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The APP plays a central role in AD, a pathology that first manifests as a memory decline. Understanding the role of APP in normal
cognition is fundamental in understanding the progression of AD, and mammalian studies have pointed to a role of secreted APP� in
memory. In Drosophila, we recently showed that APPL, the fly APP ortholog, is required for associative memory. In the present study, we
aimed to characterize which form of APPL is involved in this process. We show that expression of a secreted-APPL form in the mushroom
bodies, the center for olfactory memory, is able to rescue the memory deficit caused by APPL partial loss of function. We next assessed the
impact on memory of the Drosophila �-secretase kuzbanian (KUZ), the enzyme initiating the nonamyloidogenic pathway that produces
secreted APPL�. Strikingly, KUZ overexpression not only failed to rescue the memory deficit caused by APPL loss of function, it
exacerbated this deficit. We further show that in addition to an increase in secreted-APPL forms, KUZ overexpression caused a decrease
of membrane-bound full-length species that could explain the memory deficit. Indeed, we observed that transient expression of a
constitutive membrane-bound mutant APPL form is sufficient to rescue the memory deficit caused by APPL reduction, revealing for the
first time a role of full-length APPL in memory formation. Our data demonstrate that, in addition to secreted APPL, the noncleaved form
is involved in memory, raising the possibility that secreted and full-length APPL act together in memory processes.
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Introduction
APP is a major actor of AD (Zheng and Koo, 2011). APP is a
transmembrane protein that undergoes two exclusive processing
pathways: the nonamyloidogenic pathway initiated by the
�-secretase produces a secreted APP form (sAPP�), while the
amyloidogenic pathway leads to the production of amyloid-�
peptides (A�), which can form toxic extracellular deposits in the
brain of AD patients (Turner et al., 2003). For years, the amyloid
hypothesis has placed A� at the center of the pathology etiology
(Hardy and Selkoe, 2002).

To understand mechanisms underlying the pathology, it is
fundamental to understand the role of APP in normal cognition,
especially as disruption of APP normal function may contribute
to AD (Neve et al., 2000). AD’s first symptom is a decline of
episodic memory (Förstl and Kurz, 1999), and several studies in
mice reported that sAPP� enhances memory (Meziane et al.,
1998; Ring et al., 2007). The physiological role of APP is particu-

larly difficult to study because of its numerous proteolytic metab-
olites. Furthermore, functional studies of the APP pathway in
rodents are limited because of redundancy due to three APP-
related genes and the lethality of the triple knock-out (Heber et
al., 2000; Herms et al., 2004). In contrast, Drosophila melano-
gaster expresses a single nonessential APP ortholog, APP-Like
(APPL). Importantly, APPL undergoes proteolytic pathways
similar to that of APP, and the mammalian homologs of all secre-
tases have been characterized in the fly (Poeck et al., 2012). De-
spite its relative simplicity, the fly brain is able to drive
sophisticated behaviors. Particularly relevant for AD studies,
Drosophila is extensively used as a model to study memory, and
molecular processes at play are conserved from flies to mammals
(McGuire et al., 2005). Neuronal structures underlying olfactory
memory are well described. The mushroom bodies (MB), prom-
inent bilateral structures of the fly brain comprising 4000 neu-
rons, have been identified as the center of olfactory learning and
memory (Heisenberg, 1998). We have recently shown that APPL
is required for memory in the adult MB (Goguel et al., 2011),
supporting the hypothesis that APP loss of function might con-
tribute to the appearance of memory deficits in AD.

In the present study, we aimed to characterize which APPL
forms are involved in memory. We analyzed short-term memory
(STM) after overexpression in the adult MB of either a constitu-
tively secreted APPL form (APPL s; Torroja et al., 1996) or kuz-
banian (KUZ), the Drosophila homolog of the mammalian
�-secretase ADAM10 (Rooke et al., 1996; Carmine-Simmen et
al., 2009). While APPL s overexpression was fully able to rescue
the STM deficit caused by an APPL partial loss of function, KUZ
overexpression strikingly turned out to exacerbate this deficit.
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Lampin-Saint-Amaux for technical help, and all members of our laboratory for fruitful discussions and critical read-
ing of this manuscript.

The authors declare no competing financial interests.
Correspondence should be addressed to either Valérie Goguel or Thomas Preat, Genes and Dynamics of Memory

Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris,
France. E-mail: valerie.goguel@espci.fr or thomas.preat@espci.fr.

DOI:10.1523/JNEUROSCI.2093-14.2015
Copyright © 2015 the authors 0270-6474/15/351043-09$15.00/0

The Journal of Neuroscience, January 21, 2015 • 35(3):1043–1051 • 1043



We show that in this context, KUZ overexpression generated a
decrease of membrane-bound full-length APPL, and further
demonstrate that expression of a membrane-bound mutant form
of APPL (Torroja et al., 1996) was sufficient to rescue the STM
deficit caused by Appl inhibition. Our data point to a requirement
for memory processes of both secreted and nonproteolyzed
forms of APPL.

Materials and Methods
Drosophila stocks. All fly strains were outcrossed to a Canton Special
genetic background. The UAS-kuzbanian (kuz) line was kindly provided
by D. Kretzschmar (Carmine-Simmen et al., 2009). The Appld;MBSw line
was constructed using Appld-null mutant flies (Luo et al., 1992) and the
Gal4-inducible MB247-Switch driver (Mao et al., 2004). The deficient
Appld w* line used for rescue experiments was a gift from J. M. Dura
(Soldano et al., 2013). The UAS-APPL, UAS-APPLs, and UAS-APPLsd

lines were described previously (Torroja et al., 1996, 1999). The specific
Appl-RNAi used in this study is the transformant #108312 from the
Vienna Drosophila RNAi Center. For behavioral experiments, flies were
raised on standard medium at 18°C with 60% humidity under a 12 h
light/dark cycle. As the Appl gene is located on the X chromosome, only
females were analyzed in experiments that involved Appld genotypes. To
induce transgene expression, the GeneSwitch system was used as de-
scribed previously (Mao et al., 2004). A stock solution of RU486 (SPI-
Bio; 10 mM in 80% ethanol) was mixed into molten food at 65°C to a final
concentration of 200 �M.

Behavior experiments. Flies were trained with classical olfactory-
aversive conditioning protocols as described previously (Pascual and
Préat, 2001). One to 2-d-old flies were kept on RU486-containing me-
dium (RU) for 48 h before conditioning, and until testing when per-
formed 24 h later. Training and testing were performed at 25°C with
80% humidity. Conditioning was performed on samples of 30 – 40
flies with 3-octanol (�95% purity; Fluka 74878, Sigma-Aldrich) and
4-methylcyclohexanol (99% purity; Fluka 66360, Sigma-Aldrich) at
0.360 and 0.325 mM, respectively. Odors were diluted in paraffin oil
(VWR International, Sigma-Aldrich). Memory tests were performed
with a T-maze apparatus (Tully and Quinn, 1985). Flies could choose for
1 min between two arms, each delivering a distinct odor. An index was
calculated as the difference between the numbers of flies in each arm
divided by the sum of flies in both arms. A performance index was then
reported from the average of two reciprocal experiments with either
octanol or methylcyclohexanol as conditioned stimulus. For odor-
avoidance tests after electric shock exposure, and response to electric
shock, flies were treated as described previously (Pascual and Préat,
2001).

Quantitative PCR. Flies were raised at 25°C before total RNA extrac-
tion from 50 female heads with the RNeasy Plant Mini Kit (Qiagen).
Samples were submitted to DNase I treatment (BioLabs), and further
reverse transcribed with oligo(dT)20 primers using the SuperScript III
First-Strand kit (Life Technologies) according to the manufacturer’s in-
structions. To specifically amplify the Appls cDNA, we used a primer
(5�-CGCAGCGAGAAGCTCGATTA-3�) that hybridizes at the site of the
stop codon, which was introduced in the Appl sequence to generate the
APPLs construct (Torroja et al., 1996). We compared the level of the target
cDNA to that of the �-Tub84B (CG1913) cDNA, which was used as a
reference. Amplification was performed using a LightCycler 480 (Roche)
in conjunction with the SYBR Green I Master (Roche). For each experi-
ment, reactions were performed in triplicate for two dilutions of each
cDNA. Each datum represents two to four independent experiments.
Specificity and size of amplification products were assessed by melting
curve analyses and agarose gel electrophoresis, respectively. Expression
relative to the reference is expressed as a ratio (2 ��Cp, where Cp is the
crossing point).

Protein analyses. Proteins were extracted from 140 female fly heads
after 48 h of RU induction at 18°C. Protein extracts were fractioned in
RIPA buffer containing protease and phosphatase inhibitors (Roche)
using sequential centrifugation as described previously (Lallemand et al.,
2003). Samples were separated using SDS-PAGE gels containing a gradi-

ent of 3– 8% acrylamide (Life Technologies) and transferred to nitrocel-
lulose membrane (GE Healthcare). Membranes were cut into two parts
and the higher one was probed with anti-APPL that binds to the APPL
ectodomain (Ab952M; Torroja et al., 1996) at a dilution of 1:10,000. The
lower part of the membrane was probed with either anti-�-Tub (QG-17;
Sigma-Aldrich, dilution 1:20,000) to analyze membrane fractions or
anti-�-Tub (T6199; Sigma-Aldrich, 1:40,000 dilution) to analyze soluble
fractions. Western blots were routinely developed using the ECL system
(Life Technologies). Protein levels were quantified using ImageQuant TL
software (GE Healthcare). Following normalization to loading controls,
the levels of each APPL-reactive band were expressed as relative to the
total amount of APPL detected in heterozygous Appld/�;MBSw/� flies
from the same Western blot experiment. Three independent protein
extractions were quantified 10 (membrane fractions) and 11 (soluble
fractions) times on four independent Western blots.

Statistical analyses. Memory scores are displayed as mean � SEM. To
compare performance indexes from more than two groups, statistical
analyses were performed through a one-way ANOVA, followed by New-
man–Keuls pairwise comparisons. Overall ANOVA p value is given in the
legends along with the value of the corresponding Fisher distribution
F(x,y), where x is the number of degrees of freedom for groups and y the
total number of degrees of freedom for the distribution. Asterisks on the
figure represent the least significant of the pairwise post hoc comparisons
between the genotype of interest and its controls, following the usual
nomenclature. To compare memory scores of two groups, Student’s t
tests were used with p � 0.05 as a significance threshold. mRNA quanti-
fication measurements were analyzed from 2 -�Cp ratios in the same way.

Results
Several reports have shown that APP is involved in memory in
mammals. In Drosophila, we recently showed that APPL expres-
sion is required in the MB of young adults for long-term memory
(LTM) formation (Goguel et al., 2011). Because there are numer-
ous APPL metabolites, we aimed to identify which APPL species
are involved in memory processes. To this end, we addressed
whether the expression of distinct mutant forms of APPL could res-
cue the memory deficit observed in flies containing a reduced level of
APPL protein.

To analyze memory, we used a classical conditioning of an
odor-avoidance response. In this paradigm, groups of flies are
successively exposed to two distinct odors, only one of which is
associated with electric pulses. Learning and STM are assessed
immediately and 2 h, respectively, after one training cycle. Unlike
STM, LTM is a consolidated memory whose formation relies on
de novo protein synthesis (Tully et al., 1994), and it is assessed 24 h
after five-spaced training sessions.

In our previous work (Goguel et al., 2011), we knocked down
APPL expression in adult MB by RNAi using the conditional
MB247-Switch driver (MBSw; Mao et al., 2004) and UAS-RNAi
transgenes. The MBSw driver encodes a Gal4-Switch fusion pro-
tein that becomes active when flies are fed with the RU ligand
(Roman et al., 2001). However, this knockdown strategy could
not be used in the present study, as an Appl RNAi would target
both endogenous Appl RNA and that resulting from the con-
struct used to conduct rescue experiments. To circumvent this
issue, we took advantage of Appld-null mutant flies (Luo et al.,
1992), and generated Appld flies carrying the MBSw driver (Appld;
MBSw). As previously described (Luo et al., 1992), homozygous
Appld;MBSw flies exhibited an impairment in electric shock
avoidance (Fig. 1A), as well as an apparent defect in learning that
might result from the impairment in shock reactivity (Fig. 1B).
These data are consistent with the fact that Appl deletion leads to
subtle abnormal morphology of the MB lobes (Li et al., 2004),
and a more recent study showing the role of APPL in brain wiring
during development (Soldano et al., 2013). Interestingly, Sol-
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dano et al. (2013) showed that Appld/� heterozygous flies retain-
ing one copy of the Appl wild-type gene do not undergo any MB
developmental alteration. We thus hypothesized that Appld/�;
MBSw/� heterozygous flies might constitute a tool to analyze the
role of the APPL pathway in memory. As expected, measurement
of Appl expression in Appld/�;MBSw/� fly heads by real-time
PCR showed a strong reduction in Appl mRNA levels compared
with wild-type (Fig. 1C). Interestingly, and in contrast to the
Appld;MBSw-null mutant, Appld/�;MBSw/� heterozygous flies
showed wild-type shock reactivity (Fig. 1D), and also wild-type
olfactory acuity (Fig. 1D). Furthermore, Appld/�;MBSw/� flies
displayed a normal learning (Fig. 1E). These data are consistent with

the fact that unlike Appld-null mutant, flies
expressing 40% of the wild-type level of
Appl mRNA possess brain structures in-
volved in olfactory learning and memory
that are not affected.

To better characterize the memory
deficit of Appld/�;MBSw/� heterozygous
flies, we analyzed their LTM perfor-
mances. Consistent with the results previ-
ously observed with flies expressing
specific Appl RNAi in adult MB (Goguel et
al., 2011), Appld/�;MBSw/� heterozy-
gous flies exhibited an LTM impairment
(Fig. 1F). In addition, Appld/�;MBSw/�
heterozygous flies exhibited a slight but
significant STM defect compared with
wild-type (Fig. 1G), whereas we previ-
ously observed that STM was not affected
in Appl RNAi-G3- and Appl RNAi-42673-
expressing flies (Goguel et al., 2011). In
our previous study, APPL protein level
was decreased by 39% in the MB as esti-
mated by immunohistochemistry experi-
ments (Goguel et al., 2011), whereas in the
present work, Appl mRNA reduction in
the fly head estimated by qPCR was 60%,
suggesting that APPL protein level in
the MB is lower in Appld/�;MBSw/�
heterozygous flies than that previously
achieved by RNAi induction. Thus, we hy-
pothesized that the more APPL expres-
sion is reduced, the stronger the memory
phenotypes observed. Indeed LTM is de-
pendent on more advanced mechanisms
than STM and is thus likely more sensitive
to disturbance (Dubnau and Tully, 1998).
To further address this question, we used
a more efficient Appl-RNAi construct
(RNAi-108312) to achieve a higher extent
of APPL loss of function. Efficiency of
Appl RNAi-108312 was assessed by driving
its transcription with the pan-neuronal
elav-Gal4 driver. qPCR analyses revealed
that elav/�;�/RNAi-108312 flies express an
Appl/Tub ratio of 0.055 � 0.003 relative to
the elav/� control, whereas previously
published results indicated relative ratios
of 0.13 for elav/�;42673/� and 0.25 for
elav/�;G3/� flies (Goguel et al., 2011),
showing that the RNAi-108312 construct
leads to a higher Appl knockdown than

the RNAi constructs previously used. After 48 h of RU feeding,
MBSw/RNAi-108312 flies exhibited an STM deficit (Fig. 1H).
This deficit was only observed when flies were fed with RU to
induce RNAi expression (Fig. 1H ), showing that it is specifi-
cally caused by RNAi induction in the adult MB. Therefore,
decreasing APPL expression in the MB leads to a slight STM
impairment that may not be observed when the reduction of
Appl level is less substantial. The memory deficit is thus cor-
related to the extent of Appl level decrease in the MB. In conclusion,
Appld/�;MBSw/� heterozygous flies should constitute an effective
tool to conduct STM rescue experiments in APPL partial loss of
function (LOF).
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To validate this tool we first expressed the wild-type APPL form
and analyzed its capacity to restore the STM deficit of Appld/�;
MBSw/� heterozygous flies. When APPL overexpression was
driven in the MB of wild-type flies (MBSw/APPL), it did not alter
2 h memory (Fig. 2A). APPL overexpression in the MB of
Appld/� heterozygous flies (Appld/�;MBSw/APPL) led to a
memory score similar to wild-type (Fig. 2B), showing that APPL
overexpression in the MB leads to a rescue of the STM deficit
caused by the deletion of one of the two copies of the Appl gene.
When Appld/�;MBSw/APPL flies were not fed with RU, STM
scores were similar to wild-type and to flies of the same genotype
fed with RU (Fig. 2B). Thus, we also observe a rescue of the
memory deficit in the absence of RU induction. We hypothesized
that this phenotype resulted from the expression in the MB of the
UAS-APPL transgene, as Gal4-Switch may be partially active in
the absence of RU feeding. To assess Appl expression in the
absence of RU induction, we performed qPCR analyses. We
observed that without induction, Appld/�;MBSw/APPL flies ex-
pressed a significant increase in Appl mRNA levels compared with
that of Appld/�;�/APPL flies (Fig. 2C). Considering that RNA was
extracted from the whole brain, whereas APPL expression due
to the activity of the Gal4-Switch was restricted to the MB,
APPL level of expression in the MB should be substantial. The
memory impairment of Appld/� flies is very likely caused by a
functional deficit in the adult, so we conclude that APPL over-
expression rescues the memory deficit caused by a partial re-
duction of endogenous APPL levels.

As the mammalian secreted fragment produced from the
�-secretase cleavage pathway, sAPP�, is the prime candidate for a
role in memory (Meziane et al., 1998; Bour et al., 2004; Ring et al.,
2007; Taylor et al., 2008), we next aimed to analyze the secreted-

APPL form. For this purpose, we took advantage of a constitu-
tively secreted-APPL mutant protein. A stop codon introduced in
the Appl sequence generates a 788 aa soluble N-terminal frag-
ment of APPL (APPL s; Torroja et al., 1996), which has been put
under control of the UAS expression system to allow for con-
trolled expression patterns (UAS-APPLs; Torroja et al., 1999). To
assess APPL s function in memory, we induced its expression in
the MB for 48 h before conditioning and analyzed memory per-
formances 2 h after. In flies expressing a wild-type level of endog-
enous APPL, overexpression of APPL s in the MB (MBSw/APPLs)
led to a memory score that was not significantly different from
that of control flies (Fig. 3A), showing that expression of a
secreted-APPL form in the MB of young adult flies does not
increase their STM performances. We next analyzed whether
APPL s expression in the MB of APPL partial LOF flies could
rescue their STM deficit. Heterozygous Appl/�;MBSw/� and
Appl/�;�/APPLs flies showed an STM deficit (Fig. 3B), while
APPL s expression (Appld/�;MBSw/APPLs) led to the restoration
of a wild-type STM score (Fig. 3B). This result shows that a se-
creted form of APPL is involved in memory processes. We ob-
served that Appld/�;MBSw/APPLs flies that were not fed with RU
also exhibited a wild-type STM score (Fig. 3B). To assess Appls

expression in the absence of RU, we performed qPCR analyses.
We observed an intrinsic level of Appls expression in the absence
of Gal4 driver (Fig. 3C, Appld/�;�/APPLs). In the presence of the
MBSw driver, Appld/�;MBSw/APPLs flies not fed with RU ex-
pressed a fivefold increase of Appls mRNA compared with the
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p � 0.05). C, APPLs is expressed in the absence of RU feeding. Total RNA was extracted
from Appld/�;�/APPLs and Appld/�;MBSw/APPLs fly heads and further reverse tran-
scribed. cDNA resulting specifically from the APPLs construct was quantified by qPCR using
tubulin (Tub) expression as a reference (t test, ***p � 0.001, n 	 2). Error bars indicate
mean � SEM. PI, Performance Index.
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control (Fig. 3C). This result indicates that in the absence of RU,
the Gal4-Switch protein drives expression of the UAS-APPLs

transgene. In conclusion, expression of secreted APPL is able to
rescue the memory deficit caused by the reduction of endogenous
APPL.

To get further insight into secreted-APPL function in
memory, we next analyzed the influence on memory of the
overexpression of the Drosophila �-secretase, KUZ (Rooke et
al., 1996), the enzyme that initiates the nonamyloidogenic
pathway (Carmine-Simmen et al., 2009). Wild-type KUZ-
expressing flies (MBSw/kuz) exhibited a memory score that was
not significantly different from that of �/kuz control flies (Fig.
4A), showing that, similarly to APPL s, KUZ overexpression in the
MB of young adult flies has no impact on STM. We next studied
whether overexpression of the �-secretase could rescue the mem-
ory deficit caused by APPL partial LOF. Unexpectedly, KUZ-
expressing flies (Appl/�;MBSw/kuz) showed an STM score
significantly lower than their genetic controls (Fig. 4B). Thus, not
only did KUZ overexpression fail to rescue the memory deficit
caused by APPL partial LOF, but even more, it exacerbated this
deficit. Appl/�;MBSw/kuz flies exhibited similar scores whether
or not they were fed with RU for 48 h before conditioning (Fig.
4B). Kuz mRNA quantification indicated that KUZ is overex-
pressed in the absence of RU feeding (data not shown), showing
again that the Gal4-Switch driver is partially active under these
conditions. Appl/�;MBSw/kuz flies fed with RU and tested im-
mediately after conditioning exhibited wild-type learning (Fig.
4C). Their ability to avoid electric shocks as well as their olfactory
acuity to each odor after electric shock exposure were unaffected
(Fig. 4D), showing that they perceived the stimuli used for con-
ditioning normally. These data suggest that brain structures re-
quired for olfactory memory are not affected in Appl/�;MBSw/
kuz flies.

We next verified the level of kuz overexpression in wild-type
and APPL LOF genetic contexts. qPCR analyses revealed that the
level of kuz mRNA was similar in MBSw/kuz and Appld/�;MBSw/
kuz fly heads (Fig. 4E), indicating that the augmentation of the
memory deficit observed in Appld/�;MBSw/kuz flies is not due to
an increase in KUZ expression level compared with that of
MBSw/kuz flies. Altogether, the data show that in an APPL partial
LOF background, overexpression of the �-secretase, KUZ, is delete-
rious for memory. This result in apparent contradiction to that ob-
served with APPLs overexpression suggests that increasing secreted
APPL is not the only consequence of KUZ overexpression.

KUZ has substrates additional to APPL (Pan and Rubin, 1997;
Lieber et al., 2002). However, because KUZ overexpression af-
fects STM only when APPL levels are reduced, the results indicate
that the memory deficit is caused by an interaction between KUZ
and the APPL pathway. To get an insight into this interaction, we
first analyzed whether the memory deficit induced by KUZ over-
expression in Appld/�;MBSw/kuz flies was linked to a modula-
tion of endogenous Appl expression. Appl mRNA level was
similar in Appld/�;MBSw/� and Appld/�;MBSw/kuz flies (Fig.
5A), showing that the mechanism by which KUZ exacerbates the
memory deficit is not through modulation of Appl transcription,
but rather through APPL processing. We next analyzed the effect
of KUZ overexpression on APPL protein steady-state levels.
Western blots were performed after fractionation of fly head ly-
sates. As expected, the data show that APPL-secreted forms re-
vealed in the soluble fraction were enriched upon KUZ
overexpression (Fig. 5B). In addition, we observed that full-
length APPL (fl-APPL) levels present in the membrane fraction
were decreased by 30% in Appld/�;MBSw/kuz compared with

Appld/�;MBSw/� control flies (Fig. 5C). The results thus show
that KUZ overexpression leads to a substantial increase of se-
creted APPL and a concomitant decrease of membrane-bound
fl-APPL forms, suggesting that the deleterious impact on mem-
ory of the �-secretase overexpression is caused by a decrease of
membrane fl-APPL protein.

To get an insight into the influence of fl-APPL on memory, we
used the APPL sd (APPL secretion-defective) mutant form of
APPL (Torroja et al., 1996, 1999). APPL sd carries a short deletion
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0.4184, n 	 3). Error bars indicate mean � SEM. PI, Performance Index; OCT, octanol; MCH,
methylcyclohexanol.
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encompassing the �- and �-cleavage sites
that thus prevents its proteolytic cleavage.
In consequence, APPL sd is only expressed
as a transmembrane protein. When over-
expressed for 48 h in the MB of wild-type
flies (MBSw/APPLsd), APPL sd mutant
form did not affect STM (Fig. 6A). We
next overexpressed APPL sd in an APPL
partial LOF genetic background. Interest-
ingly, Appld/�;MBSw/APPLsd flies fed with
RU showed an STM performance signifi-
cantly higher than that of Appld/�;
MBSw/� and Appld/�;�/APPLsd flies,
and indistinguishable from wild-type
(Fig. 6B). In contrast, in the absence of
RU-feeding, Appld/�;MBSw/APPLsd flies
exhibited scores that were indistinguish-
able from that of Appld/�;MBSw/� and
Appld/�;�/APPLsd flies, and significantly
lower than that of wild-type flies (Fig.
6B).The data show that the induction of
APPL sd transient expression in the adult
MB rescues the STM defect caused by
Appl reduction. This result also demon-
strates that the STM deficit observed in
Appld/�;MBSw/� flies (Fig. 1G) is indeed
the result of a functional deficit in the
adult. In conclusion, APPL sd is able to
fully rescue the memory deficit caused by
APPL partial LOF, consistent with the fact
that KUZ overexpression leads to decreased
fl-membrane-bound APPL, and is associ-
ated with an exacerbation of memory
deficits.

We next aimed to analyze whether the
distinct APPL forms used in this study
could rescue the LTM deficit caused by
the reduction of endogenous APPL levels.
As expected, we observed that overexpres-
sion of the wild-type APPL form could to-
tally rescue the LTM impairment caused
by APPL partial LOF (Fig. 7A). In con-
trast, neither APPL s nor APPL sd expres-
sion could rescue the LTM deficit (Fig.
7B,C). These data thus indicate that over-
expression of either secreted APPL or fl-
membrane-bound APPL alone is unable to restore wild-type
LTM. Although it is difficult to conclude from these negative
results, it is possible that both sAPPL and fl-APPL are required for
LTM formation, but that either their ratio or their respective
abundance is not able to sustain LTM.

Discussion
The majority of studies into APP biology have focused on patho-
genic mechanisms. However, it remains crucial to understand the
normal physiological function of APP, especially as it is possible
that APP loss of function elicits early cognitive impairment in AD
patients. Here, we show that overexpression of secreted APPL
rescues the short-term memory deficit caused by a reduction of
APPL level. In sharp contrast, overexpression of the �-secretase,
KUZ, which produces sAPPL, exacerbates the memory impair-
ment, a phenotype that is likely due to a deficit in full-length
APPL protein level. Supporting this hypothesis, we further dem-

onstrate that expression of a nonprocessed APPL mutant form is
able to restore wild-type memory in an APPL partial loss of func-
tion background.

In the past, two main strategies have been considered as ther-
apeutic approaches for AD. First, inhibition of the �- or
�-secretase has been used to achieve an inhibition of A� toxic
production (Wolfe, 2008). However, reduction of A� production
is not only an ineffective approach for AD (Callaway, 2012; Xia et
al., 2012), it also can actually promote further pathology, as these
enzymes have numerous substrates (Randall et al., 2010). A sec-
ond proposed approach has been to inhibit the amyloidogenic
pathway by activating the �-processing of APP (Fahrenholz,
2007). In addition to the potential beneficial inhibition of the
amyloidogenic pathway, the advantage of this type of approach is
to also increase the production of sAPP� (Vincent and Govitrap-
ong, 2011). Indeed, decreased CSF sAPP� levels were found in
familial and sporadic AD patients (Lannfelt et al., 1995; Sennvik

Appl  mRNA

Ap
pl
/T
ub

 ra
tio

Soluble APPL

AP
PL

/T
ub

 ra
tio

Membrane APPL

AP
PL

/T
ub

 ra
tio

A

Membrane fraction

Soluble fraction

APPL
 

γ -Tub 

α-Tub 

APPL  
117

 

kD 

117  

kD
 

n.s.

Appld /+;
MBSw/+

Appld /+;
MBSw/ku

z 

Appld /+;
MBSw/+

Appld /+;
MBSw/ku

z 

Appld /+;
MBSw/+

Appld /+;
MBSw/ku

z 

Appld /+;
MBSw/+

Appld /+;
MBSw/ku

z 

Appld ;M
BSw

B

C

0.00

0.02

0.04

0.06 ns

0.0

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

1.25

Appld /+;
MBSw/+

Appld /+;
MBSw/ku

z 

Appld ;M
BSw

Figure 5. Impact of KUZ overexpression on Appl transcription and APPL processing. Flies were fed with RU for 48 h before RNA
or protein extraction. A, qPCR analyses. Total RNA was extracted from Appld/�;MBSw/� and Appld/�;MBSw/kuz fly heads, and
resulting cDNA was quantified using tubulin (Tub) expression as a reference. Results shown are ratios to the reference. Appl mRNA
level is similar in Appld/�;MBSw/� and Appld/�;MBSw/kuz flies (t test, p 	 0.5814, n 	 3). B, C, Western blot analyses. Protein
extracted from fly head lysates was fractionated (n 	 3), and resulting blots were stained using an N-ter APPL-specific antibody.
Left, Western blots. Right, Quantification. Soluble (n 	 11) and membrane (n 	 10) species are expressed as ratios to �-Tub and
�-Tub, respectively, relative to the Appld/�;MBSw/� control. B, Analyses of soluble fractions. Secreted-APPL level is increased in
Appld/�;MBSw/kuz flies compared with Appld/�;MBSw/�, while it is not detected in Appld;MBSw-null flies. n.s., Nonspecific
band resulting from a cross reaction. C, Analyses of membrane fractions. Left, Dotted lines separate lanes that were run on the same
gel, but not side to side. fl-APPL level is decreased in Appld/�;MBSw/kuz flies compared with Appld/�;MBSw/� control flies.
Error bars indicate mean � SEM.

1048 • J. Neurosci., January 21, 2015 • 35(3):1043–1051 Bourdet et al. • Full-Length and Secreted APPL are Involved in Memory



et al., 2000), and correlated with poor memory performance in
patients with AD (Almkvist et al., 1997; Fellgiebel et al., 2009).
Thus, in vitro and in vivo studies indicate that sAPP� is down-
regulated during AD. Numerous analyses have shown that
sAPP� ectodomain has neurotrophic and neuroprotective effects
in different models of neuronal stress (Mattson et al., 1993;
Smith-Swintosky et al., 1994; Copanaki et al., 2010; Corrigan et
al., 2011). In addition, sAPP� exhibits memory-enhancing prop-
erties. Intracerebroventricular infusion of anti-sAPP� serum was
deleterious for memory, while that of sAPP� was beneficial (Me-
ziane et al., 1998; Bour et al., 2004; Taylor et al., 2008). However,
these studies relied on an exogenous excess of sAPP� and mech-
anisms of action and potential targets remained to be elucidated.
With knock-in mice experiments, Ring et al. (2007) showed that
sAPP� was sufficient to correct the impairments in spatial learn-
ing and long-term potentiation that are present in APP KO mice.
Here we show in Drosophila that sAPPL is able to fully rescue the
STM deficit caused by a reduction in endogenous APPL level,
thus establishing that an APPL soluble form plays a role in mem-
ory, and giving further support for a role of secreted forms in
memory in mammal systems.

When the fly �-secretase, KUZ, was overexpressed in the adult
MB, we did not observe any STM-enhancing effect and, unex-
pectedly, KUZ overexpression in the MB of flies with an APPL
partial loss of function exacerbated their memory impairment.
Thus, KUZ overexpression was actually deleterious for memory,
rather than beneficial. These results contrast with a previous
study showing that overexpression of the mammalian �-secretase
ADAM10 in an AD mice model led to an increase in sAPP�, and
was able to overcome APP-related learning deficits (Postina et al.,
2004). However, these studies showed that �-secretase activation
has a positive impact on memory exclusively under conditions
where human APP is overexpressed. In wild-type mice, results
were not clear because overexpression of either the wild-type or
an inactive form of the bovine ADAM10 altered learning and
memory (Schmitt et al., 2006). Furthermore, ADAM10 has many
substrates (Vincent and Checler, 2012), and no evidence was
brought to link the memory deficit to APP.

Interestingly, we observed that KUZ overexpression decreases
membrane nonproteolyzed APPL level, suggesting that its nega-
tive impact on memory in APPL LOF flies is linked to a reduction
of nonproteolyzed APPL level. Therefore, strategies aimed at in-
creasing APP �-cleavage may not be appropriate as this could
provoke a decrease of fl-APP levels that might be deleterious to
APP function.

Transient expression of a constitutive membrane-bound mu-
tant APPL has the capacity to fully rescue the STM deficit caused
by APPL partial loss of function. Thus, both sAPPL and fl-APPL
appear to be involved in memory processes. This is in apparent
contradiction with the observation that mammalian sAPP�
was sufficient to correct spatial learning deficit of APP KO
mice (Ring et al., 2007). However, in this study APP-like pro-
teins APLP1 and ALPL2 were preserved, and as it is known
from double KO analyses that the three APP homologs exert
functional redundancy (Anliker and Müller, 2006), they may
have compensated for the loss of essential fl-APP functions. In
consequence, one cannot attribute the memory function ex-
clusively to sAPP�.

If both fl-APPL and sAPPL carry the capacity to restore wild-
type STM in APPL partial LOF flies, it is puzzling to observe that
KUZ overexpression in this genetic context is deleterious for
memory. Indeed, in addition to causing a decrease in fl-APPL,
KUZ overexpression leads to a concomitant increase in sAPPL
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that should be able to complement fl-APPL deficiency. We sug-
gest that in this context, fl-APPL level is below threshold so that
even high levels of sAPPL cannot restore a wild-type memory.
This hypothesis is supported by protein quantification experi-
ments showing a 30% decrease in fl-APPL level. Because APPL
was extracted from the whole brain, whereas KUZ overexpres-
sion was only driven in a subset of neurons, the effective fl-APPL
decrease in the MB must be much higher than 30%.

In mammalian cells under steady-state levels, 
10% of APP is
located at the plasma membrane (Thinakaran and Koo, 2008).
APP has long been suggested to act as a cell-surface receptor
(Kang et al., 1987); however, such a function has not been un-
equivocally established. Several reports have shown that APP ex-
ists as homodimers (Scheuermann et al., 2001; Soba et al., 2005;
Dahms et al., 2010). Cis-dimerization of APP would represent a
potential mechanism for a negative regulation of APP functions
and a concomitant impact on A� generation via an increase in
�-processing (Scheuermann et al., 2001; Hashimoto et al., 2003;
Lu et al., 2003; Kedikian et al., 2010; Lefort et al., 2012). Interest-
ingly, it has been suggested that APP is a receptor for sAPP� as its
binding could disrupt APP dimers (Gralle et al., 2009).

In Drosophila, Wentzell et al. (2012) reported that the secreted
N-terminal ectodomain of APPL acts as a soluble ligand for neu-
roprotective functions. Furthermore, coimmunoprecipitation
experiments from transfected Drosophila MB intrinsic cells re-
vealed a physical interaction between fl-APPL and sAPPL, sug-
gesting that sAPPL could be a ligand for fl-APPL (Wentzell et al.,
2012). Our data showing the involvement of both membrane
fl-APPL and sAPPL in memory are consistent with the hypothesis
that sAPPL could be a ligand for its own fl-APPL precursor.

In conclusion, our data reveal for the first time a role for
membrane fl-APPL in memory, opening new questions about
APP nonpathological functions and relations between secreted
and full-length forms in memory processes.
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