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Role of Input Correlations in Shaping the Variability and
Noise Correlations of Evoked Activity in the Neocortex
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"Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany, and 2Computational Biology, School of Computer
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Recent analysis of evoked activity recorded across different brain regions and tasks revealed a marked decrease in noise correlations and
trial-by-trial variability. Given the importance of correlations and variability for information processing within the rate coding paradigm,
several mechanisms have been proposed to explain the reduction in these quantities despite an increase in firing rates. These models
suggest that anatomical clusters and/or tightly balanced excitation-inhibition can generate intrinsic network dynamics that may exhibit
a reduction in noise correlations and trial-by-trial variability when perturbed by an external input. Such mechanisms based on the
recurrent feedback crucially ignore the contribution of feedforward input to the statistics of the evoked activity. Therefore, we investi-
gated how statistical properties of the feedforward input shape the statistics of the evoked activity. Specifically, we focused on the effect
of input correlation structure on the noise correlations and trial-by-trial variability. We show that the ability of neurons to transfer the
input firing rate, correlation, and variability to the output depends on the correlations within the presynaptic pool of a neuron, and that
an input with even weak within-correlations can be sufficient to reduce noise correlations and trial-by-trial variability, without requiring
any specific recurrent connectivity structure. In general, depending on the ongoing activity state, feedforward input could either increase
or decrease noise correlation and trial-by-trial variability. Thus, we propose that evoked activity statistics are jointly determined by the

feedforward and feedback inputs.
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Introduction

Evoked cortical responses are transient departures from ongoing
activity that are induced by the presentation of stimuli. Usually,
evoked activity is characterized by three main features: (1) an
increase in firing rate; (2) a decrease in trial-by-trial firing rate
variability (Churchland et al., 2010; Oram, 2011); and (3) a de-
crease in the covariability between pairs of neurons (noise corre-
lations) across multiple presentations of the same stimulus
(Smith and Kohn, 2008; Oram, 2011). Additionally, single neu-
ron response could also show a transient decrease in (long-term)
correlation between consecutive time windows (Oram, 2011). In
addition to sensory stimuli, attention-related inputs could also
induce similar changes in the ongoing activity (Mitchell et al.,
2007, 2009; Cohen and Maunsell, 2009; Anderson et al., 2011).

Received Nov. 3, 2014; revised Feb. 24, 2015; accepted April 15, 2015.

Author contributions: A.F.B.,A.A., and A.K. designed research; A.F.B.and A.K. performed research; A.F.B.and A.K.
contributed unpublished reagents/analytic tools; A.F.B. analyzed data; A.F.B., A.A., and A.K. wrote the paper.

This work was supported by FACETS-ITN PITN-GA-2009-237955, the German Federal Ministry of Education and
Research BMBF Grant 01GQ0830 to BFNT Freiburg/Tuebingen, the German Research Council DFG-SFB 780 and DFG
EXC 1086 BrainLinks-BrainTools, and EU-InterReg (TIGER). We also acknowledge the use of the computing resources
provided by the Black Forest Grid Initiative and the bwUniCluster funded by the Ministry of Science, Research and the
Arts Baden-Wiirttemberg and the Universities of the State of Baden-Wiirttemberg, Germany, within the framework
program bwHPC. We thank Volker Pernice, Susanne Kunkel, and Moritz Helias for helpful discussions and sharing
their code; and the system administrators of the Bernstein Center Freiburg.

The authors declare no competing financial interests.

Correspondence should be addressed to either Dr. Alejandro F. Bujan or Dr. Arvind Kumar, Bernstein Center
Freiburg, Hansastr. 9a, 79104 Freiburg, Germany. E-mail: afbujan@gmail.com or arvkumar@kth.se.

DOI:10.1523/JNEUR0SCI.4536-14.2015
Copyright © 2015 the authors ~ 0270-6474/15/358611-15$15.00/0

Thus, these observations suggest that these three stimulus-
induced modulations in the spiking activity are related to active
processing of sensory information in the cortex.

Such features of evoked activity could be a result of mechanisms
that have evolved to achieve a more efficient use of available neuro-
nal hardware to transmit information using rate/population code
(Barlow, 1994). For instance, a reduction in noise correlations could
improve the decoding of population rate signals increasing the
signal-to-noise ratio (Zohary et al., 1994; Shadlen and Newsome,
1998). Thus far, the mechanisms generating the main features of
evoked dynamics remain poorly understood.

Recent theoretical studies view evoked activity as emergent
dynamics generated by the recurrent connectivity within the re-
ceiving network (Rajan et al., 2010; Deco and Hugues, 2012;
Litwin-Kumar and Doiron, 2012; Hennequin et al., 2014; Schne-
pel et al., 2014). Regardless of their details, these models attribute
the dynamics of evoked activity to the intrinsic dynamics of the net-
work (feedback hypothesis). Although some of them provide a suc-
cessful explanation for the reduction in trial-by-trial variability, they
fail to explain the decrease in noise correlations. Crucially, these
models ignore the contribution of feedforward inputs to the statistics
of the evoked activity. It is conceivable that evoked activity dynamics
originate because of a rapid switching (Oram, 2011) or interaction
between the statistics of feedforward inputs and the structure and
activity of the recurrent network (White et al., 2012).

Here, we study the effect of feedforward input statistics on the
evoked activity dynamics. We show that feedforward drive alone



8612 - J. Neurosci., June 3,2015 - 35(22):8611— 8625

Table 1. Network parameters
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Table 3. Conductance-based LIF neuron parameters

Name Value Description Name Value Description
N, 1000 No. of inhibitory neurons Gieak 10 nS Membrane leak conductance
Ne 4000 No. of excitatory neurons Gy 200 pF Membrane capacitance
€ 0.1 Connection probability T 20 ms Resting membrane time constant
Ke 400 No. of excitatory incoming connections —54 Fixed firing threshold
K, 100 No. of inhibitory incoming connections Veset —70mvV Reset potential
Teef 2ms Absolute refractory period
Table 2. Current-based LIF neuron parameters
Name Value Description Table 4. Conductance-based synapse parameters
R 16Q Membrane resistance Name Value Description
T 10 ms Membrane time constant T 5ms Rise time of excitatory conductance
/A 20mV Fixed firing threshold T 10 ms Rise time of inhibitory conductance
Vieset omvV Reset potential E 0omvV Reversal potential of excitatory synapses
Tref 2ms Absolute refractory period £, —80mV Reversal potential of inhibitory synapses
) 0.73mV At a holding potential of —70 mV
J, —9.16 mV Ata holding potential of —55mV
d 1,5ms Synaptic delay

can be sufficient to capture the main features of evoked responses
(feedforward hypothesis), and input correlations play a crucial
role in such a process. Because the feedforward input arrives
through convergent—divergent projections, we describe the input
correlations as those within the presynaptic inputs to single
neurons (within correlations) and those between the presyn-
aptic pools of neuron pairs (between correlations) (Beden-
baugh and Gerstein, 1997; Rosenbaum et al., 2010; Yim et al.,
2011). We show that the statistics of the feedforward input
shapes the dynamics of the recurrent network substantially
when within-correlations are relatively strong (still within a biolog-
ically plausible regimen). To understand how these correlated inputs
affect the network response, we analyzed the transfer of spiking sta-
tistics in isolated neurons. We find that within-correlations modu-
late the transfer (transmission susceptibility) of input spiking
statistics, including the three main properties of the evoked re-
sponses described above. Interestingly, the recurrent connectivity
and dynamics of the network also affects the transfer function of
input variables. Thus, according to our model, the reduction in noise
correlations and trial-by-trial variability is a combined effect of the
input and recurrent connectivity.

Materials and Methods

Network model. The network consisted of 4000 excitatory ( E) and 1000
inhibitory (I) leaky integrate-and-fire (LIF) neurons arranged in a ring
(see Fig. 1a). The connectivity between cells was sparse (¢ = 0.1), and
neuronal in-degree was fixed to K, = eN_ incoming connections (where
a = I, E indicates the presynaptic population); (I — P..,)K,, of these
presynaptic partners were drawn randomly from the K, nearest neigh-
bors, and the remaining P,.,, K, were chosen randomly from the entire
network. Multiple and self-connections were avoided. We set
P..., = 0.1, which resulted in a network topology with “small-world”
properties (Watts and Strogatz, 1998; Kriener et al., 2009). The parame-
ters are detailed in Table 1.

Neuron model. In the simulations with Gaussian white noise inputs, we
used LIF neuron models with membrane potential subthreshold dynam-
ics as follows:

Tme = _‘/m(t) + RmIsyn(t)> (1)

where V,,, is the neuron’s membrane potential and [,
current. All other parameters are detailed in Table 2.
When the membrane potential reached a fixed threshold V,;, a spike
was emitted and the membrane potential was set to V. After the reset,
the neuron’s membrane potential remained constant during a time pe-
riod 7,., mimicking the period of absolute refractoriness that follows the

spike emission in real neurons.

is the total input

In the remaining simulations, neurons were modeled using LIF neu-
ron models with the following membrane potential subthreshold
dynamics:

Tme = _Gleak [Vm(t) - Vreset] + Isyn(t)i (2)

where V,, is the neuron’s membrane potential, I, is the total synaptic
input current, and C,, and G, are the membrane capacitance and leak conduc-
tance, respectively. The neuronal dynamics of spike emission and refractoriness
were as described above. All other parameters are detailed in Table 3.

Synapse model. In simulations with spike train inputs, synaptic inputs
consisted of transient conductance changes as follows:

Isyn(t) = Gsyn(t)[vm(t) - Esyn]’ (3)

where E_, is the synapse reversal potential. Conductance changes were
modeled using exponential functions with 7, = 5 ms and 7, = 10 ms.
Other parameters are detailed in Table 4.

Correlation models. We defined correlation models based on their
“amplitude distribution” f(§) (for a more detailed explanation, see
Staude et al., 2010). The amplitude distribution represents the fraction of
total input rate associated with a presynaptic population event with a
number ¢ of synchronous spikes, regardless of which presynaptic neu-
rons emitted the spikes. In the present study, we used two different
amplitude distributions: a binomial-like (see Fig. 1b, top row) and an
exponential (see Fig. 1b, bottom row).

The binomial model assigns a large probability mass to very-high-
order interactions, and this probability mass shifts to even higher-order
correlations (HoCs) when p,, and/or N, are increased (shifting peak in
Fig. 1b, top left). On the other hand, the exponential model tends to preserve
much of its probability mass within the range of low-order interactions, even
when p,, and/or N,, are increased (see Fig. 1, bottom left).

The binomial-like amplitude distribution can be defined in the follow-
ing way:

fl&) = mby ¢ + (1 — M) By, (£), (4)

where 7 indicates the fraction of total input rate associated with uncor-
related spikes (§ = 1), N, is the number of correlated afferents, ¢ is the
probability of the binomial distribution, and 8, , is the Kronecker & (8, ;
= 1if £ = 1 and 0 otherwise). This distribution becomes truly binomial
when 1 = 0. It can be shown that, when 1 = 0, then p equals the mean
pairwise correlation coefficient p,, (Kuhn et al., 2003) and, more generally,
0= p, =p =1 (Staude et al, 2010).
The exponential distribution can be written as follows:

figm) = ﬁ/kE (5)
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where 7 represents the decay constant.
Independent of the specific amplitude distribution, the average pair-
wise correlation coefficient can be calculated as follows:

HA]
_HA]

Pw = N1’ (6)

where E[A¥] = ZéN;” | E€(€) represents the moments of the amplitude dis-
tribution. p,, only depends on the ratio of the first two moments of the
amplitude distribution and is independent of higher-order moments
(Staude et al., 2010).

The 7 values used in simulations with the exponential model were
calculated by minimizing the difference between the desired p,, value and
the one obtained with Equations 5 and 6 as follows:

E[A?] )
arg min _ E[A]
o=l 7)

Generation of correlated input ensembles. We refer to the set of presyn-
aptic inputs projecting to a single neuron and which belong to a specific
input source as an input ensemble. Thus, by definition, different input
ensembles from the same input source project to different neurons. Al-
though different input ensembles from the same source may share some
elements (i.e., common inputs), we did not consider this possibility for
simplicity.

Each input ensemble was associated with a point process representing
the series of presynaptic events, which we termed event train. Presynaptic
events can be either single uncorrelated spikes (£ = 1) or volleys of £ > 1
perfectly synchronous spikes. The event train is equivalent to the
“mother process” in Kuhn et al. (2003) and the “carrier process” in
Staude et al. (2010).

We used two different methods to generate correlated ensembles of
spike trains:

(1) Carrier method: To produce correlated input ensembles with an
arbitrary amplitude distribution, we generated N,, Poisson processes
each representing a different order of interaction &. The event rate of each
& process can be obtained as follows:

&)

Ve = vain?) (8)
where v, indicates the firing rate of the individual input spike trains.
Thus, the event rate of the event train (v,,) is just the sum across all orders
as follows:

Vm = EV§ = Nw VinE@, (9)
3 =1

The carrier method is a powerful algorithm to generate correlated input
ensembles with arbitrary amplitude distributions. However, it imposes
two important restrictions: event trains must follow Poisson statistics
and event spikes are in perfect synchrony with zero time lag.

(2) Copying method: The binomial model (binomial-like with n = 0)
corresponds to a model in which each event in the event train is copied
into each input spike train of the input ensemble with a fixed copy prob-
ability (see p, in Fig. 1¢). This “copying method” was first introduced as
the “multiple interaction process” model (see Kuhn et al., 2003 for fur-
ther details of this method).

When only the level of pairwise correlations needs to be fixed, the
copying method is computationally more efficient than the carrier
method. We used the copying algorithm to generate correlations across
event trains py, using a fixed copying probability (see p, in Fig. 1c).

To study the modulation of output interval regularity, we used event
trains with Poisson (i.e., with a coefficient of variation squared of the
interevent interval (IEI) distribution or CVZ, = 1) and gamma statistics
(CVZ > 1). Because the carrier method relies on the assumption that
event trains have Poisson statistics, we used the copying method to
generate event trains with IEI density matched to a gamma distribution

J. Neurosci., June 3, 2015 - 35(22):8611- 8625 * 8613

I'(a, B) (where o and B are the shape and rate parameters of the distri-
bution, respectively).

The CV? of a gamma renewal process is known to be: CV* = p

(Nawrot et al., 2008). As opposed to the case of the Poisson process, the
spike train resulting from randomly copying spikes from a gamma pro-
cess is not a gamma process (Yannaros, 1988). However, the CV 2 of the
resulting process can be calculated analytically. Here, we used o = 2 for
the generation of the gamma processes used in the simulations (Maimon
and Assad, 2009).

Data analysis. Pairwise correlations were computed using the Pearson
correlation coefficient between the spike count vectors of pairs of neu-
rons ( y,(t) and yj(t)).

. Coviyy)
Pi = \/Cov(y,-,y,-)Cov(yj,yj) (10)
where:
Cov(yiyy) = (i) = v)(y,() — v)) = (W) y;(1) — viv,
(11)

and ( - ) indicates time average, and vectors y;(f) and y;(t) were computed
using a time window of At = 200 ms.

To compute the cross-correlation functions CCFs, the time (1) was
divided into bins of A = 5 ms and the population spike trains were
transformed into spike count vectors y;(t), where i = E and I denotes the
population. The CCFs were then computed as follows:

DDyt + 1) B

(viv), (12)
where 7= (—A, —A + A1, .., A),t = (A, A+ At, ..., T, — A),A =150
ms, AT = 5 ms, and v; indicates the population mean firing rate.

The Fano factor (FF) of the ith neuron (FF,) was computed from spike
count vectors as the ones described above. The FF; formula could be
written as follows:

B Varl y;]
R

(13)

Coefficient of variation squared of the interspike interval (ISI) distribu-
tion CV 2 was calculated as follows:

CV? = f (14)
w”

where o is the SD of the ISI distribution and p is its mean.
The power spectrum of the population spike train was calculated as
follows (from Gerstner and Kistler, 2002):

2

1| [52 v
PS(w) = T S(t)e tdt |, (15)
—Td2

where S(t) represents the population spike train and T, indicates the
duration of the recorded activity.

Mean field analysis. We used the approach developed previously (Doi-
ron et al., 2004; Lindner et al., 2005; de la Rocha et al., 2007) to calculate
Pour analytically. We considered two LIF neurons that received correlated
white noise input currents ({) with Gaussian statistics and divided the
total input current to each ith neuron into two independent components:

(D) = I,(1) + I(t) (16)

Each component was further divided into two parts: one that was shared
across neighboring cells ({.) and another one, which was private to a
specific neuron (¢;). Hence, the total input current to ith neuron could be
formulated as follows:
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i) = pA(NA VL) + (NS ol viDL V(= p) (0 + (b)),
(17)

where u*(N¥, +£) is the mean of the kth input current injected into each
neuron and o*(N¥, pk, +¥)) its SD.

Each current source I¥(f) was composed of two zero mean uncorre-
lated Gaussian white noises: £5(r) and ZX(¢), i.e, E[£,(t)] = 0 and
E[£,()¢,(1)] = 8,,8(t — t'), where 8, is the Kronecker 8(5,, = 1 ifa =
b and 0 otherwise) and E,|.] represented temporal average.

The scaling factor pf represents the input correlation coefficient
0 = p,,’f = 1) and sets the weight of the common fluctuations coming
from the kth input source.

Additionally, we defined vy as the ratio between the variances of the two

sources as follows:
(a)?
Y= (0?)? (18)

Using the approach presented in de la Rocha et al. (2007), the common
input Q() was defined in the following way:

Q(t) = o' \phlt + & \pil (19)

Equations 1, 17, and 19 were combined to obtain the following
expression:

Vi(t) = = Vi(t) + p+ o' 1 = pdi(0) + o7 {1 = ppZi(0) + Q1)
(20)
The following steps of the derivation were analogous to those described
by de la Rocha et al. (2007; see this publication for a more detailed

explanation). The expression presented by de la Rocha et al. (2007) can
be reformulated as follows:

Pou = Gppy + Pip = 2, oD (21)
where,
(i)
o
) dup
d)p_ CVZVout (22)

and v, and CV? are known to be:

1 (u—Vreset)/o
= \/; e erfc(x)dx (23)
Vour
(w=Vm)lo
(p—Vreset)/o

CV2 = 27T(V014T Tm)zf

(p=Vi)lo

e‘zj e”(1 + erf(y))’dydx

(24)

with u and o indicating the mean and SD of the total input current
(Ricciardi, 1977; Brunel, 2000). Other parameters are indicated in
Table 2.

Simulation tools. Network simulations were performed using the sim-
ulator NEST, interfaced with PyNEST (Gewaltig and Diesmann, 2007;
Eppler et al., 2008). The differential equations were integrated using
fourth-order Runga-Kutta with a time step of 0.1 ms. Simulation data
was analyzed using the Python scientific libraries: SciPy and NumPy. The
visualization of the results was done using the library Matplotlib
(Hunter, 2007). NEST simulation code to reproduce the key results pre-
sented in this paper and an additional supporting figure can be obtained
from https://github.com/AlexBujan/wbmod.

Results

Multiple neuronal and network mechanisms could control the
dynamics of evoked responses. Recent theoretical work suggests
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that the presence of clustered connectivity in the network (Deco
and Hugues, 2012; Litwin-Kumar and Doiron, 2012), the spatial
extent of the local and incoming projections (Schnepel et al.,
2014), or a detailed balance of excitation and inhibition (Henne-
quin et al., 2014) can give rise to intrinsic network dynamics
leading to a reduced FF and noise correlations when excited by an
external input. Although a feedforward drive is still necessary,
these models crucially ignore the role input properties may play
in shaping the evoked activity. Here, we describe the potential
contribution of feedforward input statistics to the dynamical
properties of the evoked activity.

Feedforward input model: within-correlation structure and
statistics of the event train

It has been shown that input correlations can affect multiple
aspects of the neuronal dynamics (Bedenbaugh and Gerstein,
1997; Shadlen and Newsome, 1998; Salinas and Sejnowski, 2000;
Salinas and Sejnowski, 2002; Kuhn et al., 2003; Moreno-Bote and
Parga, 2006, 2008; de la Rocha et al., 2007; Renart et al., 2010;
Rosenbaum et al., 2010; Rosenbaum and Josi¢, 2011), suggesting
that the correlation structure of feedforward inputs could play an
important role in the generation of evoked activity.

To incorporate the effect of input correlations, it is necessary
to consider the structure of the input projections. The feedfor-
ward input to a recurrent network arrives via a set of convergent—
divergent projections. In such a setting, convergent inputs to a
single neuron combine correlated spikes that can dominate the
fluctuations of the membrane potential. On the other hand, di-
vergent projections can give rise to correlated input spikes across
neurons. Therefore, it is important to consider input correlations
attwo different levels: at the single-cell level (within-correlations)
and at the population level (between correlations). Within-
correlations refer to correlated spikes across afferents projecting
to the same neuron (input ensemble) and capture the effect of
convergent projections. Between-correlations refer to correla-
tions across inputs projecting to different neurons and capture
the effect of divergent projections. Previous work has shown that
both within- and between-correlations determine the transfer of
correlated activity (Bedenbaugh and Gerstein, 1997; Renart et al.,
2010; Rosenbaum et al., 2010; Yim et al., 2011).

In the present work, the mean pairwise correlation coefficient
across inputs within an input ensemble is denoted by p,, (see Fig.
1¢c). However, the effect of within-correlations does not depend
exclusively on p,, (Kuhn et al., 2003; Staude et al., 2008; Renart et
al., 2010; Rosenbaum et al., 2010; Staude et al., 2010); hence, we
considered two additional factors: the number of correlated af-
ferents N,, and the distribution of HoCs f(§) (or amplitude dis-
tribution; see Materials and Methods). The combination of p,,
N,,, and f(&) is what we refer to as the within-correlation struc-
ture. These parameters define the correlation structure of single-
input ensembles and therefore influence exclusively the response
at the single neuron level.

We used two different correlation models f{£): a binomial-like
and an exponential model (see Fig. 1b and Materials and Methods).
The key difference between the two correlation models is that,
whereas the binomial model rapidly assigns a higher probability to
very high-order interactions when p,, and/or N,, are increased (Fig.
1b, top left, grayscale traces), the exponential model tends to preserve
much of its probability mass within the range of low-order interac-
tions (Fig. 1b, bottom left, grayscale traces).

In our model, between-correlations are defined as correlated
activity across event trains. Each input ensemble is associated
with an event train, which can be thought of as a point process
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Network diagram and generation of correlated input ensembles. a, Network diagram. Circles/squares represent excitatory/inhibitory neurons. Gray lines indicate recurrent connections.

The recurrent connectivity is highlighted for one inhibitory/excitatory neuron (red/blue arrows). Green circles and square represent neurons driven by inputs with predefined within-correlation
structure and event train statistics (green arrows). Gray arrows indicate unstructured external inputs. b, Correlation models represent binomial-like (top row) and exponential (bottom row).
Parameters: 1 = 0.2, p,, = 0.2 (green curves), N, = 100. Grayscale curves represent different p,, values. Subpanels, Amplitude distribution f(§) (left column) and example raster plot (right
column). All parameters as described in the main text. ¢, Schematic diagram that illustrates the generation of two correlated input ensembles using the copying algorithm. Small circles represent
individual event/spike trains. Tilted squares represent nodes that copy each incoming event/spike with a certain probability p, where i indicates the step index in the algorithm. LIF neurons are
represented as the combination of an integrating (circle enclosing a sum symbol) and a linear-rectifying (circle enclosing a depiction of a threshold-linear transfer function) operation. p,, Average
pairwise correlation between event trains (blue circles); py,,, average correlation between pairs of spike trains across input ensembles; p,,, average correlation between pairs of spike trains from the
same input ensemble (small circles inside larger ones); N, number of spike trains in each input ensemble; v, average event/spike rate; (V2 average coefficient of variation squared of the ISI/IEl

distribution.

containing all events (volleys of more or less synchronous spikes
regardless of their amplitude &) arriving to a certain neuron (see
Materials and Methods). Here, we considered only the mean
pairwise correlation coefficient across event trains denoted by p,,
(see Fig. 1c) to characterize the between correlations. To further
define the feedforward input, we also tuned other statistics of the
event train: the frequency (rate) of events v, and coefficient of
variation squared of the IEI distribution or CV?, (Fig. 1c, blue
elements of the diagram). CV7, indicates the regularity of the
synchronous events. Thus, the feedforward input is parametrized
by the tuple [Py, Vi CVis s Ny fIE].

Note that the p,, does not represent the mean pairwise corre-
lation coefficient across input ensembles; this value is indicated as
Pow (Fig. 1c, red elements). For the binomial model, it can be
shown that p,,, = py p,- In recurrent structures, within- and
between-correlations are intertwined as between-correlations
can become within-correlations through divergent—convergent
connectivity motifs. In feedforward structures, within- and
between-correlations can be independent and therefore can play
different roles in the generation of evoked responses, whereas in
random networks p, = p,,, the introduction of local clusters in
the recurrent connectivity of the network can result in differ-
ent values for p,, and p, (Lindsay et al., 2012). Therefore, in
clustered networks, it makes sense to consider different values
of within- and between-correlations also in the recurrent
(feedback) projections.

Effect of within-correlation structure on the statistics of
evoked responses

Previous theoretical work showed that increasing the external
input firing rate is likely to increase the level of correlated activity
in the network (Brunel, 2000; Kumar et al., 2008; Voges and
Perrinet, 2012). These results suggest that a stimulus that only
causes an elevation of the input firing rate is unlikely to induce
evoked-like spiking activity patterns. Here, first investigate

whether changes in input firing rate could give rise to evoked
activity statistics.

To this end, we performed numerical simulations of recur-
rently connected networks containing 4000 excitatory (E) and
1000 inhibitory (I) neurons (see Fig. 1a and Materials and Meth-
ods). By adjusting the network parameter probability of rewiring
or P, we switched between two configurations: a random net-
work (P, = 1) and a locally connected random network
(LCRN) with 10% of unspecific projections (P,.,, = 0.1) (Meh-
ring et al., 2003; Kriener et al., 2009). It has been argued that the
connectivity of cortical microcircuits can be approximated by a
random model (Braitenberg and Schiiz, 1998), but recent ana-
tomical and physiological studies indicate that at least connection
probability decreases with distance (for review, see Boucsein et
al., 2011), which motivated the use of LCRNS in this study.

We performed simulations in which we increased the input
firing rate to a subset of E neurons, which were nearby cells in the
case of the LCRN. The resulting activity of the stimulated set of
neurons confirmed that the level of pairwise correlations in-
creases as a result of larger input firing rates for both network
connectivities (see Fig. 2a,b). This result indicates that a change in
the input firing rate alone is not sufficient to capture the features
of evoked responses.

In the remaining simulations, we only used LCRNs as our
results indicated that these networks could reproduce more
closely the dynamics typically observed during ongoing activity
seed with purely random networks. We found that, when LCRNs
were driven by uncorrelated Poisson spike trains at a total rate
Viora = 5 kHz, the spiking activity measured in a local region of
the network (100 nearby cells) was characterized by relatively low
firing rates (3.5 = 1.65 Hz; mean % SD across pairs), irregular ISIs
(CV%, = 1.6 * 0.16),large FFs (2.19 = 0.21; time window of 200
ms), and fairly high pairwise correlation coefficients (0.10 = 0.04;
time window of 200 ms). The excess of positively correlated pairs
is a local feature of the LCRN. When random pairs from the
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Evoked dynamics resulting from a firing rate increase in the feedforward inputs projecting to a local region of the network. a, Evoked dynamics in a LCRN with probability of rewiring

P..w = 0.1asafunction of the stimulus firing rate. Red trace represents average pairwise spike count correlation coefficient (p,,,). Blue trace represents average FF. Green trace represents average
output firing rate (v,,,). b, Evoked dynamics in a purely random network (P,,,, = 1). The structure of this panel is the same as in @.

entire network were included in the analysis, the mean pairwise
correlation coefficient decreased substantially (0.01 = 0.00).
These results show that LCRNs can generate spiking activity con-
sistent with the statistics of ongoing cortical activity (Softky and
Koch, 1993; Arieli et al., 1996; Smith and Kohn, 2008; Church-
land et al., 2010; Ecker et al., 2010; Harris and Thiele, 2011; Barth
and Poulet, 2012).

We continued by exploring whether a transient change in the
within-correlation structure of a external feedforward source
projecting to a “local” region of the network (Fig. 1a, green ar-
rows) could give rise to the evoked activity features. We evaluated
a case in which only the within-correlation structure (i.e., N,,, p,,»
and f(§)) was altered without a change in the event train statistics
(v, CV2, and p,). The stimulus consisted of artificially gener-
ated spike trains that had prescribed N, and p,, values and were
generated according to either a binomial or an exponential am-
plitude distribution (Staude et al., 2010) (see Materials and
Methods; Fig. 1b). We used two different correlation models to
investigate whether the distribution of HoCs plays an important
role in the generation of evoked activity features.

We mimicked a typical experiment (e.g., Churchland et al.,
2010) in which a time-limited stimulus is presented to a subject
multiple times (an example simulation is shown in Fig. 3a—d). To
test the role of the within-correlation structure, we first consid-
ered a special case in which the only input parameter altered
during the stimulation was p,,, whereas other input parameters
(pp, = 0, Vo = 5 kHz, CV2, = 1) were kept constant. In this case,
correlations were generated according to the binomial model. In
these simulations, the input parameter p,, was set to 0.2 during
stimulation (200 ms) and 0 the rest of the time (see Fig. 3d). We
measured FF, p,, (noise correlations), and v, in the stimulated
neurons across 500 trials in three consecutive time windows of
200 ms: prestimulus, stimulus, and poststimulus (see Fig. 3f~h).
The analysis of the activity in the stimulated neurons showed a
marked reduction in FF (prestimulus: 2.16 * 0.63; stimulus:
1.17 £ 0.20; poststimulus: 1.94 * 0.48) and p,,, (prestimulus:
0.15 = 0.15; stimulus: 0.013 = 0.07; poststimulus: 0.13 £ 0.14)
together with an increase in v, (prestimulus: 3.38 = 7.50; stim-
ulus: 10.18 = 13.16; poststimulus: 4.21 = 7.75). Comparing the
power spectra across conditions revealed that there was a general
gain in power across all frequencies during stimulation due to the
increase in v, (see Fig. 3i). However, the power spectrum be-

out

came more uniform, indicating a decrease of correlated activity
between 1 and 200 Hz (see Fig. 3i). Additionally, the CCFs
showed that this reduction was not restricted to near-zero lag
correlations but that longer lags were also affected (see Fig. 3j-1).
These results clearly suggest that the dynamics of evoked activity
could be attributed to changes in the within-correlation structure
of a putative feedforward input source.

To further confirm these results and identify the space of
within-correlation structure that results in reduced FF and noise
correlations, we performed simulations in which we systemati-
cally varied p,, and N,, while keeping 20% of v, uncorrelated
(n = 0.2; see Materials and Methods). HoCs were distributed
following the binomial-like (see Fig. 4a—e) or the exponential
model (see Fig. 4f—j). The remaining input parameters were
kept constant across simulations: p, = 0, v,,,; = 5 kHz and
CV?% = 1.Only v, changed because it had to be adjusted to keep
Vyoral CONStant across simulations (as indicated in Eq. 9; see also
below).

Notably, our results showed that even moderate values of p,,
and N,, could introduce marked deviations from the dynamics
obtained with uncorrelated inputs. This striking departure was
found independent of the HoC model (e.g., p,, = 0.05 and N,, =
500; binomial: v, = 3.84 * 2.66 Hz, CVZ, = 1.09 * 0.06,
FF = 1.21 = 0.11, p,,, = 0.07 = 0.05; exponential: v,,, = 3.68 =
2.32Hz, CV%, = 1.06 * 0.07,FF = 1.17 + 0.11, p,, = 0.05 +
0.05; see most bottom left boxes in Fig. 4b—e,g—).

For the binomial model, our results show that v, CV?, and
FF had a nonmonotonic dependence on p,, and N,,. This non-
monotonicity can be explained if we consider that, to maintain
Vyoral CONStant, increasing the probability of high-order events (as
the result of increasing p,, and N,;) can only be achieved at the
cost of reducing v,,,. Initially, increasing p,, and N, increases v,
as larger synchronous events are associated with a higher proba-
bility of producing output spikes. However, beyond a certain
point, when the event size exceeds the neuron spiking threshold,
we enter in the so-called “spike wasting” regime (Kuhn et al.,
2003) and the decrease in v,,, dominates, leading to the reduction
of v,,. For very large N,, (e.g., 2500 inputs), because v, was
maintained fixed at a relatively low frequency (4 kHz, excluding
the 1 kHz of uncorrelated drive), v,,, became very small (more
markedly in the binomial model), resulting in very low v, (see
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Figure3. Transition between ongoing and evoked dynamics reproduced by a transient modification of p,, in the source of feedforward inputs projecting to a local region of the network. a-d,
Time evolution of the spiking activity in an example simulation. p,, = 0.2from 1.2to 1.4 s and 0 otherwise. Other parameters are as follows: N,, = 1500, p, = 0, CV2, = 1,and v, = S kHz.
Red represents / neurons. Blue represents £ neurons. a, Raster plot. b, Average conductance change (AG) across £ neurons. Blue/red trace represents excitatory/inhibitory conductance. ¢, v,
histogram computed with time bin of 10 ms. d, p,,, value. e h, Spiking statistics computed from 500 trials like the one shown in a—d. Pre/stim/post, Time window of 200 ms before/during/after
stimulus presentation. e, Average spike count CCFs across pairs of neurons from 100 nearby cells (local); and 10,000 pairs chosen randomly from the entire network (global) (single simulation of
1005). Countbin, 5 ms. Red line indicates CCF = 0., FF distribution across local £ neurons. g, p,, distribution of trial spike counts across 10,000 neuron pairs. h, v, across trials and across neurons.
i, Power spectrum (see Materials and Methods) of the £ population spiking activity during evoked/ongoing (green/black) states. j—I, Average spike count CCFs across pairs of neurons computed
during evoked (green) and ongoing (black) states (single simulation of 100 s). Simulation parameters as before. Count bin, 5 ms. Red line indicates CCF = 0. The x-axis is shared across all panels.
J, CCFE across 100 nearby F neurons. k, CCF' across 25 nearby / neurons. I, CCFE' across 600 pairs of £ and / from a local region of the network.

most top right box in Fig. 4b—e). It is therefore expected that  The within-correlation structure modulates the transmission
CV?,, and FF return to ongoing-like levels for large p,, and N,,  susceptibility of event train statistics
because of this inverse relationship between the magnitude of the ~ In the previous section, we showed the capacity of the within-
within-correlation structure parameters (N, and p,,) and v,,,. correlation structure to modulate the impact of feedforward in-
More interestingly, for intermediate values of N, and p,,  Puts on the dynamics of recurrent networks. Intuitively, this can
we found a region in which the impact of the stimulus was the ~ be understooq by .cons1der.1ng that neurons are thres.hold ele-
most salient. This region was characterized by high v, and ~ Mments operating in a noisy fluctuation-driven regime. The
values of CV2,, and FF that were at Poisson levels (see Fig. w1th1n—c9rre1at10ns induce membrane potential ﬂuctuatlops be-
4b—d). In this within-correlation space, the number of incom- yond noise levels; therefore, neurons are able to follow the inputs
. ’ . . more faithfully. Because we assumed that input is reliable across
ing synchronous events that are able to reliably induce an . . . :
o .. . different trials and there are weak correlations between the inputs
output spike is maximized; therefore, v, increases and be- . . . .
. . .. to different neurons, both FF and p,,,, decrease with an increase in
comes more reliable (i.e., FF decreases). Additionally, the

. . D N, or p,.
CV?Z,, becomes more similar to that of the event train, which is T P S o .
! o quantify the intuitive description, we conducted simula-
a Poisson process. The mean p,,, was overall much smaller

. . . : ) . tions in a reduced feedforward setup consisting of two uncon-
than during stimulation with uncorrelated spike trains (see | oted LIF neurons (see Materials and Methods) and studied

Fig. 4¢). The nonmonotonic relationship caused by the de- 4y the within-correlation structure affects the spiking dynamics
crease in v,,, was not observed in this case. and transfer of input statistics to the output. In these simulations,

In the exponential model, v,, is not so severely penalized for  neurons were driven by N,, excitatory input spike trains at a total
an increase in N, or p,, as in the binomial model; therefore, CVZ,,  rate Viotal = Ni Vi = 10 kHz, which was maintained constant
and FF monotonically decreased as a function of N, and p,.. Only  across all simulations. Maintaining v,.,, constant is necessary to
Vou Showed a nonmonotonic dependence on N and p,, (see Fig.  study the effect of the within-correlation structure and is easily
4g—). implemented in these input models as opposed to other more
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Average spiking activity in a local region of the network during stimulation with different values of N, and p,,.. The x-axis and y-axis, as indicated in b, are preserved across all panels

(c—e,g—j). Stand-alone boxes represent values measured in the absence of stimulation with correlated inputs (i.e., p,, = 0). Constant parameters across simulations: p, = 0, CV2, = 1, vy
= 5kHz, and 1) = 0.2. a— e, Input correlations were generated according to the binomial model. a, Binomial-like model of HoCs. b, Average individual firing rate v, in Hz. ¢, Average CV 2. d,
Average FF. e, Average pairwise spike count correlation coefficient (p,,). f—j, Input correlations were generated according to the exponential model. f, Exponential model of HoCs. g, Same as in

top row.

simplified models, such as Gaussian white noise (see Discussion).
To simplify the interpretation of the results, we excluded uncor-
related, inhibitory, and recurrent inputs.

For each parameter combination, we simulated 100 trials of
100 s duration each and computed the geometric mean of the
output firing rates (vy, = \/ij); the geometric mean of the
coefficient of wvariation squared of the ISI distribution
CV? = |[CV} CVJ-Z; and the Pearson correlation coefficient be-
tween the spike time count vectors (p,,)-

We measured the effect of the within-correlation structure on
the transmission susceptibility (®) of the event train statistics
(see Materials and Methods). Transmission susceptibility is a
measurement of how faithfully output statistics reflect the input
statistics. In previous studies (e.g., de la Rocha et al., 2007), input
current was modeled as Gaussian white noise and the level of
pairwise correlation was set by adjusting the variance ratio be-
tween the common and the independent input components. In
our work, an equivalent adjustment of the pairwise correlation
level can be achieved by modifying p, (i.e., the pairwise correla-
tion coefficient between event trains). Thus, in this study, when
we refer to correlation susceptibility, we mean ¢, = p,./p,. We
found that it makes sense to extend the concept of transmission
susceptibility to the remaining statistics of the event train,
namely, v,, and CV}. Here, for simplicity, we assumed that all
event trains have same statistics. Thus, in addition to the corre-
lation susceptibility ¢,, we considered a rate susceptibility
(b, = VoulVm) and a CV? susceptibility (¢cy = CV2,/CV?E).

Our results show that increasing p,, or N,, produced a non-
monotonic effect on v, ,, independent of the correlation model
(see Fig. 5a,d and Fig. 6a,d). For the binomial model, this effect
was already reported (Kuhn et al., 2003) and can be explained as
indicated in the previous section. However, our results further sug-
gest that this effect is more general than previously thought because
the nonmonotonicity of the output firing rate can be observed even
in the exponential model, which is a correlation model that allocates
a smaller probability to higher-order interactions.

Next, we estimated the rate susceptibility ¢, as a function of
p., and N,,. Increasing p,, or N,, produced a monotonically as-
cending ¢, curve, a trend that was again preserved across corre-
lation models (see insets in Fig. 5a,d and Fig. 6a,d). This result
indicates that, although in absolute terms v, dropped, relative
to v, its value kept growing. As indicated earlier, the reduction of
V., is correlated with the increase in the probability of high-order
interactions, which translates into the arrival of fewer but more
efficient synchronous events.

At the level of ¢,, the main difference between the two models
was observed in the steepness of the curve and in the saturation
observed at ¢, = 1 in the case of the binomial model. The slope of
the curve indicates the sensitivity of ¢, to changes in p,, or N,,
reflecting the transformation undergone by f(£). The high sensi-
tivity found in the binomial model is a result of the rapid shift
toward a higher ¢ experienced by f(§) as p,and/or N,, are
increased. Because this sensitivity is determined by f(§), it is
not just a property of ¢, but a property of ® in general; there-
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Effect of p,, and NV, on the spiking activity of two LIF neurons using a binomial correlation model. a—, Effect of p,,, (N,, = 1000 inputs; ¥,,,, = 10kHz) on v, (@), CV2,, (b), and

Pout (0)- @, vy, measured in Hz. Black marker represents the same result as black markerin . Inset, ¢, calculated from the same simulations asin main panel. b, Gray horizontal lines indicate CV'2,
(dark gray represents Poisson; light gray represents gamma with & = 0.2and p,, = 0). Black marker represents same result as black marker in e. ¢, Dotted lines indicate results with different p,,
values indicated by the green numbers. Gray line indicates p, = p,,. Inset, b, = {Pou/ Pv) ot Where { + )., indicates average across py,. d—f; Effect of N, on the spiking activity (p,, = 0.35;

Viora = 10 kHz). All the elements are analogous to those ina—c.

fore, it also affects d>p (see insets in Fig. 5¢,f and Fig. 6¢,f) and
ey (see Fig. 5b,e and Fig. 6b,¢). Generally, the sensitivity of ®
to changes in p,, and N,, will depend crucially on the specific
choice of f(&).

The saturation of ¢,, which is also observed in ¢y and ¢,,
shows that the event train statistics can be understood as a
boundary that limits the space of potential output statistics. In a
feedforward scenario like the one simulated here (with one input
source), the trajectory followed by the output statistics will always
lead toward the statistics of the event train if ® is continuously
increased. Although the same conclusion was previously ob-
served for ¢, (de la Rocha et al., 2007), other studies have sug-
gested the possibility that output statistics can undergo an
amplification during the neuronal transfer (Bedenbaugh and
Gerstein, 1997; Renart et al.,, 2010; Rosenbaum et al., 2010;
Schultze-Kraft et al., 2013). However, such amplification is not
observed in our results (see Discussion).

This boundary was again clearly visible at the level of CV2,,
with simulations in which the event train was a gamma process
(shape parameter a = 2; see light gray traces in Fig. 5b,e). The
change in CVZ, did not affect the remaining output statistics (data
not shown).

Our results showed that the main trajectories were always
directed toward the event train statistics, but transient deviations
of these general trends were also observed. In the case of the
binomial model, such a transient departure from the main ten-
dency was measured when N,, ~ 500 (see Fig. 5d,e). This tran-

sient drop in the output statistics, which corresponded with a
phase of almost negligible increase in ¢, and ¢, (see insets in Fig.
5d,f), happened before a sharp rise of @, suggesting that it can be
explained as a transitional effect. Generally, such deviations from
the main trajectory will occur whenever the gain in probability of
eliciting spikes obtained with the transformation of f{(§) cannot
compensate the associated decrease in v,,. Thus, their presence
will depend on f(§) as well as on neuronal properties, such as the
synaptic weights and the spiking threshold.

Although v, decreased for large values of p,, or N,,, the value
of p,. always maintained an ascending trend that only ceased
when it reached py, (see Fig. 5¢,fand Fig. 6¢,f). This result suggests
that, in the absence of feedback (recurrent) connections, the de-
pendencies between the different output statistics exist only at the
level of ®. This result generalizes previous studies, which found
that v, and p,,, were linked (de la Rocha et al., 2007) (see
Discussion).

In summary, our results indicate that the within-correlation
structure modulates the transmission susceptibility @ of the
event train statistics. Furthermore, they reveal that ® is dependent
across different aspects of the spiking activity. We found that, in
feedforward structures, the dependency between output statistics
takes place only at the level of ® (i.e., the output statistics per se are
independent). @ is not affected by the choice of event train statistics,
implying that any combination of input statistics can be modulated
in the same way. In a scenario with one input source, the statistics of
the event train define a boundary, which limits the possible output
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Figure6. Effectof p,, and N, on the spiking activity of two LIF neurons using an exponential correlation model. a— ¢, Effect of p,, (V,, = 1000inputs; v,y = 10kHz) on v, (@), CVZ,, (b),and py (0).
df, Effect of N, on the spiking activity (p,, = 0.35; v, = 10 kHz). Structure of the panels is the same as in Figure 5.

dynamics. Finally, these results are in good agreement with the ones
obtained in the previous section suggesting that the earlier results
can be interpreted using the conclusions drawn here.

Interaction between feedforward and feedback inputs

In this study, we propose that the network dynamics is domi-
nated by an external feedforward input source during evoked
activity, whereas in absence of an external stimulus, the ongoing
activity mostly reflects the network feedback source (see Fig. 7b). As
a first approximation, we assumed that these two sources of inputs
are independent of each other, although this is clearly not the case in
reality. Indeed, the statistics of network activity will always be af-
fected by both the statistics of the feedforward input and by the
statistics of the feedback activity. To include the contribution of this
“feedback” activity in our reduced two-neuron simulations, we ex-
tended the feedforward configuration used in the previous section
by including an additional input source. As noted earlier, in a homo-
geneous random network, p, = p,,; however, the introduction of
local clusters or inhomogeneities can resultin p, # p,, (Lindsay et al.,
2012); therefore, it makes sense to model the “feedback” source with
different values of p,, and py.

In this framework, we visualized the network activity in a 3D
space defined by the firing rate, FF, and noise correlations (see
Fig. 7a). In such a 3D space, the transition from ongoing (feed-
back dominated) to evoked (feedforward dominated) dynamics
can be seen as a jump between two points (Fig. 7a, red arrow
between black and green circles). In this scenario, neurons are
pulled by two different forces: one from the feedback input and
another from the feedforward input. The magnitude of these two

forces corresponds to the within-correlation structure of the
feedforward and feedback input sources. That is, the direction of
the jump from ongoing activity to evoked activity will be deter-
mined by the event train statistics of the feedback and feedfor-
ward input sources, whereas the within-correlation structure of
the two inputs will define the magnitude of the jump in that
direction. The endpoint of the transformation becomes the
evoked response that emerges as a result of the starting point
(network connectivity structure and ongoing input regimen) and
the statistics of the external input source that becomes active.

This division of the total input to a neuron in terms of (feed-
back and feedforward) input correlation structure introduces too
many parameters to make its study easily tractable analytically. In
the previous literature, a common approach has been to simplify
the input model, reducing it to Gaussian white noise, which is
defined by only two parameters: mean () and SD (o) of the
Gaussian distribution (de la Rocha et al., 2007; Moreno-Bote et
al., 2008; Hong et al., 2012; Schultze-Kraft et al., 2013). This
model is only valid when the input is composed of a large number
of weakly correlated inputs but makes the study of the trans-
mission problem tractable by analytical methods (however,
see Discussion). At this point, we followed the simplified input
approach for two reasons: (1) to be able to relate our conclu-
sions directly to the previous literature and (2) to take advan-
tage of the available analytical methods and gain further
insights into how the two independent sources contribute to
generate the neuron dynamics.

Thus, we followed the approach used previously (de la Rocha
etal., 2007; Moreno-Bote et al., 2008; Hong et al., 2012; Schultze-



Bujan et al. ® Feedforward Shaping of Evoked Response Dynamics

J. Neurosci., June 3, 2015 - 35(22):8611- 8625 * 8621

Firing rate feedforward
a b v, CV2 . p
QStimqus e D e
\ Evoked
o K
Vout
¢, Correlations — OV
.4 pout
o
‘l/m7 CV12n7pb
Ongoin
going feedback
Fano factor
(o]
1 t 2
G @ G
g ! 2
: . © . 8
S G WMM«WWW< >Mwwww ¢ B
5 0]
: © :
1 | 2
Wl QO G
!
d e f
-0.8
o 0.4 —0.7'}
@)
T T y 0.6
0 1 3 7
0

Figure 7.

Model of evoked activity with two input sources. a, 3D representation of the network activity as it shifts from ongoing state (black circle) to the evoked state (greenfilled circle). Green

empty circle represents stimulus statistics. Dashed red line indicates direction of the jump. Large red arrow indicates jump magnitude (). Small red arrows indicate magnitude of the transformation
projected onto the respective axis (¢b,, 4, gcv)- b, Schematic diagram illustrating the concept of two differentinput sources: feedback and feedforward. Each source has its own event train statistics
(Vi Por CVlzn) and within-correlation structure (N,,, p,,, f(§)). ¢, Two LIF neurons (represented asin Fig. 1¢) each receiving two independent currents with Gaussian statistics (black and gray traces).
Gray traces represent shared currents 2 where i = 1,2 denotes source index. Black traces represent independent currents %, where j = 1,2 s the neuron index and i as before. d—f, White markers
represent results from simulations. Solid traces represent analytical approximation. d, Correlation susceptibility ¢b,, as a function of the variance ratio -y. Black/green trace represents ¢,, associated
with ongoing/stimulus input source. e, Effect of -y on the output correlations (p,) for different values of py, and a fixed value of pi. = 0.2. Green arrow indicates direction of -y increase. f, Effect

of y on v, (black) and V2, (gray).

Kraft et al., 2013) and studied the transmission of p, with two
independent sources. To this end, we divided the input current
into two independent components: the first component repre-
sented inputs that dominate during ongoing activity and the sec-
ond component represented inputs that carry external signals
(see Fig. 7c). In the diffusion limit (i.e., large number of inputs
and small weights) (Ricciardi, 1977; Moreno-Bote et al., 2008),
the analytical approximation of p,,, for large counting windows
(200 ms) used here was derived in a previous study (de la Rocha et
al., 2007; see Materials and Methods). To investigate the interplay
between two independent input sources, the equation given by de
la Rocha et al. (2007) can be reformulated as indicated in Equa-
tion 21. According to Equation 21, the resulting activity (p,,,) can
be obtained by a linear combination of the input correlation p,

weighted by its associated transmission susceptibility ¢,,. Addition-
ally, we defined v as the ratio between the variance of two the sourc-
es:y = (¢")*/(0®)% Both p,, and N,, contribute to o' (Kuhn et al.,
2003; Helias et al., 2008); therefore, -y describes the ratio of within-
correlation strength of the two sources.

We looked into how 1y affected qﬁi, for each source separately
(see Fig. 7d). Increasing y produced a rise of ¢, together with a
drop of ¢, with the same magnitude. This is because qbi, x (a)?/
(™2 and therefore increasing (o')? implies an increase in
(0ora1) >> Which results in a decrease of ¢;. That is, the increase in
transmission susceptibility of correlations associated with one
source necessarily reduces the transmission of correlations from
the other putative sources.



8622 - J. Neurosci., June 3,2015 - 35(22):8611— 8625

a b

)

>, AV >
\A/
K

> >

{41

Modulatory =~
process

Figure 8.

¢)y,1
—

o

1

Bujan et al. ® Feedforward Shaping of Evoked Response Dynamics

17
N’\
&Y
° <
* — 1.3
Y
asS
© 0 05 10
K
0'7- I T 1
0.8 1.3 1.8

¢1/,2

Effect of shared inputs on the transmission of firing rates. a, Schematic diagram representing the transmission of spiking activity across three layers of cortical neurons. Blue rectangle
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neurons of mean ¢, values shown in the main panel.

Using Equation 21, we calculated the value of p,, for p; = 0.2,
and multiple p;, (from 0 to 0.35) and y values (see Fig. 7e, solid lines).
A combination of high y and low p, resulted in a decrease of p,,
which is analogous to the reduction of p,,, that was observed earlier
in this work.

Expectedly, v, increased monotonically with -y (see Fig. 7f) and
was independent of p,,. CV2,, showed an ascending trend, although it
dropped at first. In this framework, when input within-correlations
and input rate are reduced to the variance of the input current, we
cannot observe the “spike wasting” regimen and, therefore, do not
see nonmonotonic change in v,,. In all cases, the CV?, took fairly
irregular values (0.6 < CV?*>0.8), which confirmed that the activity
was generated in the fluctuation driven regimen.

These results were further corroborated with numerical sim-
ulations of LIF neurons and Gaussian noisy inputs (Fig. 7d—f,
white markers). These results show how the dynamics of the
evoked activity is shaped by the statistics of the feedforward input
and the state of the ongoing activity. Furthermore, they show that
strengthening the within-correlation structure of a feedforward
input source not only increases the transmission susceptibility
associated with that source but also necessarily decreases the
transmission susceptibility associated with other input sources
(i.e., the local recurrent connectivity).

Structural correlates and compatibility with shared inputs

An input source has within-correlation structure if it has some
amount of within-correlations (i.e., p,, > 0) regardless of the
actual correlation distribution. However, the question remains:
what is the origin of these correlations? Within-correlations may
already be present in the input source (e.g., activity of the retinal
ganglion cells) or may be generated while the activity is traveling
to reach the target network. In the latter case, one possibility
could involve the existence of divergent— convergent connectivity
motifs, which are known to generate p,, as indicated earlier. Ad-
ditionally, the presence of multiple synaptic contacts (i.e., a pro-
jecting neuron, which makes multiple synaptic contacts on a

receiving cell) at the dendritic level of the postsynaptic neurons
could also be a source of within-correlations.

A related question is whether generating within-correlations
would require a prohibitively large amount of resources for the
brain. More specifically, do neurons need their own private pre-
synaptic pools or is it possible to share presynaptic afferents? To
answer this question, we performed a series of simulations in
which two neurons were stimulated with input ensembles con-
taining a varying percentage of shared elements (see Fig. 8a). The
correlated input ensembles were generated using the binomial
model with p,, = 0.2 and N, = 1000. We measured ¢, for each
neuron with respect to its main input source.

Our results indicate that it was possible to recover the two
input firing rate signals even in the presence of 40% of shared
inputs (see Fig. 8b). If the number of shared inputs is relatively
small, the transmission susceptibility associated with the second-
ary input source is weak and does not affect the output firing rate.
Thus, the presence of shared inputs across neurons is compatible
with the transmission of event train statistics modulated by the
within-correlation structure.

Discussion

We showed that the statistical features of feedforward inputs ar-
riving to the network can play a key role in shaping the evoked
activity features, such as the reduction in trial-by-trial variability
and noise correlations. Our results suggest that the effect of this
feedforward component can be understood by considering two
sets of input properties that can play complementary roles in the
generation of evoked responses: the event train statistics (v,,, py, and
CV2,), which define the range of possible output dynamics; and the
within-correlation structure (p,,, N,,, and f(£)), which modulates the
transmission susceptibility of the event train statistics.

If we consider the network activity as a point in a 3D space
defined by firing rate, noise correlations, and trial-by-trial vari-
ability, the feedforward population statistics (v,,, p,, and CV3)
provide the direction in which the population response will move
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and the within-correlation structure (p,,, N, and f(§)) deter-
mines the magnitude of the change.

Previous models that explained the reduction in noise corre-
lations and trial-by-trial variability assumed that the landscape of
the network activity in the 3D space has a uniform gradient to-
wards low noise correlations and trial-by-trial variability. These
models propose that such a gradient emerges as a consequence of
clustered connectivity (Deco and Hugues, 2012; Litwin-Kumar
and Doiron, 2012), horizontal projections (Schnepel et al., 2014),
detailed balance of excitatory and inhibitory inputs (Hennequin
etal., 2014), or resonance properties of the network (Rajan et al.,
2010). Our work shows that, in addition to the nature of the
intrinsic network dynamics, feedforward input can also play a
dominant role in shaping the evoked activity. Indeed, it is neces-
sary that the evoked activity represents the incoming informa-
tion. Moreover, a feedforward-input-based mechanism is more
generic and suggests that p,,, and FF of the evoked activity
changes could both increase or decrease, depending on the
strength of within-correlation seed with the ongoing activity and
the event train statistics of the stimulus.

It may be possible to experimentally measure the contribution
of feedforward and feedback inputs to the evoked activity prop-
erties. The feedforward model of evoked activity suggests that the
properties of evoked activity should change depending on the
stimulus features. By contrast, the feedback model suggests that
noise correlations and FF reduction are independent of the stim-
ulus features. However, with sensory stimulation, it may not be
possible to isolate the feedforward and feedback contributions to
the FF and noise correlations. Specific stimulation with optoge-
netic methods in different brain regions with different recurrent
connectivity could offer a more direct possibility of testing these
two models.

Previous experimental results reported a reduction in FF and
noise correlations in the absence of substantial firing rate re-
sponses (Oram, 2011). According to our framework, the absence
of a noticeable firing rate change does not rule out a modification
in the feedforward input as the main factor driving the response.
As indicated earlier, the event train statistics of the feedforward
input source will determine the direction of change; thus, a mod-
ulation involving a strong variation of one aspect of the spiking
activity but a small variation of a different aspect (direction more
perpendicular to one of the axes in the 3D space) is in principle
possible.

We propose that a switch from feedback to feedforward
dominated dynamics involves a change in the feedforward
within-correlation structure that increases the effectiveness
with which the feedforward input source drives the network.
Hence, the drop in FF does not merely reflect a change in
input’s firing rate variability but also the rise of its transfer
susceptibility. This also explains why our results show that the
modulation in FF and CV?, are correlated, which is a feature
that has been observed in in vivo recordings from monkeys
(Nawrot et al., 2008).

It was suggested that, at least in feedforward structures, firing
rate and correlation susceptibility are themselves correlated such
that high output firing rate would imply better transfer of corre-
lations (de la Rocha et al., 2007; Hong et al., 2012). However, this
conclusion may be specific to the choice of input model. When
we explicitly model the correlated inputs as an ensemble of spike
trains and tuned separately p,, and v,,,,;, the relationship between
firing rate and correlation transfer is not so straightforward. For
instance, in the high p,, regimen, it is possible that the output
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correlations increase with input correlations, whereas the output
firing rate decreases because of spike wasting. In the low p,, reg-
imen, our results are consistent with those found by de la Rocha
et al. (2007). In summary, we found that a more general state-
ment than the one proposed by de la Rocha et al. (2007) would be
as follows: correlation susceptibility ¢, increases with rate sus-
ceptibility ¢, (and with CV? susceptibility ¢cy). Indeed, ¢, ¢,
and ¢, can be seen as projections of the transformation’s mag-
nitude into the three dimensions of the activity space (Fig. 74,
small red arrows).

Modeling the input using a Gaussian white noise makes the
analytical treatment of the transmission problem more tractable,
but this approximation lumps multiple input parameters to-
gether into the mean and the variance of the input. Correlated
input spikes contribute to the input variance, but so does the
input rate. Thus, if the variance of the Gaussian input is increased,
it is not possible to determine unambiguously the origin of the
extra variance. On the other hand, the disadvantage of our
method to generate correlated input ensembles is that correlated
spikes arrive in perfect synchrony, which generates unrealistic
8-shaped CCFs. Although this drawback can be avoided by sim-
ply adding an extra jittering step (Staude et al., 2008; Brette, 2009;
Renart et al., 2010), we did not apply this additional operation
because time-jittered correlations will not affect the main results
of our work.

When considering a single feedforward input source, the sta-
tistics of the event train conform a boundary, which the dynamics
of the receiving cell can only approach. This boundary has been
observed already in relation to the transmission of correlations
(dela Rocha et al., 2007; but see Schultze-Kraft et al., 2013). This
implies that the effect of pooling correlated spike trains on the
transfer of correlations should not be regarded as an amplifica-
tion (Bedenbaugh and Gerstein, 1997; Renart et al., 2010; Rosen-
baum et al., 2010, 2011), but rather as a quick trajectory toward
the statistics of the underlying event train (in this case p,), in-
duced by a strong increase in the transmission susceptibility.

In most of the previous literature, correlated inputs to the
networks are not typically separated into within- and between-
correlations. Indeed, most studies simply ignore p,, or, at best,
they assume that p,, and p,, are the same. More recent studies
looked into the effect of shared inputs on the network dynamics
(which contribute to p,,) and found that the membrane potential
fluctuations induced by shared inputs are very efficiently can-
celed by the recurrent network feedback (Renart et al., 2010; Yger
etal, 2011; Tetzlaff et al., 2012). However, when we separate the
input correlations into within- and between-correlations, it be-
comes apparent that the single neuron membrane fluctuations
are mostly determined by the within-correlations. Large and fast
fluctuations caused by the within-correlations in the feedforward
input escape the cancellation by the inhibitory feedback. Thus,
inputs with non-zero within-correlation are able to modify the
neuronal output substantially.

The subdivision of input parameters into two functionally
different groups can be interpreted from a coding perspective.
Thus, the statistics of the event train can be seen as signal carriers,
whereas the within-correlation structure can be considered part
of a gating mechanism. This interpretation suggests the possibil-
ity to propagate other aspects of the spiking activity apart from
firing rates (Vogels and Abbott, 2009; Kumar et al., 2010). The
propagation of these others aspects of the spiking dynamics could
be relevant for brain function because they can represent addi-
tional channels of information or be used to decode firing rate
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signals (Zohary et al., 1994; Abbott and Dayan, 1999; Averbeck et
al., 2006).

The activity pattern generated by a stimulated network will
depend on its recurrent connectivity structure, the connectivity
structure of the input sources projecting to the network, and the
activity of regulatory mechanisms that can transiently alter the
within-correlation structure of the input sources that are active at
a given point in time (e.g., attention).

In our framework, attention may refer to a regulatory process
targeting the within-correlation structure of different input
sources. Recent experimental work has shown that correlations
can either increase or decrease with attention in the visual cortex
(Ruffand Cohen, 2014). This result can be easily explained by our
model. The actual implementation of attention may involve any
process affecting p,,, and/or it could be associated with means to
control N,,. It is plausible that input sources recruit feedforward
inhibition pathways which reduce N,, downregulating their own
transmission susceptibility and that these pathways can be sup-
pressed by some additional source of inhibition controlled by
attention.
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