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Progressive, Seizure-Like, Spike-Wave Discharges Are
Common in Both Injured and Uninjured Sprague-Dawley
Rats: Implications for the Fluid Percussion Injury Model of
Post-Traumatic Epilepsy
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Variable-duration oscillations and repetitive, high-voltage spikes have been recorded in the electrocorticogram (ECoG) of rats weeks and
months after fluid percussion injury (FPI), a model of traumatic brain injury. These ECoG events, which have many similarities to
spike-wave-discharges (SWDs) and absence seizures, have been proposed to represent nonconvulsive seizures characteristic of post-
traumatic epilepsy (PTE). The present study quantified features of SWD episodes in rats at different time points after moderate to severe
FPI, and compared them with age-matched control rats. Control and FPI-injured rats at 1 year of age displayed large-amplitude and
frequent SWD events at frontal and parietal recording sites. At 3– 6 months, SWDs were shorter in duration and less frequent; extremely
brief SWDs (i.e., “larval”) were detected as early as 1 month. The onset of the SWDs was nearly always synchronous across electrodes and
of larger amplitude in frontal regions. A sensory stimulus, such as a click, immediately and consistently stopped the occurrence of the
SWDs. SWDs were consistently accompanied by behavioral arrest. All features of SWDs in control and experimental (FPI) rats were
indistinguishable. None of the FPI-treated rats developed nonconvulsive or convulsive seizures that could be distinguished electro-
graphically or behaviorally from SWDs. Because SWDs have features similar to genetic absence seizures, these results challenge the
hypothesis that SWDs after FPI reflect PTE.
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Introduction
Traumatic brain injury (TBI) is a common cause of acquired
epilepsy (vs genetic epilepsy), characterized by spontaneous, re-
current seizures that are often focal and nonconvulsive, but can
spread and undergo secondary generalization to become convul-
sive (Agrawal et al., 2006; Engel, 2013). Post-traumatic epilepsy
(PTE) is often intractable, so developing strategies to prevent or
treat PTE would benefit from appropriate animal models. One of
the most common animal models of TBI is fluid percussion in-
jury (FPI) in Sprague-Dawley rats (D’Ambrosio et al., 2004;
Kharatishvili et al., 2006), mimicking closed head injury in hu-
mans (Thompson et al., 2005). However, well documented evi-
dence of spontaneous recurrent seizures resulting from TBI that

are distinctly different from normal rhythmic or oscillatory
events in control animals is limited (Kharatishvili et al., 2006;
Statler et al., 2009; Shultz et al., 2013; Campbell et al., 2014).
Considerable debate has occurred on what constitutes an epilep-
tic seizure that could form the basis for a model of PTE
(D’Ambrosio and Miller, 2010; Dudek and Bertram, 2010), and
investigations of mechanisms and intervention strategies for
PTE, with unequivocal epileptic seizures, are lacking.

Previous studies using rostral parasagittal FPI report that
injury-induced, electrocortically and behaviorally distinct,
seizure-like events are never observed in sham-operated controls
(D’Ambrosio et al., 2004, 2009), suggesting that they are specific
to FPI-treated rats and thus represent PTE. The interpretation
that these postinjury events are epileptic seizures is surprising
given that their electrographic and behavioral characteristics ap-
pear identical to those described for high-voltage rhythmic spik-
ing, which are labeled spike-wave-discharge (SWD) in uninjured
rats, including the Sprague-Dawley breed (Aldinio et al., 1985;
Kleinlogel, 1985; Buzsáki et al., 1990b; Kelly et al., 2001; Khar-
lamov et al., 2003; Pearce et al., 2014) used in previous FPI exper-
iments. SWD are quasiperiodic signals having unique spectra
with high values at a fixed fundamental frequency (7–9 Hz for
SWD) and at whole multiples (harmonics) of this fundamental
frequency. These spectral characteristics so distinctly identify
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SWD (Shaw, 2004) that they have been used for automated SWD
detection (Van Hese et al., 2003, 2009). They are also exactly the
same as those described for cortical discharge produced by rostral
parasagittal FPI (D’Ambrosio et al., 2004). Additionally, normal
SWDs are invariably associated with behavioral arrest and facial
automatisms (Vanderwolf, 1975; Hammond et al., 1979; Robinson
and Gilmore, 1980; Semba et al., 1980; Vergnes et al., 1982; Kaplan,
1985; Shaw, 2004), also noted as a unique characteristic of sei-
zures in FPI rats. The common presence of SWD and associ-
ated behavioral arrest in uninjured Sprague Dawley rats raises
the possibility of confounds in the interpretation of results
from PTE models if they are thought to also reflect seizures.
The present study visually examined continuous video/
electrocorticogram (ECoG) recordings for possible seizures
and also quantified features of SWD episodes in control rats
between 1 and 12 months of age using automated procedures,
with the objective of distinguishing normal brain activity from
that associated with PTE. These results were compared with
the same timeline in brain-injured rats receiving moderate
and severe rostral parasagittal FPI.

Materials and Methods
Ninety adult viral-free male Sprague-Dawley rats (Harlan Laboratories)
were housed in pairs in temperature (23 � 3°C) and light (12 h light/

dark) controlled rooms with ad libitum access
to food and water. All procedures were per-
formed in accordance with University of Colo-
rado Institutional Animal Care and Use
Committee guidelines for the humane use of
laboratory rats in biological research. Rats were
randomly assigned to the following groups:
sham operated (n � 20), naive (n � 20), FPI-
moderate (n � 15), and FPI-severe (n � 35).

Fluid percussion injury and experimental
groups. The rostral parasagittal FPI used in
this study were described previously
(D’Ambrosio et al., 2004; Frey et al., 2009;
Rodgers et al., 2012). Briefly, FPI rats were
anesthetized with halothane (Abbott Labo-
ratories; 3.5% induction, 1.5–2.0% mainte-
nance) and mounted in a stereotaxic frame.
A 3.0-mm-diameter craniotomy was cen-
tered at AP �2.0 mm and ML 3.0 mm from
the midsagittal suture (Fig. 1A), with the ex-
posed dura remaining intact. A female Luer-
Loc hub (inside diameter of 3.5 mm) was
secured over the craniotomy with cyanoacry-
late adhesive. Following hub implantation,
rats were removed from the stereotaxic
frame and connected to the FPI apparatus,
and after recovering from anesthesia suffi-
ciently that the forepaw withdrawal reflex
could be elicited, the impact was delivered.
The FPI apparatus delivered one of two im-
pact pressures (10 ms pulse), either an im-
pact force of 2.0 or 3.4 atm (moderate or
severe injury, respectively). All rats experi-
enced apnea following injury and were re-
vived after 15 s. The injury cap was then
removed, scalp sutured, and the rats re-
turned to their home cages for recovery. The
righting time was �10 min following injury.
There was a �10% mortality rate for severe
impact pressures. Sham-operated rats un-
derwent identical surgical preparation, but
did not receive the brain injury. Naive rats
only received electrode implantation surgery
described below.

Chronic video/ECoG recording. One week following FPI or sham sur-
gery, epidural bilateral stainless steel screw electrodes were implanted for
ECoG recording, using septic surgical procedures for all chronic prepa-
rations. Under halothane anesthesia (3.5%), rats were implanted with
bilateral screw electrodes ipsilateral and contralateral to injury (Fig. 1A)
over parietal (AP �6.0 mm, ML 4.5 mm) and frontal (AP 0 mm, ML 4.5
mm) cortex, a reference screw (AP 3.0 mm, ML 1.0 mm), and a ground
screw (AP �7.5 mm, ML 1.0 mm). Following a 1 week recovery period,
animals were tethered to an electrode harness (Plastics One, 363) and
slip-ring commutator (Plastics One, SL6C) permitting free movement
for 24/7 video/ECoG monitoring throughout the duration of the exper-
iment. Spontaneous ECoG signals were amplified (�10000) and digi-
tized at 500 Hz. Spontaneous ECoG and video were stored for
subsequent SWD event detection and related behavioral analysis. After
mortality/attrition, a total of 37 FPI rats underwent subsequent (begin-
ning 2 weeks postinjury) continuous video/ECoG (Fig. 1E) to establish a
temporal profile of SWD events over time.

Semiautomated SWD detection and quantification. Automated detec-
tion was only used to quantify SWD events, and did not replace visual
examination of all video/ECoG for seizure and epileptiform discharge
detection. ECoG data were analyzed in 1 s segments, across 48 h time
epochs per rat at 1, 3, 6, 9, and 12 months of age (Fig. 1F ). Recording was
biased toward rats �6 months of age according to previous reports of
greater incidence of SWD in this age group (Aldinio et al., 1985; Kaplan,
1985; Kleinlogel, 1985; Buzsáki et al., 1990a,b; Kelly et al., 2001; Khar-
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Figure 1. ECoG montage and FPI histology. A, Craniotomy for FPI (open circle) in relation to rostral (1 and 4) and caudal (2 and
3) recording sites. Reference and ground electrodes are 5 and 6, respectively. Cresyl violet stained coronal sections comparing a
control (B) and sham (C) to damage typically induced by FPI (D) at 5 months postinjury. Just caudal to the craniotomy, FPI induced
marked structural damage, cortical atrophy, deformation, atrophy and asymmetry of the hippocampus (arrows), and ventricular
enlargement.“ipsi” and “contra” refer to ipsilateral and contralateral to injury site, respectively. E, Age distribution of FPI rats
undergoing continuous video/ECoG monitoring for seizure and epileptiform spike detection. F, Age distribution of FPI and control
rats for SWD quantification.
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lamov et al., 2003; Pearce et al., 2014). Approximately 20 segments con-
taining SWD were visually selected to establish a template for each rat.
Auto-covariance functions were computed for identified segments to
capture the amplitude, frequency, and waveform morphology of the
SWD. Covariance functions for SWD trials and similar functions for
segments containing representative noise were used to train a support
vector machine (Orrù et al., 2012) to automatically discriminate be-
tween SWD and noise throughout 48 h of data for each rat at each age
recorded for that rat. All detected SWD events for a given 48 h period
were visually examined and artifacts deleted before the number and
durations of SWD events were extracted for statistical analysis. In rats
where all four electrodes were viable for comparison, recordings of 10
SWD epochs per rat were also examined to assess asynchronous ver-
sus synchronous onset. If SWD began in one electrode channel at least
100 ms before activity could be detected in other channels, it was
considered an asynchronous onset. Synchronous onsets were charac-
terized by no detectable delay of SWD between the four recording
electrodes. Isolated onsets were defined as SWD bursts that never
spread beyond a single electrode. Behavior during automatically de-
tected SWD was assessed for representative 48 h periods with time-
locked video. Rats were also visually observed during SWD to detect
subtle behaviors (i.e., vibrissa and jaw movements).

Convulsive seizure detection and quantification. Visual detection of po-
tential convulsive seizures was performed using custom software. All
video/ECoG recorded 24/7 for a given rat was displayed in 30 min blocks
on high-resolution monitors. For an event to qualify as a convulsive
seizure, ECoG activity had to be differentiated from background noise by
the appearance of large-amplitude (at least three times baseline), high-
frequency (minimum of 5 Hz) activity, with progression of the spike
frequency that lasted for a minimum of 20 s. With this electrographic
identification, video data would then determine seizure intensity and to
confirm ECoG seizure activity versus potential animal-generated noise,
such as eating and grooming, and be rated according to Racine’s behav-
ioral scale (Racine, 1972), recently modified to rate the intensity of post-
traumatic seizures (D’Ambrosio et al., 2004). ECoG was simultaneously
examined for putative epileptiform spikes distinct from either convulsive
seizures or SWD.

Results
FPI injury
By 5 months postinjury, FPI typically induced damage at the
locus of the craniotomy beginning at the level of the dorsal hip-
pocampus. Contralateral brain structures appeared to be mor-
phologically preserved, although some ventricular enlargement
could be seen in FPI-treated rats contralateral to injury. Just cau-
dal to the craniotomy (Fig. 1D; “ipsi”), FPI induced marked
structural damage, cortical atrophy, deformation and atrophy of
the hippocampus, and ventricular enlargement.

Appearance and incidence of SWD events
Figure 2 shows a 20 min epoch of ECoG recorded from a control
rat (9 months). During this time period, the animal displayed a
characteristic range of SWD durations, from long (several min-
utes; Fig. 2A, red traces) to short (several seconds; Fig. 2B, blue
traces). Frequent and very brief SWD bursts (i.e., “larval,” �1 s;
Fig. 2C, blue traces at bottom), comprised of only a few spikes,
also typified SWD recordings. In Figure 3, exemplary traces from
Figure 2 (A–C) are replotted at different timescales. SWD events,
such as those depicted here, were typically characterized by an
abrupt (�1 s) onset and termination (Fig. 3A,B, arrows), lack of
postevent amplitude suppression, and spindle-like variations in
amplitude throughout the event. SWD frequency (�8 Hz in this
example) and morphology appeared stable through the entire
event duration (Fig. 3A). There were also no clear differences in
SWD characteristics between long and short events (Fig. 3A and
B, respectively). Larval SWDs (Fig. 3C) were typically reduced in

amplitude but displayed a similar waveform morphology to lon-
ger epochs.

SWD incidence rate was indistinguishable between FPI and
control animals F(1,9) � 0.321, p � 0.587, across all recording
time-points. The incidence rate ranged from 66.7–100% at the 1
and 3 month time points, and from 90 –100% at the 6 month, 9
month, and 1 year time points. As noted below, although the
incidence of SWD was high even at 1–3 months, the number and
duration of events was far lower than at later time points.

Pattern recognition of SWD events
Figure 4 shows a 6 s SWD event (Fig. 4A, red) detected in an
uninjured 12-month-old rat. For automated event detection,
data were analyzed in successive 1 s blocks. The auto-covariance
function for each block (Fig. 4B,C, dark trace) captured both the
amplitude and morphology of SWD (Fig. 4C, light trace) with
clear spike and wave components (Fig. 4C; “S” and “W,” respec-
tively). A quadratic kernel was trained on the auto-covariance
functions of 20 –30 visually identified 1 s blocks of SWD for each
rat at each age, and then used to detect subsequent SWD for that
animal.

Spatiotemporal features of SWD events
A total of 470 and 510 SWD events in the FPI and control rats,
respectively, were examined for isolated, asynchronous, or syn-
chronous onset. In no animals did SWD in the two parietal leads
precede the frontal electrodes. While right versus left asynchro-
nous onsets in the frontal leads were observed, a majority of SWD
events in FPI and control animals began synchronously (79% and
90%, respectively). In FPI rats, 13% of SWD showed asynchro-
nous onset starting in the right frontal electrode at the site of
injury, compared with 6% starting in the left hemisphere. How-
ever, there was also a right hemisphere preference (7%) com-
pared with the left hemisphere (2%) for SWD onset in the control
animals. We recorded isolated (1 electrode only) SWD in only a
very small number of events for either FPI or control rats (2% and
1%, respectively). A one-way ANOVA conducted to compare the
effect of injury group (FPI-injured or uninjured controls)
showed no significant group effects on synchronous (F(1,96) �
1.39, p � 0.241), left hemisphere asynchronous (F(1,96) � 1.46,
p � 0.229), right hemisphere asynchronous (F(1,96) � 0.00, p �
0.997), or isolated SWD onsets (F(1,96) � 1.88, p � 0.174).

Behavioral features of SWD events
When time-locked video was examined, SWD events detected in
both uninjured and injured rats were associated with inactivity or
interruption of ongoing movement. Real-time visual examina-
tion of a subset of control and FPI rats revealed that SWD were
often accompanied by vibrissa extension and slight vibrational
tremor, similar to previously described “�-tremor” in normal
Long–Evans rats (Semba and Komisaruk, 1984), and frequently
terminated by bruxing movements of the incisors that were
sometimes sufficiently intense to produce eye “boggling” (rapid
movement of the eye in and out of the socket due to flexing of the
masseter muscle). No events exceeding a seizure intensity score of
2 were observed in either FPI or control rats.

SWD counts and lengths as a function of age and injury
Figure 5 exemplifies SWD in an uninjured rat recorded across
1–12 months of age. One second samples shown here typify SWD
in the majority of normal control rats across the recording period
(Fig. 5A). SWD were fully developed at 12 months with a clear
spike and wave morphology. The number and duration of SWD
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events increased with age, but short bursts of larval SWD could be
detected at all ages. Despite age-related increases in the number
and duration of events, the morphology and frequency, best vi-
sualized in the averaged SWD (Fig. 5B) and auto-covariance
function (Fig. 5C), appeared similar even when comparisons
were made between 1 and 12 month records (Fig. 5; 12 month,
light and dark traces, respectively).

The number (p � 0.099) and duration (p � 0.132) of SWDs
did not differ between surgically naive and sham controls, so
these groups were combined for the overall analyses. Age-related
increases in the number and duration of SWD events are sum-
marized in the grouped control and FPI rats (Fig. 6A,B). A two-

way ANOVA was conducted to examine the effect of age (1–12
months) and injury group on the number of SWD events. There
was no significant interaction between the effects of age and in-
jury on the number of SWD events (Fig. 6A) for any time point
postinjury (F(11,356) � 0.600, p � 0.700). There was a main effect
found for age, with the total number of SWD events significantly
increasing with age (F(4,356) � 2.951, p � 0.020). Post hoc com-
parisons showed that the older (9 –12 month) FPI and control
rats displayed more SWD events than the younger rats, which was
statistically higher at both the 9 month (p � 0.01) and 1 year (p �
0.01) time points. However, there was not a significant main
effect for injury group (F(2,356) � 0.338, p � 0.713), indicating no

Figure 2. Range of SWD event lengths in a 9-month old control rat. A, SWD epochs lasting tens of seconds (red) were rare except in some older animals. B, More typical were short SWD bursts
of several seconds (blue) and also larval SWD (C) often less than a second in length and comprised of only several spikes. Raster plot is a single channel of ECoG plotted as successive 10 s traces
progressing from top to bottom over 20 min and spaced proportional to amplitude.

Rodgers et al. • Spike-Wave Discharges after FPI J. Neurosci., June 17, 2015 • 35(24):9194 –9204 • 9197



difference in the number of SWD events between FPI-injured
and uninjured control rats.

A two-way ANOVA examining the effect of age and injury on
the duration of SWD events also revealed no significant interac-
tion (Fig. 6B; F(11,356) � 1.259, p � 0.281). A significant main
effect was found for age (F(4,356) � 7.189, p � 0.000), reflecting
significantly longer SWD duration as a function of age, across
both groups. In both FPI and control groups, SWD duration was
significantly longer at the 6 month (p � 0.05), 9-month (p �
0.05) and 1 year (p � 0.05) time points. As with the number of
SWD events, there was no main effect for injury group and SWD
duration across any time point postinjury (F(2,356) � 2.041, p �
0.131).

Characterization of the SWD events by burst length in unin-
jured controls (Fig. 6C) showed that the number of SWD bursts
declined with increasing length. SWD burst length parameters
for FPI-injured rats (Fig. 6D) followed very similar age-related
patterns and were not significantly different from the uninjured
controls (F(39,2379) � 1.491, p � 0.078). There was not a signifi-
cant main effect found for injury group (F(39,2379) � 2.563, p �

0.110). There was a significant main effect found for burst length
(F(39,2379) � 123.881, p � 0.000), revealing that there were signif-
icantly more 1–3 s SWD events than 4 –20 s events (p � 0.010).

SWD frequency, morphology, and sensory interruption as a
function of injury
SWD frequency (referring to spike repetition rate, not frequency
of bursts) was consistently in the range of 7–9 Hz and did not
differ between uninjured (7.7 Hz � 0.4) and injured (7.9 Hz �
0.3) animals (Fig. 7A). SWD morphology was also qualitatively
similar between groups (Fig. 7B). In a final comparison, we used
automated SWD detection to trigger an auditory stimulus (�65
dB SPL; 20 cm distance) during ongoing SWD events in a subset
of 9 control and 12 FPI rats (Fig. 8). It has been noted in other
studies that, unlike seizures, normal SWD may be interrupted by
sensory stimulation and arousal (Robinson and Gilmore, 1980;
Semba et al., 1980; Vergnes et al., 1982; Kaplan, 1985; Buzsáki et
al., 1990b; Wiest and Nicolelis, 2003; Shaw, 2004; Pearce et al.,
2014). Similar to these previous reports, a click had the effect of
rapidly aborting ongoing SWD in our control rats (single trial

5.0 s

200 ms
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B

C

0.5 mV

Figure 3. Same data as Figure 2 plotted at compressed and expanded time scales. A, Long (37 s) SWD epoch begins and ends abruptly (�1 s; arrows). SWD amplitude waxes and wanes over
periods of seconds. SWDs are also characterized by no suppression at the end of an epoch. Expansion of 1 s samples taken from the beginning, middle, and end of the epoch look similar in waveform
morphology and frequency. B, All characteristics of SWD from infrequent long bursts are similar to the more common shorter bursts. C, Larval SWD are also frequent and typically comprised of only
several spikes of similar waveform to longer bursts.
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example shown in Fig. 8A). Figures 8B,C, shows averaged spec-
trograms (n � 10 trials each) of click-evoked SWD suppression
for two control and two FPI rats, respectively. Note also in these
spectrograms, the stereotyped harmonic spectral bands for SWD
marked with white lines at the fundamental frequency (7–9 Hz)
and the first higher harmonic (14 –18 Hz). The percentage of
click-evoked SWD suppression was calculated for all rats by com-
paring the ratio of total root mean squared (RMS) power for 2 s
before and after the click. The average suppression was 89.3 �
0.48% and 90.5 � 0.55% for the control and FPI, respectively
(Fig. 8D), and did not significantly differ between the groups
(p � 0.16).

Convulsive seizures
None of our injured or uninjured rats developed convulsive sei-
zures based on criteria used to identify these events in poststatus
epilepticus models of epilepsy, even when recorded to 12 months
of age. We also failed to observe epileptiform discharges (spikes)
in our injured or control rats.

Summary of results
The key results from these experiments are as follows: (1) The
SWD episodes from FPI rats had waveforms, durations, and fre-
quencies that were virtually identical to previous reports on a
highly similar FPI model of PTE (D’Ambrosio et al., 2004, 2005;
Curia et al., 2011). (2) Unlike previous reports, however, the
SWDs were equally prominent in sham-surgery and uninjured
control rats, with close similarities in both electrographic and
behavioral features. (3) In both FPI and control rats, the SWDs
were generally only a few seconds in duration, but could persist
for tens of seconds, although these longer duration events were
comparatively rare and only seen in older animals (including
controls). (4) The onset of SWDs was usually synchronous across
the cortical recording electrodes; however, SWD onset could oc-
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Figure 4. SWD and segmented auto-covariance function for pattern recognition. A, Six second burst of spontaneous SWD detected by pattern recognition (red) recorded from parietal cortex of
normal 12-month-old Sprague-Dawley control rat. The SWD burst is analyzed in 1 s segments. B, Auto-covariance functions of successive 1 s bursts computed with lags of � 200 ms capture the
periodicity, wave-shape, and amplitude of the SWD segment as features for pattern recognition. Typical of SWD events, the amplitude of the covariance function waxes and wanes but the frequency
and morphology remain steady from the beginning to the end. C, Enlarged 1 s segment of SWD (light trace) with scaled and superimposed auto-covariance function (dark trace) highlighting the
spike (S) and wave (W) components.
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Figure 5. Evolution of SWD in an aging control rat. A, Raw (unaveraged) SWDs at 1 month
are typically brief (�2 s) and occur infrequently. Both the duration and frequency of occurrence
increase with age but the waveform morphology and frequency remain stable over the 12
month time-span. The stability of frequency and SWD waveform over the 12 month time-span
are reflected in both the averaged SWD (n � 3–5; B) and auto-covariance functions (C) com-
puted from the 1 s samples shown in A, with little difference at 12 months (dark traces) com-
pared to 1 month (light traces).
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cur earlier on one particular electrode, but the difference in ap-
parent onset was brief (hundreds of milliseconds) and not
consistently related to the site of injury. (5) A variety of sensory
stimuli, such as a “click,” consistently blocked the SWDs in both
groups. (6) The SWDs appeared remarkably similar to events
previously reported by others in several strains of uninjured in-
bred and outbred rats. (7) Convulsive seizures, characteristic of
other animal models of acquired epilepsy arising from induced
status epilepticus or perinatal hypoxia-ischemia, were never
observed.

Discussion
In human epilepsy, nonconvulsive seizures have classically been
divided into two general types: complex partial (i.e., focal dyscog-
nitive; Berg et al., 2010) and absence seizures. These seizure types
have distinctly different etiologies and electrographic/behavioral
properties, but each can be misinterpreted for the other.

SWD after FPI do not reflect complex partial seizures
PTE and other forms of acquired epilepsy are characterized by
simple (i.e., motor or sensory) and complex (loss of conscious-
ness) partial (focal) seizures that: (1) initially have a seizure onset
zone near the site of the injury, and (2) have prolonged durations
(minutes), particularly when they spread to other areas. Al-
though formal plots of the distribution of seizure durations are

lacking, abundant clinical data (Theodore et al., 1983, 1994; Wil-
liamson et al., 1985; Devinsky et al., 1988; Jenssen et al., 2006;
Afra et al., 2008; Kim et al., 2011) have characterized simple and
complex partial seizures (CPSs) in humans with PTE and other
forms of acquired epilepsy as having minimum durations of
10 –20 s, but often lasting minutes. Thus, the seizure durations of
CPSs are markedly different from the distribution of durations
observed here (Fig. 6) and are nearly an order of magnitude lon-
ger than those most of the events described for the FPI model
(Eastman et al., 2015).

Other characteristics of SWDs recorded here are also at odds
with those of CPSs in humans and with the nonconvulsive sei-
zures that can occur in kainate and pilocarpine models of ac-
quired epilepsy in rats. The seizures in acquired human epilepsy
and in these other models typically: (1) increase intensity over
many seconds at onset, (2) undergo an evolution in activity over
time during the seizure, and (3) show a postictal suppression of
ECoG activity— unlike the: (1) sudden onset, (2) relatively ho-
mogeneous pattern, and (3) abrupt termination typical of SWDs.
Finally, SWDs can be easily terminated with mild sensory stimu-
lation, a phenomenon not observed with CPSs.

SWD after FPI may reflect absence seizures
Absence epilepsy, a form of childhood genetic epilepsy, involves
absence seizures that are shorter than CPSs (5–15 s, but can range
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from 1 to tens of seconds). Absence seizures are more frequent
than CPSs; a frequency of many seizures per day is common, and
occasionally dozens per hour occur. CPSs, however, are rarely
more frequent than a few per day, and these would generally be
considered “clusters.” SWDs recorded here from FPI and control
animals occurred many times per hour and were commonly only
a few seconds in duration, which are properties virtually identical
to those classically described for absence seizures (Sato, 1983;
Pearl and Holmes, 2008), also interpreted as “nonconvulsive”
seizures in a recent FPI study but observed regularly in control,
sham, and injured rats (Campbell et al., 2014). Other features of
SWDs recorded in our FPI and control rats had much closer
similarity to absence seizures than CPSs. For example, the rhyth-
mic nature of SWD events in the range of 5–10 Hz, slightly faster
but similar to absence seizures in humans, has been amply de-
scribed in several models of absence epilepsy in inbred (Danober
et al., 1998) and as normal events in outbred rats, such as the

Long–Evans (Shaw, 2004; Huang et al.,
2012) and Sprague-Dawley strains (Wiest
and Nicolelis, 2003). The distinct wave-
form of SWDs, their rapid onset and ter-
mination, and their lack of postictal
suppression are defining characteristics of
absence seizures in these animals but not
of CPSs. Finally, it has been shown that
SWDs in uninjured outbred Sprague-
Dawley rats can be abolished by ethosux-
imide (a human anti-absence drug; Pearce
et al., 2014), strengthening the connection
with absence seizures.

As a form of primary generalized epi-
lepsy, absence seizures can have synchro-
nous onsets at all electrode sites, similar to
the SWDs observed here. Occasionally,
SWD activity appeared to begin at one
electrode, but this was rare and was inde-
pendent of injury location. Although pre-
vious studies of the FPI model have
suggested that focal onsets may be a key
feature distinguishing postinjury subcon-
vulsive events from absence seizures
(D’Ambrosio et al., 2005), there is a lack of
quantitative control data illustrating this
distinction. In addition, absence seizures
in inbred rats often display asynchronous
onsets with the leading cortical focus in
rostral electrode sites near the perioral re-
gion of sensorimotor cortex (Meeren et
al., 2002), leading to the current “cortical
focus” theory of absence epilepsy (Meeren
et al., 2005). Signal analytic methods have
also demonstrated early focal changes in
thalamocortical interactions demonstrat-
ing a perioral cortical hot-spot of hyper-
excitability triggered seconds in advance
of SWD (Lüttjohann and van Luijtelaar,
2015).

Progression of SWDs with age
An important concept in acquired epi-
lepsy is that the frequency and severity of
spontaneous recurrent seizures often in-
crease with time after the injury. Using

both nonconvulsive and convulsive seizures with durations com-
parable with those observed in human CPSs, a progressive in-
crease in seizure frequency has been demonstrated in models of
status epilepticus (Aldinio et al., 1985; Lothman and Bertram,
1993; Bertram and Cornett, 1994; Nissinen et al., 2000; Kelly et
al., 2001; Kharlamov et al., 2003; Williams et al., 2009), and also
more recently in a model of perinatal hypoxia-ischemia (Kadam
et al., 2010). Previous studies with FPI (Eastman et al., 2015),
based on relatively brief SWD-like events occurring at a fre-
quency of many per hour, have also reported a progressive in-
crease in frequency after brain insult. Although this observation
would appear to be evidence of acquired epilepsy in the FPI
model, our data showing increases in frequency and duration of
SWD in control rats puts this interpretation in question.

Absence epilepsy is most prominent in childhood. However,
in accepted inbred rat models of absence, as well as the present
data, SWD events are rare in younger animals and become more
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frequent and prolonged as animals become older (Coenen and
van Luijtelaar, 1987). Thus, the analogy with absence epilepsy in
humans is poor in regard to life history of the disease. This has
been noted as one of several weaknesses of absence epilepsy mod-
els (Kaplan, 1985), but does not suggest similarity to CPS of
acquired epilepsy, because age-related increases in SWD are com-
mon in outbred and inbred rats.

Other brain-injury models of acquired epilepsy in the rat
Our failure to obtain CPS was surprising in light of other reports
(Kharatishvili et al., 2006; Bolkvadze and Pitkänen, 2012; Shultz
et al., 2013; Campbell et al., 2014; D. Poulsen, personal commu-
nication). This may indicate a marked sensitivity of the model to
experimental parameters. We relied on rostral parasagittal FPI
reported by others to be highly successful (D’Ambrosio et al.,
2004, 2005; Curia et al., 2011). Like these studies, FPI resulted in
a 10% mortality rate with severe impact pressures and post-
trauma apnea �15 s that required resuscitation. Yet, these out-
come measures alone may not indicate sufficient cortical and
subcortical damage for epileptogenesis. Recent studies suggest
caudal and lateral impact locations with a wider (5 mm) craniot-
omy may be more effective in yielding convulsive seizures and
that the impact must be sufficient to produce damage to entorhi-
nal cortex and hippocampus, as well as resulting in mortality
rates on the order of 32% (Kharatishvili and Pitkänen, 2010).
Only these examples seem appropriate as models of bona fide
acquired epilepsy, producing CPSs in 50% of rats monitored con-
tinuously for 12 months. If the rostral parasagittal percussion
model were equally effective in producing CPSs instead of SWD,
we should have had at least five rats with convulsive seizures in
the FPI group monitored for 1 year. Instead, we recorded no CPS
or epileptiform discharges in any of our rats.

Chronic recurrent seizures with the characteristics of acquired
epilepsy have also been seen after controlled cortical impact, an-
other possible model of PTE (Statler et al., 2009; Bolkvadze and
Pitkänen, 2012). In a perinatal hypoxia-ischemia model (Kadam
et al., 2010) and in a new model of penetrating brain injury
(Kendirli et al., 2014), both nonconvulsive and convulsive sei-
zures have been observed. Thus, several other animal models of
severe brain injury, including TBI and stroke, and not limited to
status epilepticus, have shown nonconvulsive and convulsive sei-
zures that appear substantially different from the SWDs observed
here, and different from the SWD events previously attributed to
epilepsy from FPI.

Conclusions
We conclude that the SWDs recorded here, in both FPI and con-
trol rats, are a model of absence seizures in humans. The fact that
SWDs in normal Sprague-Dawley rats may be genetically en-
hanced in inbred species further strengthens the connection to
human genetic epilepsy. Just like mild sensory stimulation, ob-
served here to abort SWD, would not affect actual CPSs, methods
for epilepsy therapy based on control of post-traumatic SWDs
(D’Ambrosio and Miller, 2010; Eastman et al., 2015) are unlikely
to impact human CPSs. All features of SWD events in the present
results are remarkably similar to reports of models of PTE based
on FPI (D’Ambrosio et al., 2009). The data reported here, com-
bined with previous work (Kelly et al., 2006; Pearce et al., 2014),
raises serious questions about the validity of the FPI model of
acquired epilepsy. These studies suggest that a major reassess-
ment of “What is a seizure?” in the context of acquired epilepsy,
and thus “What defines a model of acquired epilepsy?,” is needed.
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