.009*
Intermediate �2.253 0.035* �3.507 0.002* �1.082 0.291
Abstract �2.440 0.023* �3.140 0.005* �0.990 0.333

Mean decoding accuracies collapsed across hemispheres; two-tailed. *Significant p values (FDR corrected for num-
ber of tests).

Table 2. Results of post hoc paired samples t test between abstraction levels

Concrete–intermediate Concrete–abstract Intermediate–abstract

t(21) P t(21) P t(21) P

PMv 1.314 0.101 1.962 0.031* 0.599 0.277
IPL 1.392 0.089 1.671 0.054 0.051 0.479
LOTC 3.369 0.001* 3.517 0.001* �0.012 0.504

Mean decoding accuracies collapsed across hemispheres; one-tailed. *Significant p values (FDR corrected for num-
ber of tests).
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narrow down a few alternatives. (1) Could
decoding be driven by low-level percep-
tual differences between open and close
across decoding levels? Our study was de-
signed to target neural populations that
are sensitive to the difference between
perceptually similar but conceptually dis-
similar actions and at the same time gen-
eralize across perceptually dissimilar but
conceptually similar actions. Using per-
ceptual similarity analysis (see Materials
and Methods), we ensured that perceptual
differences between to-be-decoded ac-
tions (e.g., open vs close water bottle) are
smaller than perceptual differences be-
tween same actions across decoding levels
(e.g., open water bottle vs open wine bot-
tle; open bottle vs open box). This makes
it unlikely that decoding at intermediate
and abstract levels was driven by low-level
perceptual features. In line with this view,
only at the concrete level, where low-level
visual features were likely to contribute to
the decoding between open and close, we
found above chance decoding throughout
visual cortex, including early visual areas.
(2) Could decoding be driven by similar-
ities of action-specific motion patterns for
open and close across decoding levels? Be-
cause different kinematics were required
for open and close at the intermediate and
abstract level (screw vs push/pull), we can
rule out that decoding at these two levels
relied on fine-grained motion patterns of
hands and fingers. In addition, move-
ments for open and close were mirror-
like: not only is open the exact reverse of
close, and vice versa, but also in the initial
and end phases of each action hand and
arm movements are highly similar (hands
toward vs away from object). Therefore,
decoding is unlikely to be based on the
coarse-grained movement trajectories of
arms and hands. So what is the systematic
difference between open and close across object exemplars and
categories that could be exploited by the classifier? We consider it
likely that decoding at the intermediate and abstract level relied
on neural populations that are sensitive to the specific change of
an object’s state (e.g., in case of closing: from open to closed, but
not vice versa) independent of the concrete means of the manip-
ulation. However, we do not know if the generalization capac-
ities of these neuronal populations are limited to (1) manual
actions (or also comprise the opening of a trashbin with the
foot), (2) containers (or also comprise the opening of a door),
(3) transitive actions (or also comprise the opening of the
mouth or the eye), or (4) physical actions (or also comprise
figurative use of action concepts, e.g., opening a business).
Finally, (5) we do not know whether the change of the object’s
state has to be intentionally induced by an actor or whether the
same neural populations would also respond to a door that is
opened by the wind. These considerations are certainly very
exciting and exemplify our limited knowledge about the archi-
tecture underlying action representations. Notably, however,

they are of little relevance for the goal of our study, i.e., a
comparison of the relative abstraction capacities of regions
involved in action observation.

We found that not only LOTC but also IPL encode action
information at abstract levels of representation. Motor and
cognitive theories do not offer opposing predictions regarding
the generalization capacities in IPL. Our findings in IPL are,
therefore, not suited to differentiate between the two views.
However, there seems to be general agreement that IPL is
associated with representing action outcomes, either in the
sense of proximal physical end states or more distal long-term
goals (Hamilton and Grafton, 2007; Oosterhof et al., 2013;
Rizzolatti et al., 2014). Recently, anterior IPL has been shown
to encode functional knowledge of how to achieve particular
outcomes that generalize across motor and sensory informa-
tion, e.g., decorate room and dress up (Leshinskaya and Cara-
mazza, 2015). This suggests, in line with our findings, that the
notion of IPL encoding concrete action outcomes (in the sense
of physical end states in the world) is too narrow and needs to

Figure 3. Mean accuracy maps of the searchlight MVPA at each abstraction level (concrete, intermediate, and abstract).
Individual accuracy maps were cortex-based aligned, averaged, and projected onto a common group surface (both flat
maps and lateral views of inflated hemispheres). Decoding accuracy at chance is 50%. CS, central sulcus; IFS, inferior frontal
sulcus; IPS, intraparietal sulcus; ITS, inferior temporal sulcus; PrCS, precentral sulcus; PoCS, postcentral sulcus; SFS, superior
frontal sulcus; STS, superior temporal sulcus.
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be expanded to nonmotoric and nonsensory outcomes and
purposes.

Notably, the abstraction from concrete actions (open a spe-
cific bottle) to intermediate (open bottle) and abstract (open)
represents levels of a conceptual action hierarchy, which is qual-
itatively different from hierarchies that describe different levels
from muscle activation to movements, goals, and intentions of
one and the same concrete action (Csibra, 2007; Hamilton and
Grafton, 2007; Kilner et al., 2007). Importantly, previous studies
that disentangled levels of the latter hierarchy (e.g., the goal vs the
kinematics of an action) were not designed to identify conceptual
action representations because the investigated actions always

involved the same objects and therefore
an action feature that was perceptually
constant for the tested representations
(for an exception focusing on the per-
formance of tool-related pantomimes,
see Chen et al., 2015). These studies can-
not disambiguate if an identified repre-
sentation would be triggered by a
concrete action element (e.g., a specific
opened box) or by any instantiation of
that action independent of the concrete
object. Only the latter case fulfills the
necessary criteria for action under-
standing. This ambiguity might explain
why some studies found action goal-
specific and kinematic-independent
representations in premotor cortex
(Majdandzic et al., 2009) or inferior
frontal gyrus (IFG; Hamilton and Graf-
ton, 2008). In the light of this reasoning
and our results, it seems likely that rep-
resentations in these regions code con-
crete perceptual action features, like the
estimated end state of an action, or pos-

sibly also even lower level perceptual and motion differences
between concrete instantiations of open and close. This inter-
pretation is in line with the observation that mirror neurons in
monkey’s premotor cortex are not independent of, but in fact
modulated by, low-level features of an observed action (Cook
and Bird, 2013).

One may argue that, although PMv does not code abstract
actions, simulation of the concrete action in PMv is necessary
to activate conceptual action information in LOTC and IPL.
However, given that premotor cortex receives visual input
only indirectly via the dorsal pathway from LOTC and IPL or

Figure 4. Statistical maps of the searchlight MVPA. For intermediate and abstract levels, conjunctions (i.e., lowest common t value per vertex) of concrete/intermediate and concrete/
intermediate/abstract levels, respectively, were used (see Materials and Methods for details). Alignment and projection procedures are the same as in Figure 3. Outlines around clusters indicate
clusters surviving cluster size correction (dark red, concrete; dark green, intermediate; dark blue, abstract; thresholded at p � 0.005, corrected cluster threshold p � 0.05). CS, central sulcus; IFS,
inferior frontal sulcus; IPS, intraparietal sulcus; ITS, inferior temporal sulcus; PrCS, precentral sulcus; PoCS, postcentral sulcus; SFS, superior frontal sulcus; STS, superior temporal sulcus.

Table 3. Clusters identified in the searchlight MVP analysis for action decoding at concrete, intermediate, and
abstract levels

Cluster Peak

Region t P Accuracy size t p Accuracy x y z

Concrete
Left pMTG/LOTC 4.978 0.0007 56.5 25017 12.027 �1.0E-07 61.9 �45 �69 �1
Left PoCS/SMG 4.038 0.0013 54.7 2932 6.808 1.0E-06 56.8 �54 �20 30
Right pMTG/LOTC 5.256 0.0005 56.6 24802 10.381 �1.0E-07 62.6 43 �71 5
Right IPS 4.096 0.0014 55.1 5417 8.167 �1.0E-07 58.3 48 �25 37
Right PoCS/SMG 3.929 0.0017 54.5 1791 6.382 3.0E-06 56.3 52 �27 24
Right SPL 3.816 0.0021 54.2 1515 5.479 2.0E-05 55.8 27 �50 59

Intermediate
Left pMTG/ITS 4.163 0.0031 53.8 3558 6.946 1.0E-06 55.8 �42 �79 1
Left LO 3.607 0.0096 53.0 1040 4.877 8.0E-05 54.2 �18 �91 14
Left PoCS 3.617 0.0062 53.9 732 5.132 4.4E-05 55.7 �51 �26 34
Left lingual gyrus 3.507 0.0146 53.6 647 4.477 2.1E-04 54.9 �14 �72 �14
Right PoCS/aIPS 3.595 0.0028 54.3 752 5.012 5.8E-05 56.0 37 �34 43

Abstract
Left pMTG/ITS 3.475 0.0130 53.4 547 4.222 3.8E-04 54.5 �41 �76 �4
Left PoCS 3.433 0.0110 54.3 265 4.233 3.7E-04 55.4 �51 �29 36

Size in mm 3. Thresholded at p � 0.005, corrected cluster threshold p � 0.05. IPS, intraparietal sulcus; ITS, inferior temporal sulcus; LO, lateral occipital cortex;
LOTC, lateral occipitotemporal cortex; pIPS, posterior intraparietal sulcus; pMTG, posterior middle temporal gyrus; PoCS, postcentral sulcus; SMG, supramar-
ginal gyrus; SPL, superior parietal lobe.
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via the ventral pathway from LOTC and IFG (Kilner, 2011;
Nelissen et al., 2011; Turken and Dronkers, 2011), this option
seems unparsimonious because it implies that information is
first processed in LOTC and IPL, then sent to PMv to enable a
motor simulation of the action, and finally sent back to pos-
terior regions where conceptual action information is acti-
vated. A more ecological explanation would be that action
understanding is a function of LOTC and IPL and action-
specific activation of neurons in PMv rather follows or runs in
a parallel to action understanding. In line with this view, Pa-
peo et al. (2014) showed that repetitive transcranial magnetic
stimulation applied to the posterior pMTG abolished the dis-
tinction between action and nonaction verbs in the precentral
gyrus. The hypothesis that action understanding is not caus-
ally related to activation of motor circuits in PMv is further
corroborated by the observation that congenital absence of
motor representations (Vannuscorps et al., 2013) or damage
to premotor or motor cortex following stroke (Negri et al.,
2007; but see Pazzaglia et al., 2008; Kalénine et al., 2010) does
not necessarily result in deficits in action understanding.

If premotor cortex is not required for action understand-
ing, what role could it play in action observation? One hypoth-
esis is that observed actions activate associated motor
responses (Hickok, 2013). Although this is possible, one might
argue that similar motor responses should be expected for the
intermediate level, i.e., observing the opening of two different
bottles should not be associated with two different responses.
A different theory suggests that motor circuits are exploited to
simulate and anticipate perceptual consequences of observed
actions (Csibra, 2007; Kilner, 2011). This view would be in line
with the observation of PMv involvement in anticipatory pro-
cessing of dynamic stimuli in general (Schubotz, 2007; Press
and Cook, 2015) and in generating predictions of action out-
comes in particular (Jeannerod, 2006; Csibra, 2007). Our find-
ing that PMv codes concrete, but not abstract, action
information supports this view.
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