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Payoff Information Biases a Fast Guess Process in Perceptual
Decision Making under Deadline Pressure: Evidence from
Behavior, Evoked Potentials, and Quantitative Model
Comparison

Sharareh Noorbaloochi, Dahlia Sharon, and X James L. McClelland
Department of Psychology, Stanford University, Stanford, California 94305

We used electroencephalography (EEG) and behavior to examine the role of payoff bias in a difficult two-alternative perceptual decision
under deadline pressure in humans. The findings suggest that a fast guess process, biased by payoff and triggered by stimulus onset,
occurred on a subset of trials and raced with an evidence accumulation process informed by stimulus information. On each trial, the
participant judged whether a rectangle was shifted to the right or left and responded by squeezing a right- or left-hand dynamometer. The
payoff for each alternative (which could be biased or unbiased) was signaled 1.5 s before stimulus onset. The choice response was assigned
to the first hand reaching a squeeze force criterion and reaction time was defined as time to criterion. Consistent with a fast guess account,
fast responses were strongly biased toward the higher-paying alternative and the EEG exhibited an abrupt rise in the lateralized readiness
potential (LRP) on a subset of biased payoff trials contralateral to the higher-paying alternative �150 ms after stimulus onset and 50 ms
before stimulus information influenced the LRP. This rise was associated with poststimulus dynamometer activity favoring the higher-
paying alternative and predicted choice and response time. Quantitative modeling supported the fast guess account over accounts of
payoff effects supported in other studies. Our findings, taken with previous studies, support the idea that payoff and prior probability
manipulations produce flexible adaptations to task structure and do not reflect a fixed policy for the integration of payoff and stimulus
information.
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Introduction
Decision makers facing difficult perceptual decisions bias choices
toward higher-paying alternatives (Diederich and Busemeyer,

2006; Diederich, 2008; Feng et al., 2009; Gao et al., 2011, Simen et
al., 2009), sometimes approximating the optimal degree of bias.
The neural mechanism underlying this effect has been explored
with electrophysiology in monkeys (Leon and Shadlen, 1999;
Platt and Glimcher, 1999; Rorie et al., 2010). These studies ex-
plore whether payoff information shifts the starting point of a
putative evidence accumulation process (Laming, 1968; Gold
and Shadlen, 2007) or increases the accumulation rate of evi-
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Significance Statement

Humans and other animals often face situations in which they must make choices based on uncertain sensory information
together with information about expected outcomes (gains or losses) about each choice. We investigated how differences in
payoffs between available alternatives affect neural activity, overt choice, and the timing of choice responses. In our experiment,
in which participants were under strong time pressure, neural and behavioral findings together with model fitting suggested that
our human participants often made a fast guess toward the higher reward rather than integrating stimulus and payoff informa-
tion. Our findings, taken with findings from other studies, support the idea that payoff and prior probability manipulations
produce flexible adaptations to task structure and do not reflect a fixed policy.
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dence toward the higher-paying alternative. Most behavioral and
electrophysiological experiments have thus far supported the
starting point hypothesis (Simen et al., 2009; Rorie et al., 2010;
Gao et al., 2011; Leite and Ratcliff, 2011; Mulder et al., 2012; Rao
et al., 2012) or a variant in which payoff information is accumu-
lated in a first stage and stimulus information is accumulated
later (Diederich and Busemeyer, 2006; Diederich, 2008).

Here, we build on this previous work to investigate the neural
basis of payoff effects on perceptual decisions in humans. We use
electroencephalography (EEG) to further test the starting point
hypothesis and to characterize the buildup of the effect on the
starting point, if present. For this purpose, we investigated the
time course of the payoff effect in the period before stimulus
onset and in the poststimulus period. We focus on the lateralized
readiness potential (LRP), an event-related brain potential
thought to reflect a relative increase in neural activity contralat-
eral to the responding hand (Kornhuber and Deecke, 1965;
Vaughan et al., 1967) that may occur before overt responding
(Miller et al., 1998; Scheibe et al., 2009). Although it is down-
stream from other decision areas, influences on the decision state
may, in some conditions at least, flow continuously to the motor
areas thought to generate the LRP (Gratton et al., 1988; but see
Scheibe et al., 2009); payoff bias could also potentially affect mo-
tor preparation directly and unmediated by perceptual processes.
We also record motor activity on dynamometers used as response
sensors, allowing us to observe a tight association between LRP
and motor activity that sometimes occurs in one or both hands
before the participant’s squeeze force reaches a criterion value.

Our results favor an alternative to the idea that payoff bias
affects either the starting point or the rate of an evidence accu-
mulation process. Response time, LRP, and dynamometer data
instead support the idea that payoff bias affected a fast guess
process that occurs on a subset of trials; a similar effect was pre-
viously found by Simen et al. (2009). A model based on this idea
provides a better fit to our behavioral findings than the starting
point and accumulation rate accounts. In the discussion, we sug-
gest that the effects of payoff and stimulus probability may not be
fixed characteristics of decision making; instead, they may reflect
flexible adaptation to the constraints imposed by the task.

Materials and Methods
Design
Participants viewed a rectangular stimulus that was shifted 2 or 5 pixels
either to the left or right of a central cross and were instructed to indicate
the side of the shift before a deadline. Payoff information was presented
on each trial before stimulus onset and was higher on the left, higher on
the right, or equal on both sides. Payoff contingency varied randomly
from trial to trial. In the biased payoff conditions, on half of the trials, the
higher payoff was assigned to the side of the stimulus shift (congruent
trials); on the other half, it was assigned to the direction opposite of the
stimulus shift (incongruent trials). The payoff cue was uncorrelated with
the direction of the stimulus and only indicated the amount of reward
that could be obtained when the stimulus was in fact shifted in a given
direction.

Participants
Twenty subjects participated in our experiment in exchange for payment;
four participants dropped out of the study in the training phase due to
various personal reasons and three participants were let go by the exper-
imenter after not meeting the inclusion criteria for the EEG phase of the
study (see “Training”). The remaining 13 subjects (3 females, 10 males;
right-handed, mean age 22.46 years, range 19 –30) participated in the
EEG phase of the study after completing the training phase. All had
normal or corrected-to-normal hearing and vision and satisfied inclu-
sion criteria applied to their performance (see “Training”). Written in-

formed consent, as approved by the Institutional Review Board of
Stanford University, was obtained from all participants. The participants
received a base pay ($5 initially for the training phase) per experimental
session, plus the amount of money they earned during each session
($0.01 per point). Base pay was increased across the training phase of the
study according to the participant’s performance (see “Training”). For
the EEG sessions, an additional $15 was added to the participant’s base
pay to compensate for the additional setup time. Each participant was
involved in the experiment for 7–12 training sessions and 6 EEG sessions
(25.5–33 h).

Stimuli and procedures
Visual stimuli were displayed on a Dell LCD monitor (1280 � 1024
resolution, 33.79 cm � 27.03 cm, 60 Hz) located 80 cm in front of the
participant. Stimulus presentation and acquisition of behavioral re-
sponses were done using the Psychophysics Toolbox for MATLAB
(Brainard, 1997). All stimuli were light gray on a darker gray background.
Participants responded by squeezing one of two grip-strength sensors
with their left or right hand (see “Overt response measurement”).

Each participant took part in seven to twelve behavioral training ses-
sions and six EEG sessions. Each training session included six blocks of
120 trials (total of 720 trials/session) and each EEG session contained six
blocks of 160 trials (total of 960 trials/session). Figure 1 illustrates the
sequence of events in a typical trial (left to right). Trials began with
the appearance of a fixation cross (0.19 � 0.19° 2) for 1300 ms. Next, the
pay-off cue appeared on the screen for 500 ms. For the biased payoff
condition, this cue was a small arrow (0.30° horizontal) pointing either
left or right, indicating which of the two responses, if correct, would lead
to a 4-point reward as opposed to a two-point reward for the other
alternative. For the neutral payoff condition, the payoff cue was a small �
(0.23° horizontal), indicating equal payoff of 3 points for the two alter-
natives. Then, the fixation cross reappeared for 1000 ms and was followed
by addition of the rectangular stimulus (300 � 100 pixels 2; 5.67 �
1.89° 2). The rectangular stimulus was shifted to the left or right of the
screen center by 2 or 5 pixels (corresponding to 0.08 or 0.18 degrees of
visual angle, respectively). Participants were asked to judge the direction
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Figure 1. Perceptual decision task. On each trial, the participant viewed a rectangular stim-
ulus and responded indicating the direction of horizontal shift (left or right) of its center relative
to fixation. Each trial began with a fixation point, followed by a cue indicating whether the
reward for a correct response would be biased (2/3 of trials, 4 points to 2, favoring either the
right or the left response) or neutral (1/3 of trials; 3 points for both responses). After a second
fixation period, the stimulus appeared, with the direction of shift determined randomly so that,
on biased trials, it could be congruent or incongruent with the larger reward with equal prob-
ability. Participants were required to respond indicating their decision about the direction of
shift before an individually determined deadline by squeezing the dynamometer held in the
hand corresponding to their choice. Reaction time was measured as the elapsed time from
stimulus onset to the time the participant’s squeeze force met a criterion value. The difficulty of
the task was determined by the amount of horizontal shift, either 2 or 5 pixels, of the rectan-
gular stimulus. Difficulty, direction of shift, and payoff condition were all randomly assigned
independently for each trial.
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of the horizontal shift and indicate their choice (left/right) by squeezing
the left or right dynamometer.

Participants were to respond within an assigned deadline (range: 375–
475 ms depending on the participant’s performance) after the onset of
the rectangular stimulus. Responses were further monitored for an addi-
tional 200 ms after the deadline, at the end of which visual and auditory
feedback was delivered. Feedback indicated whether the response oc-
curred within the assigned deadline and, if so, whether it was correct. If
participants responded correctly within their assigned deadline, they
heard a cash register sound and earned either 2 or 4 points in the biased
payoff condition or 3 points in the neutral payoff condition. Table 1
shows the payoff scheme for stimulus–response contingencies when the
left alternative is the higher-paying one. Incorrect responses earned no
points and were followed by an error auditory feedback. Responses that
occurred too early (before stimulus onset) or too late also received no
points and were followed by a different sound. The total time for feed-
back of any type was 700 ms.

Response measurement: continuous dynamometer activity and
discrete choice and response time
To make a response, participants squeezed strain-gauge based isometric
hand dynamometers (HD-BTA; Vernier Software and Technology) fol-
lowing established practice in LRP studies (Gratton et al., 1988). The
dynamometer sensor amplified the force applied converting it into a
voltage that was monitored by the Vernier LabPro interface and read in
units of force (Newtons). This signal was digitized at 1 sample per �2.358
ms and provided a continuous measure of the force output of each hand.
A MATLAB interface continuously read and recorded the force level and,
when it reached an assigned criterion (see below), the occurrence of an
overt “criterion” response was recorded and reaction time (RT) was
assigned. The force measurement for each hand from the onset of the
payoff cue until the criterion was reached was saved as a continuous
measure of motor activity during each trial.

At the beginning of the first training session, the value of each partic-
ipant’s maximum squeeze force was measured separately for each hand.
As in previous studies (Gratton et al., 1988), criterion values for each
participant were set at 25% of the maximum force applied by that par-
ticipant for that hand. Participants went through 20 practice trials in
their first training session to ensure that they were comfortable with their
assigned thresholds and an adjustment was made if necessary. In all
subsequent sessions, this force criterion was used to determine the iden-
tity and RT of the overt choice response. The choice was assigned to the
dynamometer in which the activity first reached this threshold and the
RT was defined as the latency at which this criterion was crossed.

Training
All participants underwent a training phase comprised of 7–12 1.5-h-
long behavioral sessions over several weeks before entering the EEG
phase of the study. In the first training session, participants only received
the neutral payoff condition to get better acquainted with the horizontal
shift detection task under time pressure. The instructions explicitly en-
couraged participants to make fast responses: “Earn as many points as
you can.” “Respond as fast as you can.” “Guessing is better than not
responding at all.” “No points for late responses.”

In the second training session, participants were introduced to the
unequal payoff condition and were encouraged to incorporate both stim-
ulus and payoff information when making their decisions. We took sev-
eral steps to ensure that participants would take payoff information into
account because we found in pilot testing that participants did not always
do so. Specifically, we observed that some participants were better at the
task and met the initial deadline of 475 ms on almost all trials. These

participants showed little or no sensitivity to the payoff information,
making decisions based almost exclusively on the stimulus information
alone; a similar tendency of some participants to disregard payoff infor-
mation was also reported in earlier studies using a deadline (Diederich
and Busemeyer, 2006; Diederich, 2008). Reliance on the payoff informa-
tion may be of marginal utility to participants unless they are under fairly
extreme time pressure because, with prolonged exposure to the stimulus,
it may be possible to respond correctly on nearly all trials or at least on the
half of trials involving a 5-pixel stimulus offset (easy trials). To enforce
time pressure on all of our participants, we adjusted their deadlines start-
ing in the third session of training by giving them a monetary incentive
for performing quickly. According to the second session’s performance,
if a participant either met the initial deadline in �96% of the trials or met
the initial deadline on �92% of the trials but did not exhibit any sign of
payoff bias, we decreased the deadline by 25 ms and increased the base
pay by $2 in the third session. From the fourth session onward, we used
the same deadline update strategy as before except we paid $1 as incen-
tive. We also explicitly instructed participants to make use of the payoff
information when the manipulation was first introduced in the second
session and at the start of each subsequent session by stating: “Preparing
in advance to choose the higher-paying alternative then adjusting to take
the stimulus into account if you have time is a strategy that may help you
earn a high reward.” Once participants showed stable behavior (choice
pattern across RT) over three consecutive sessions, they entered the EEG
phase of the study. For each participant, the deadline was kept constant
across the EEG phase of the study, ranging from 375 to 475 ms across
participants. Participants who did not show stable behavior after �10
sessions were terminated from the study (n � 3).

EEG recording
The EEG phase of the study was composed of 6 2.5-h-long sessions. The
EEG was recorded from 13 Ag/AgCl electrodes using an electrode cap
with a standard 10/20 system layout (EasyCap). Scalp electrodes were F3,
Fz, F4, C1, C3, Cz, C2, C4, P3, Pz, and P4. Electrodes were referenced to
the Pz electrode online and were rereferenced to the average of the left
and right mastoids offline. Bipolar vertical and horizontal electro-
oculogram (EOG) activity was recorded by means of electrodes above
and below the left eye and on the outer canthi of each eye. Electrode
impedance was kept at �5 k� for the scalp electrodes and at �15 k� for
the vertical and horizontal EOG electrodes.

EEG signals were acquired at 1000 Hz and band-pass filtered online
from 0.01 to 100 Hz. Offline, the EEG was again low-pass filtered at 35
Hz. Recording, digitization, filtering, and rereferencing were performed
with a Neuroscan Labs amplifier (SynAmps 1) and SCAN 4.3 acquisition
software. Epoching of the continuous EEG data was done using EEGLAB
software (Delorme and Makeig, 2004) and the rest of offline analyses
were done using in-house MATLAB scripts.

Analysis of choice and RT data
Choice and RT data were examined separately for the following condi-
tions: (1) congruent: the payoff cue pointed in the same direction as the
stimulus shift; (2) incongruent: the payoff cue pointed in the opposite
direction of the stimulus shift; and (3) neutral: equal payoffs were as-
signed to the two alternatives.

The accuracy curves of each participant were calculated by dividing the
trials into 25 ms RT bins in the 200 –550 ms time range. The probability
of a correct response was calculated separately for the two stimulus dif-
ficulty levels for each payoff condition in each bin. The average accuracy
per RT bin was then computed across the participants who had at least 10
trials per payoff condition in that bin. Figure 4 shows the resulting grand-
average accuracy curves after removing time points in which the averages
were computed from �5 participants. The number of participants that
contributed to each RT bin in Figure 4 was {10, 12, 13, 13, 13, 12, 11}. The
mean number of trials that contributed to each data point is shown in the
bottom panel.

To test the effect of payoff condition on RT, we calculated the mean RT
for correct and incorrect responses for the three payoff conditions (see
Fig. 5). We analyzed the RT data by using a linear mixed-effects model. As
fixed effects, we included categorical factors of payoff condition, re-

Table 1. Stimulus-response contingencies when the payoff cue points to the left

Response

Leftward Rightward

Stimulus
Leftward �$0.04 $0.00
Rightward $0.00 �$0.02
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sponse accuracy, and the interaction between payoff condition and re-
sponse accuracy into the model. Payoff condition was coded as two
contrast vectors: congruent versus neutral and incongruent versus neu-
tral. Response accuracy was coded as correct versus incorrect. To account
for between-subject RT variability, we used subjects as a random effect
for both intercept and slope of the fixed effects excluding the interaction
term. The model was analyzed using R (R Development Core Team,
2009) and the R packages lme4 (Bates et al., 2009) and languageR
(Baayen, 2008). We considered an effect to be significant if its absolute
t-statistic value was �2, as suggested by Baayen (2008).

Analysis of electrophysiological data
To investigate the effect of payoff information after payoff cue onset and
around the time of the decision, epochs were created from the EEG data
spanning from 400 ms before payoff cue presentation until 2000 ms after
(i.e., 500 ms after stimulus onset). Furthermore, response-locked epochs
were generated to examine the effect of payoff on motor response forma-
tion. These epochs started 600 ms before the overt response and lasted
until 100 ms after. A baseline, computed as the average activity across the
400 ms before the onset of the payoff cue, was subtracted from all single
trials before averaging for both stimulus-locked and response-locked
epochs.

To detect artifacts in the stimulus-locked epochs, we focused on the
activity of electrodes C3, C4, VEOG, and HEOG in the time window 600
ms before stimulus onset until 400 ms after. We first detected and re-
moved trials with very large drifts and amplifier saturation. These trials
were defined as trials in which the absolute value of the voltage at any of
the four electrodes exceeded 180 �V. Eye blinks and eye movements were
removed using the step detector technique (Luck, 2005), which uses a
moving window of size 100 ms on the EOG channels. We removed trials
in which the difference of average voltage in two adjacent 100 ms win-
dows surpassed a threshold value of 50 �V. Furthermore, trials that
contained drifts in C3, C4, VEOG or HEOG, defined as trials in which the
difference between maximum and minimum voltage in an epoch ex-
ceeded 50 �V, were removed. These thresholds were determined by vi-
sually inspecting the EEG data. We also removed trials in which the
subject made no response at all, even after the deadline. On average,
4.77% (3.12% SD across participants, range: 1.51–11.08%) of trials were
discarded in the stimulus-locked epochs. For the response-locked ep-
ochs, the same artifact detection scheme was performed in the time win-
dow 600 ms before response to 100 ms after, which resulted in discarding,
on average, 3.12% (2.01% SD across participants, range: 1.1– 6.7%) of
trials.

For each participant and for each payoff condition, LRP was calculated
using the averaged waveforms recorded at centrolateral electrodes C3
and C4. To compute the LRP, first, the averaged signal recorded at the
electrode ipsilateral to the responding hand was subtracted from the
averaged signal at the electrode contralateral to the responding hand
separately for right and left responses (C3-C4 for right responses, and
C4-C3 for left responses). Then, the resulting difference signals were
averaged across the two hands to eliminate non-movement-related lat-
eralized activity (Coles, 1989).

We first focused on the influence of payoff cue on the LRP; that is,
without regard to the influence of stimulus difficulty and participant’s
choice (see Fig. 6). We computed the stimulus-locked LRP for each par-
ticipant per payoff condition, pooling across easy and hard stimulus
difficulties as well as correct and incorrect responses, and then averaged
the obtained LRP waveforms across participants. It should be noted that
the hard and easy stimulus difficulty were approximately equally repre-
sented in the LRP data for each payoff condition even after artifact rejec-
tion (congruent hard: 11,815, congruent easy: 11,831, incongruent hard:
11,833, incongruent easy: 11,771, neutral hard: 11,783, neutral easy:
11,752). Within each payoff condition, the correct responses encom-
passed 81.97%, 59.78%, and 72.66% of the trial in the congruent, incon-
gruent, and neutral conditions, respectively.

To investigate the manifestation of choice in LRP, in our second anal-
ysis (see Fig. 8), we computed each participant’s average stimulus-locked
LRP separately for the correct and incorrect trials within each stimulus
difficulty level and then averaged across the two difficulty levels. The

grand-average LRP activity was then obtained by averaging the LRPs
across all 13 participants. In the congruent, incongruent, and neutral
payoff conditions, the correct responses respectively encompassed
76.43%, 50.21%, and 64.82% of the trial in the difficult stimulus condi-
tion and 87.50%, 69.40%, and 80.53% of the trials in the easy stimulus
condition.

LRP onset detection. The criterion for LRP onset was set to 2.58 times
the SD of the noise as estimated from the 200 ms before stimulus onset.
The latency at which the LRP value first exceeded this criterion for 50
consecutive ms was defined as the onset latency. SEs of onset differences
were estimated using the jackknife method, as described in Miller et al.
(1998), and were used to calculate t-values for onset differences between
experimental conditions. In brief, a jackknife subsample onset Si was
computed for each subject i (i � 1 . . . 13) by omitting subject i and
calculating the LRP latency of the grand-average waveform computed
from the remaining 12 subjects. This procedure was repeated for each
subject, resulting in the subsample latencies S1 . . . S13. The jackknife-
based SE was then estimated from these 13 subsample latencies and used
for our statistical analysis instead of the usual SE measure computed
from latency estimates of individual subjects.

Stimulus and payoff signals. To investigate the temporal dynamics of
payoff and stimulus processing separately, we extracted the payoff and
stimulus signals from grand-averaged stimulus-locked LRPs of the two
unbalanced payoff conditions (the LRPs that were created without re-
spect to stimulus difficulty or accuracy). We assumed that LRP activity
for the congruent and incongruent condition is composed of the sum-
mation of the activity related to payoff processing (payoff signal) and the
activity related to stimulus processing (stimulus signal). In other words,

LRPcongruent � payoff signal � stimulus signal

LRPincongruent � � payoff signal � stimulus signal

The stimulus signal was then obtained by averaging out the payoff signal
from the LRP activity of congruent and incongruent conditions. Simi-
larly, the payoff signal was obtained by averaging out the stimulus signal
as follows:

stimulus signal � .5 � 	LRPCongruent � LRPIncongruent


payoff signal � .5 � 	LRPCongruent � LRPIncongruent


We examined the difference in the onset latency of the stimulus effect and
payoff effect signals using the jackknife method as described above.

Manifestation of choice in the LRP. To determine the time at which the
LRP became predictive of participant’s choice, we used the following
logistic regression model:

Pright � �1 � exp�� 	�0 � �stimS � �payOffCueR � �neuralz
�
�1

Where Pright is the observed probability of choosing the right-hand re-
sponse and �stim, �payOffCue, and �neural are fitted coefficients represent-
ing the effect of stimulus strength, payoff condition, and neural
preparatory activity on this probability. �0 represents the global bias that
the participant has toward the rightward choice. S is the strength of the
rectangular stimulus, in fractional units of the maximum shift used and
signed according to the rightward shift. Therefore, S takes on the values
{�1, �0.4, �0.4, �1}, where, for example, �0.4 refers to a leftward
2-pixels shift. R is the payoff cue condition that takes values {�1, 0, �1}
referring to {higher payoff to left, neutral payoff, higher payoff to right},
respectively. Z is summed voltage differential between the left minus the
right electrode (C3 � C4) over a defined time window, which measures
the neural preparation toward a right-hand response. To study these
effects over time, we chose a 100 ms window and moved it in steps of 50
ms starting 600 ms before stimulus presentation to 400 ms after.

Use of dynamometer data
Although not planned at the outset of the study, we found in the course of
analysis that it was useful to consider the continuous activity recorded on
dynamometers. Inspection of the dynamometer data revealed that, on a
subset of trials, there was a low level of motor activity before stimulus
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onset on one or both hands and/or motor activity after stimulus onset in
the hand that did not ultimately reach the criterion for assignment as the
designated choice response. We used a threshold of 5 force units differ-
ence from baseline (average force over 20 sample points spanning 47 ms
immediately after payoff cue onset) to designate whether motor activity
occurred in the prestimulus epoch or during the poststimulus processing
period.

Modeling evidence accumulation and the role of payoffs
Classical models of decision dynamics arising initially from the random
walk or drift-diffusion models (Laming, 1968; Ratcliff, 1978; Busemeyer
and Townsend, 1993) are often called one-dimensional models, in that
they treat the underlying decision state as a single signed variable, favor-
ing one alternative when positive and the other when negative. Many
other models, however, can be called multidimensional models, in that
they propose separate decision variables for each choice alternative
(Vickers, 1970; Usher and McClelland, 2001; Mazurek et al., 2003; Roe et
al., 2001). Behavioral data from studies similar to ours has been modeled
previously using 1D models (Diederich and Busemeyer, 2006; Diederich,
2008; Simen et al., 2009). Although it is possible that such models could
account for many features of our data, physiological evidence supports
multidimensional models in that there is evidence that different popula-
tions of neurons accumulate evidence for each choice alternative
(Shadlen and Newsome, 1996; Schall, 2001; Gold and Shadlen, 2007;
Purcell et al., 2010; Shadlen and Kiani, 2013). Our findings reported
below show that, on at least some trials, there was activity in both re-
sponse hands, providing additional support for the use of separate deci-
sion variables for each alternative, each of which may produce
measurable motor activity on some trials. Accordingly, we built our
model in a multidimensional modeling framework.

As a framework within which to consider alternative accounts of the
exact nature of the integration of payoff information in the decision
process, we relied on the linear ballistic accumulator (LBA; Brown and
Heathcote, 2008), a model that has had considerable recent success in the
human behavioral decision-making literature (Ho et al., 2009; Forst-
mann et al., 2010). This model shares many features with other accumu-
lator models of the decision-making process, particularly the
physiologically grounded model of Mazurek et al. (2003) (also see Reddi
and Carpenter, 2000; Reeves et al., 2005). The LBA attributes variability
in choice and response time to trial-to-trial variation in the evidence
accumulation rate and in the starting point of evidence accumulation
rather than to variation in the moment-to-moment integration of evi-
dence. In our view, all three sources of variability are likely to affect
decision making, but including only the two sources included in the LBA
may be sufficient to capture the key features of the behavioral data.
When, as is often necessary, starting point and/or trial-to-trial evidence
accumulation rate variability are included, the effect of within trial vari-
ability may be effectively masked (Gao et al., 2011). Furthermore, ignor-
ing moment-to-moment variability makes it possible to write down the
predicted choice proportions and response time distributions of the
model in closed form, avoiding the need for extensive Monte Carlo sim-
ulations and facilitating parameter estimation and model comparison.

Figure 2 shows the base LBA model for a two-alternative decision task.
The model posits a separate evidence accumulator for each choice alter-
native. On each trial, the activity in each accumulator starts at a random
initial evidence value (the “starting point”) independently drawn from a
uniform distribution between a minimum of 0 and a maximum value A.
Activity of each accumulator increases linearly according to a drift rate
(vi) randomly drawn from separate Gaussian distributions for each ac-
cumulator with means E[v1] and E[v2], and equal SD, �s. Accumulation
continues until one of the accumulators reaches the response threshold b,
thereby determining both the choice outcome and the decision time Td

for the trial. The RT is equal to the decision time plus a constant T0

representing nondecision time.
The mean drift rate for the two response accumulators, E[v1] and E[v2],

are defined by two parameters: (1) v0, the common drive for the two
accumulators, a parameter that can be thought of as equivalent to the
urgency signal in the model of Mazurek et al. (2003); and (2) �s, the
stimulus-dependent drift rate (v0 and �s are both constrained to be � 0).

The mean of the drift rate distribution is set to v0 � �s for the accumu-
lator corresponding to the correct alternative and to v0 � �s for the
accumulator corresponding to the incorrect alternative. For simplicity,
we combined the data across the 2 and 5 pixels of stimulus shift using a
single value of the �s parameter to fit the combined results.

The LBA model is characterized by six parameters: (1) v0, the base
stimulus drift rate or the common drive to both accumulators; (2) �s, the
mean stimulus-dependent drift rate; (3) �s, the SD of drift rate across
trials; (4) A, the upper end of the starting point distribution such that the
starting point for each alternative xi(0) � U[0, A]; (5) T0, the non-
decision time (see below); and (6) b, the decision boundary. To reduce
the number of free parameters, we fixed b at 500 and estimated the five
remaining free parameters based on a maximum-likelihood method.

The non-decision time T0 consists of two parts: a sensory processing
delay (Ts) and a motor execution delay (Tm). The total RT consists of the
sum of these two times plus the decision time (Td). The components of
T0 are not separately identifiable in the base model, but can play separate
roles in models of payoff bias effects.

The cumulative distribution function (CDF) of each accumulator’s
time-to-bound can be computed analytically (for details, see Brown and
Heathcote, 2008) as follows:
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A
��b � A � tvi

t�s
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t�s
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A
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Where the functions 		 � ��, �
 and �	 � ��, �
 refer to the normal dis-
tribution’s density and cumulative density functions, respectively.

The corresponding probability distribution function (PDF) of time-
to-bound is given by the following:
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Finally, the probability that accumulator i will be the first accumulator to
reach threshold can be computed from the PDF and CDF for accumula-
tor i, as well as the PDF and CDF of the other accumulator (indexed by
subscript j) as follows:

Figure 2. LBA model. Two accumulators race from their independent randomly assigned
starting points (between 0 and A) at rates d1 and d2 distributed as shown. The evidence variable
�s is chosen randomly for each trial according to a distribution that favors the correct alterna-
tive. Choice is determined by the first accumulator to reach the bound and decision time is the
time from the start of the race to the time the winning accumulator reaches the bound.
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Using the above model as a base, we compared three hypotheses about
influences of payoff information on the decision process (Fig. 3): (1) the
starting point shift hypothesis (Edwards, 1965; Link and Heath, 1975; Bogacz
et al., 2006; Simen et al., 2009; Rorie et al., 2010; Gao et al., 2011; Leite and
Ratcliff, 2011; Rao et al., 2012); (2) the drift rate change hypothesis (Ratcliff,
1981; Ashby, 1983; Hanks et al., 2011); and (3) our fast guess process hy-
pothesis, similar to the “nonintegrative” responses described by Si-
men et al. (2009). We describe each model in detail below.

LBA with starting point shift (LBAst). According to the starting point
shift hypothesis (Fig. 3, top left), payoff shifts the starting point of the higher-

paying accumulator by an amount r toward the decision bound and
shifts the starting point of the lower-paying accumulator away from
the bound by the same amount. This shift in the starting point is
equivalent to changing the decision bound b to b � r for the higher-
paying accumulator and to b � r for the lower-paying accumulator,
effectively making it easier for the higher-paying accumulator to win
the race.

LBA with drift rate change (LBAdc). According to the drift-change
hypothesis, payoff increases the drift rate of the higher-paying accumu-
lator by amount r and decreases the drift rate of the lower-paying accu-
mulator by the same amount (Fig. 3, top right). This change in the drift
rates of the accumulators leads to more high reward choices and lower re-

x

b

Time

d1

Payoff cue

Stimulus

Decision bound

bd2

bdf ~ Ν(μf, σf)

50 ms

T0

Accumulator 1

Accumulator 2

Probabilistic
Fast-guess 
Process

LBA

LBA

Probabilistic Fast-guess Process

Biased conditions:
- Occurs with probability pfb 
- Activates the higher-paying 
response with probability ph
- Activates the lower-paying 
response with probability (1 − ph)

Neutral condition:
- Occurs with probabilty pfn
- Activates either response 
with equal probability (.5) 

x

x

b

b

x2(0)

x1(0)

0

0

Right 

Left

Accumulation Time

x

b

b

x2(0) + r

x1(0)  − r
0

0
Accumulation Time

alternative

alternative

d1

d2

d1

d1− r

d2+ r

d2

LBA with Starting-point Shift LBA with Drift-rate Change

LBA with Probabilistic Fast-guess Process

When present, races with 
stimulus-driven LBA

Figure 3. Models of payoff effects. A, Biased payoff shifts the starting point of the favored alternative up and the disfavored alternative down. B, Biased payoff increases the drift rate of the
favored alternative and decreases the drift rate of the disfavored alternative. C, A fast guess process that occurs on a randomly determined subset of trials, triggered by stimulus onset, races with the
two stimulus-driven accumulators. Biased payoff increases the probability that the fast guess will activate the response associated with the high reward.

10994 • J. Neurosci., August 5, 2015 • 35(31):10989 –11011 Noorbaloochi et al. • Payoff Bias and Decision Making



sponse times for those choices. The drift rate change hypothesis can be in-
terpreted as a time-dependent bias that results in a greater amount of bias for
longer decision times; this can be advantageous if stimulus discriminability
varies in a wide range from trial to trial because, in that case, long decision
times occur more often with less discriminable stimuli, allowing bias to be
greater when discriminability is lower, as it should be for optimizing payoffs
across discriminability conditions (Hanks et al., 2011).

Fast guess LBA (FG-LBA). The FG-LBA model (Fig. 3, bottom) relies
on the idea that, on a subset of trials, a “guessed” response choice is
selected before stimulus onset (Ollman, 1966; Yellott, 1967, 1971; Rat-
cliff, 1985; Simen et al., 2009). In our model, the “guess” may be affected
by a range of factors, of which the participant may or may not be con-
scious, and can occur both when payoffs are unbiased (i.e., the neutral
condition) as well as when they are biased. The model does not describe
the guessing process itself, only specifying that, when it occurs, a guess
response is prepared for triggering by detection of the onset of the
shifted-rectangle stimulus. In cases in which payoffs are biased, the out-
come of the guess process will tend to favor the higher-paying response
alternative. That is, the probability that the higher-paying alternative will
be selected on trials when a guess occurs (denoted ph) will be �0.5. If a
guessed response has been prepared on a given trial, detection of the
onset of the stimulus then initiates activation of an additional accu-
mulator associated with the guessed response. This accumulator trig-
gers the guessed response if it reaches the decision bound before
either of the two standard LBA evidence accumulators reaches its
decision bound. From a physiological point of view, we would not
rule out the possibility that there are two separate fast guess accumu-
lators, one for a leftward response and one for a rightward response. If
so, on trials when a guessed response has been prepared, only the
accumulator associated with the guessed choice participates in the
race to determine the trial outcome. In any case, there is only one set
of parameters associated with the fast guess process. Therefore, the
mathematical description of the model incorporates a total of three
accumulators, as shown in Figure 3, and henceforth we speak of a
single fast guess accumulator.

A feature of the model is that the fast guess accumulator is triggered by
detection of the stimulus onset, whereas the standard LBA accumulators
are driven by evidence that the stimulus is shifted to the left or right. In
the Results section, we present evidence that, after stimulus onset, the
payoff effect on LRP appears 50 ms before the stimulus effect. The same
50 ms offset was previously observed in experiments 2 and 3 of Simen et
al. (2009). Based on these observations, we assume that the sensory pro-
cessing delay, Ts, for the fast guess accumulator is 50 ms less than Ts for
the stimulus-driven LBA accumulators. It should be noted that Ts and Tm

(the motor processing delay) are not separately identifiable from the
behavioral data and only their sum, T0 is fitted to the data. Because Tm is
assumed to be the same for all responses, the assumption that Ts is 50 ms
faster for the fast guess accumulator than for the standard accumulators
amounts to the assumption that T0 is 50 ms shorter for fast guess re-
sponses than for other responses. In fitting the model, a single value of T0

is adjusted for best fit, with 50 ms subtracted from this value in simulat-
ing the fast guess process.

We model the fast guess accumulator as a restricted LBA accumu-
lator with starting point set to zero and the decision bound set to an
arbitrary value (for comparability to the standard LBA accumulators,
we set this bound to 500). Therefore, this accumulator corresponds to
the accumulator used in the LATER model of speeded responding
(linear approach to threshold with ergodic rate; Carpenter and
Williams, 1995). The density of the finishing time t of this process is
given by the recinormal distribution (Leach and Carpenter, 2001) as
follows:

fRN	t��, �
 � � 1

t2�2��2
e

�
	�t�1
2

2�2t2 if t � 0

0 if t � 0

Conceptually, the parameter � represents the mean of the slope of the
ballistic accumulation process and the parameter � represents the SD of
the slope from trial to trial.

We allow for the possibility that the probability of making a fast guess
may be different for the neutral condition and the biased payoff condi-
tion and we represent these probabilities as pfn and pfb, respectively (we
write pfc in expressions that apply to both conditions n and b). On the
trials when the fast guess process does occur, the fast guess wins when this
process reaches its bound (called time to bound or Tb) before either of the
stimulus-driven accumulators. This can be expressed as follows:
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On trials in which the bound is reached first by the fast guess process, the
choice and time to bound Tb are determined independently of each
other, so the joint distribution of choice and Tb is given by the following:
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Where ph is the probability of choosing the higher-paying alternative, x �
1 represents a correct response, and x � 0 represents an incorrect re-
sponse. The joint choice and Tb distribution of the stimulus-driven LBA
process is given by the following:
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capturing the race between the two accumulators in the LBA model.
This model adds five additional free parameters to the LBA model’s

five free parameters: (1) pfb, the probability of engaging in a parallel fast
guess process on any given trial in the biased payoff condition; (2) pfn, the
probability of engaging in a parallel fast guess process on any given trial in
the neutral condition; (3) �f, the mean slope of the ballistic accumulator
for the fast guess process; (4) �f, the SD of the slope of the ballistic
accumulation for the fast guess process; and (5) ph, the probability of
choosing the higher-paying alternative in the fast guess process.

Model comparison
The parameters of the three variants of the LBA model were estimated
using the method of maximum likelihood. The results from each partic-
ipant were fit separately to find optimal parameter values. Consider one
of the three models and the data from one of the 13 participants. The
model (together with a set of specified parameter values) can be seen as
predicting, for each condition of the experiment (neutral, congruent, or
incongruent), the probability density for each alternative (correct or in-
correct) at any time t. The joint distribution across both alternatives for a
given condition is a proper probability density function in that the den-
sity sums to 1. For purposes of comparison of model and data, we dis-
cretized time into 20-ms-wide response time bins spanning RTs from 0
to 700 ms. Using one set of 20 ms time bins for correct responses and
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another set of bins for incorrect responses, we integrated the probabilities
obtained from the model’s PDF within a bin to obtain a predicted prob-
ability for each bin. These probabilities were then compared with the
empirically observed distributions of responses falling within each bin
using all of the RT data from all six sessions after the end of the practice
phase of the experiment. For each of the three conditions (neutral, con-
gruent, and incongruent), we tabulated the number of trials in each 20
ms RT bin, placing correct RTs in one set of bins and incorrect RTs in
another set of bins. The result can be seen as a single 70-bin accuracy-
by-RT histogram for the given condition to be fit by the model, forcing
the model to account for the distributions of both correct and incorrect
RTs and thus to account for the overall rates of correct and error re-
sponses, which correspond to the sums of the rates of responses over the
35 correct and error bins, respectively (see Fig. 15).

Accommodating outliers. It has frequently been noted that participant’s
behavior is rarely pure and that, on occasion, relatively random re-
sponses may occur at any time during a trial. Including a provision for
such random responses helps to ensure that differences in goodness of fit
are not due to extreme and nonrobust differences between models in log
likelihoods of very short or very long RTs (Ratcliff and Tuerlinckx, 2002).
Accordingly, we incorporated a provision for a random guessing process
in fitting all three models to the data. Specifically, we assumed that, on
each trial, a random response could occur. Such responses were assumed
to be equally likely to be correct or incorrect and could fall in each of the
70 histogram bins with equal probability. The overall probability of such
occurrences was chosen so that the probability of a random response
occurring in each bin was 0.00001 (this probability was added to the
predicted probability in each bin and then the total probability of re-
sponses across all bins was renormalized to 1). The predicted probabili-
ties discussed below incorporate this adjustment.

Log likelihood fit statistic. Consider now the data from one participant
for a given condition c (one of congruent, incongruent, or neutral).
Denote the model’s predicted probability of making a response in the j th

bin (where j runs over all 70 bins as previously discussed) by pcj and the
number of trials obtained from the histogram of responses that fall in the
same j th bin by Ncj. We can then express the likelihood function for
responses across the histogram as follows:

Lc	 
 � �
j�1

Num of bins

Pcj
Ncj

Taking logs, the log likelihood (LL) for the given condition can be simply
expressed as follows:

LLc	 
 � �
j�1

Num of bins

Ncj log pcj

This quantity is summed across the three distributions (for congruent,
incongruent, and neutral trials) to obtain the total log likelihood (LL).
We then find the estimates of the model’s parameters, ̂, that minimizes
�LL() for the data of the given participant. This function was optimized
using the simplex algorithm (Nelder and Mead, 1965) implemented in
MATLAB’s fminsearchbnd() function. We repeated the optimization al-
gorithm using 10 randomly assigned initial values and chose the resulting
estimated parameters that corresponded to the best fit among the 10
repetitions.

To compare the goodness of fit among the models, we calculated the
log likelihood, the Akaike information criterion (AIC), and the Bayesian
information criterion (BIC) of each model for each participant sepa-
rately. The AIC is defined as AIC � 2k � 2ln( L), where k is the number of
free parameters in each model and L is the maximized value of the likelihood
function of the model. The BIC is defined as BIC � kln(n) � 2ln(L), where
n is the number of observations in our data.

To better assess the relative performance of the FG-LBA model com-
pared with the LBAst and LBAdc models, we quantified the relative
likelihood of each model for each subject by computing exp((AICmin �
AICi)/2). For all participants, the FG-LBA model had the minimum AIC
among the three models. Therefore, we computed the likelihood of the
LBAst and LBAdc relative to the FG-LBA model.

As a further check on the robustness of the fitting results against outlier
effects, we calculated pseudo-log likelihoods and corresponding pseudo-
AIC values for each model after removing singleton responses from the
response histograms. That is, for any histogram bin containing an entry
of only one response, we replaced that entry with 0. Individual partici-
pants exhibited 3–15 such singleton responses across the 210 histogram
bins (70 for each condition).

Results
Our presentation of results consists of two parts. The first focuses
on characterizing patterns in the empirical measurements of par-
ticipants’ behavioral and brain responses in our choice task and
the second presents the results of a competitive model assessment
in which we examine how well the effects of payoff bias in our
behavioral choice and RT data can be explained by three alterna-
tive accounts. The first two of these accounts, in which bias affects
the starting point of evidence accumulation or the drift rate, were
our initial intended targets for comparison. The third account
suggested itself after an examination of aspects of the behavioral
and EEG data. According to this account, bias affects the distri-
bution of fast, stimulus-onset-triggered guess responses that par-
ticipants make on a subset of trials. We now turn to the patterns
observed in the empirical measurements, highlighting those that
motivated the development of the fast guess model.

Empirical observations
Benefit from unequal payoffs
We began by asking whether participants were able to increase
their overall earnings when payoff information was biased. Be-
cause the average payoff for a correct response was the same for
the neutral and biased conditions, participants would be ex-
pected to earn the same amount in the neutral and biased condi-
tions if they simply ignored the payoff information. By taking the
payoffs into account, they had the possibility of increasing their
earnings, although some payoff-sensitive policies (e.g., always
choosing the high reward alternative) might actually lead to re-
duced overall payoff. To ascertain whether participants indeed
benefited from the use of payoff information, we compared earn-
ings in the biased payoff condition with those in the neutral pay-
off condition. In the biased payoff condition, the subjects earned
0.06 cents/trial more on average than in the neutral condition
(t(12) � 3.47, p � 0.002, one-tailed).

Basic choice and RT results
We next considered how payoff affected decision making, first by
considering behavioral and then neural measures. We investi-
gated the probability of correct responses as a function of RT in
the neutral and biased payoff conditions (see Materials and
Methods). Average probability correct for the three payoff con-
ditions and two difficulty levels are shown in the top of Figure 4
and the average number of responses in each RT bin is shown in
the bottom. Using a linear mixed-effects model, we regressed
probability correct (PC) against stimulus difficulty, payoff con-
dition, RT, and the interaction between payoff condition and RT.
The model included a random effect of subject for the intercept.
Across all payoff conditions, PC was higher for the easy stimuli (5
pixels shift, solid lines) than for the difficult stimuli (2 pixel shift,
dashed lines, b � 0.82, SE � 0.02, p � 0.001). On average, prob-
ability correct increased with RT, suggesting that participants had
accumulated more information about the stimulus as their RT
increased (b � 5.72, SE � 0.25, p � 0.001). In the biased payoff
conditions, participants were highly biased toward the higher-
paying alternative in their fast responses and became less biased
as they took more time to respond. In other words, there was a
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significant interaction between payoff condition and RT: relative
to the neutral condition, the PC increased with RT in the incon-
gruent condition (b � 8.80, SE � 0.31, p � 0.001) and decreased
with RT in the congruent condition (b � �8.98, SE � 0.33, p �
0.001). This can be observed from higher-than-neutral PC in the
congruent condition and lower-than-neutral PC in the incongru-
ent condition for fast responses and their convergence toward the
neutral condition’s PC level as RT increased.

Not only did the unequal payoff cue bias participants’ choices,
but also it modulated their RTs. Figure 5 shows the average RT of
correct and incorrect responses for the three payoff conditions.
Using a linear mixed-effects model, we regressed RT against pay-
off condition, response accuracy, and the interaction between
payoff condition and response accuracy (see Materials and Meth-
ods for details). The model included a random effect of subject
for the intercept and for each of the fixed effects, but not for the
interaction effect. The results of the model indicated a significant
relationship between RTs and accuracy: overall, correct re-
sponses have a longer RT than incorrect responses (b � 0.006,

SE � 0.001, t � 4.59). This pattern provided the first clue sug-
gesting a possible fast guess process in the present experiment:
errors are often slower than correct responses in RT experiments,
particularly with stimuli that are difficult to categorize correctly
(Ratcliff, 1978; Mazurek et al., 2003). However, if participants
sometimes make fast guesses that are triggered, not by stimulus
processing, but merely by detection of stimulus onset, then these
guesses can generate many fast incorrect responses. A further,
related finding was a significant interaction of payoff condition
and probability correct on response times; the interaction was
also observed comparing the neutral condition only with the con-
gruent condition (b � �0.014, SE � 0.0005, t � �30.46) and
comparing the neutral condition only with the incongruent con-
dition (b � 0.015, SE � 0.0004, t � 35.41). Errors were fastest and
correct responses slowest in the incongruent condition, whereas
errors were slowest and correct responses fastest in the congruent
condition. Such a pattern would be expected if fast guesses in the
unequal payoff conditions tended to favor the high reward alter-
native; this would give rise to many fast correct responses in the
congruent condition and many fast incorrect responses in the
incongruent condition.

In summary, the RT data suggest a biased fast guess process
as an alternative to the two accounts of the possible role of
unbalanced payoffs that we were considering at the outset of
this research. However, the findings may be consistent with
other mechanisms. For example, if the starting point of a drift
diffusion process was very strongly biased toward the higher-
paying alternative, then this might produce many fast re-
sponses biased toward the high reward side as well (Ratcliff
and Rouder, 1998; Usher and McClelland, 2001). Thus, al-
though the pattern of findings does not unequivocally support
a biased fast guess model, they do provide one motivation for
exploring such an account.

Basic patterns in the LRP
We begin our consideration of the EEG results with the grand-
average patterns observed in the LRP. These patterns reveal a bias
toward the high reward response before the stimulus and then a
bolus of activity toward the high reward side shortly after stimu-
lus onset. Figure 6 shows the average LRP for the three payoff
conditions averaged over participants, with averaging time
locked to the onset of the payoff cue, which occurred 1500 ms
before stimulus onset. Upward-going (negative) activity in this
figure represents net activity contralateral to the stimulus and
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therefore also to the correct response. Therefore, in the congru-
ent condition (blue), net activity toward the higher-paying alter-
native is represented by upward-going activity, whereas in the
incongruent condition (red), it is represented by downward-
going activity (away from the stimulus). Poststimulus activity
eventually favors the correct response. In addition, both pre-
stimulus and poststimulus effects of payoff information are evi-
dent in this figure. The prestimulus effect includes a transient
lateralization toward the higher-paying alternative �200 ms after
payoff cue onset, followed by a prestimulus baseline shift toward
the higher-paying alternative starting �700 ms after payoff cue
onset and maintained until �150 ms after stimulus onset. Al-
though the average prestimulus LRP for the neutral condition
was stable around zero, the LRP of the congruent and incongru-
ent conditions were shifted upward and downward, respectively.
The poststimulus effect is manifested as a rapid rise in activity
(bolus-like activity) toward the higher-paying alternative �150
ms after stimulus presentation. This bolus is seen as an upward
jump in the LRP for the congruent condition and as a downward
jump in the direction opposite to that of the correct response for
the incongruent condition.

Stimulus and payoff signals
To estimate the time course of the payoff signal and of the stim-
ulus signal as manifested in the LRP, we treated the LRP as con-
sisting of the simple addition of the two signals. Using this
approach, we computed the payoff and stimulus signals from the
grand-average LRPs of the biased payoff conditions, as described
in the Materials and Methods. Figure 7A shows the time courses
of these neurally derived payoff and stimulus signals. Upward-
going (negative) voltages signify activity favoring a response to-
ward the stimulus for the stimulus signal (purple) and toward the
higher-paying alternative for the payoff signal (pink). The stim-
ulus signal is approximately zero before stimulus presentation
and begins increasing at �200 ms after stimulus onset. That is,
stimulus processing starts affecting the LRP at �200 ms. The
payoff signal (pink) also shows a time-dependent pattern. Ini-
tially, a transient shift in prestimulus activity toward the higher-
paying alternative is observed �200 ms after the presentation of
payoff cue, followed by another shift that is observed �700 ms
after cue presentation and remains constant in the period preced-
ing the stimulus and up to �150 ms after stimulus onset. At this

time, a bolus of payoff activity appears. Two observations suggest
that the payoff bolus signal (poststimulus transient shift in activ-
ity toward the higher-paying alternative) and the stimulus signal
may reflect distinct processes associated with payoff and stimulus
information: (1) the onset of the payoff bolus signal is earlier than
the onset of the stimulus signal (t(12) � 5.1, p � 0.001, one-
tailed); and (2) the computed stimulus signal closely matches the
grand-average LRP for the neutral condition (comparison shown
in Fig. 7B), which was not used in calculating the payoff and
stimulus signals.

Manifestation of choice in stimulus-locked LRP
To investigate when LRP activity became predictive of partici-
pants’ choices during a trial, we compared the grand-average
stimulus-locked LRP between the correct and incorrect responses
within each payoff condition (see Fig. 8; solid lines are correct
responses and dashed lines are incorrect responses). In the neu-
tral condition, the LRPs of correct and incorrect trials were not
lateralized in any direction during the prestimulus period. The
lateralization of incorrect neutral trials toward the incorrect re-
sponse started immediately after stimulus onset and showed a
sharp downward deflection about 150 ms after stimulus onset;
for the correct neutral trials, lateralization toward the correct
response did not become apparent until �200 ms after stimulus
onset. This pattern is consistent with the possibility that, on a
subset of trials, participants began activating a fast guess response
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upon detecting stimulus onset and before stimulus information
influenced activation of the response. Such a guess would be
equally likely to be correct or incorrect. Given that responses
based on stimulus information would be likely to result in correct
responses, a larger fraction of errors than correct responses will
be fast guesses, explaining why the LRP evidence of such guess
responses is more prominent in the LRP for errors than for cor-
rect responses.

In the biased payoff conditions, we initially expected that the
baseline shift observed in the prestimulus payoff signal (see
above, Fig. 7A) reflected a process that would participate in de-
termining the choice outcome. However, the LRPs of the correct
and incorrect responses in Figure 8 did not differ in their lateral-
ization during the prestimulus period and even well into the
stimulus presentation period. Therefore, it appears that the pro-
cess generating the payoff signal during the prestimulus period
played little or no role in determining participants’ choices. LRPs
of correct and incorrect trials started separating only at �150 ms
after stimulus onset, suggesting that the poststimulus bolus-like
component of the payoff signal (see Figs. 6, 7A) played an impor-
tant role in participants’ choice. For the incongruent condition,
the poststimulus bolus-like LRP activity showed lateralization in
the direction of higher payoff for both correct and incorrect trials
(see Fig. 8, red lines), although it is clear that the bulk of the
deflection in the average of correct and incorrect trials comes
from the trials that ended in errors. A further interesting feature
of the LRP curves on error trials is that they all show an upward
going deflection toward the correct response near the end of the
time window and after the strong downward going deflection.
This reversal may arise from motor activity on the correct re-
sponse side that occurs too late to count toward determining the
scored outcome of the trial.

We next examined the time when the neural activity became
predictive of the participant’s choices using logistic regression
(see Materials and Methods). We determined whether the trial-

by-trial variation in our measure of neural activity (the difference
between electrodes C3 and C4) changed the log odds of a right-
ward choice beyond the explanatory power of the stimulus and
payoff information, combining the data across the congruent,
incongruent, and neutral conditions. This regression was per-
formed on a data window of 100 ms, which was repeated in steps
of 50 ms over the whole stimulus-locked epoch. Fitting coeffi-
cients along with the associated SE are plotted at the midpoints of
the 100 ms windows in Figure 9. We found that neural activity in
the prestimulus epoch was not associated with the eventual
choice response, confirming expectations from the results in Fig-
ure 8. Neural activity first became a significant predictor of par-
ticipants’ choices in the [100, 200] ms poststimulus time window
(�neural � 0.19, p � 0.001). Thus, the regression results further
support the conclusion that the baseline shift observed in the
prestimulus payoff signal does not affect the ultimate choice of
participants, whereas the bolus-like poststimulus payoff signal
does indeed affect the ultimate response choice.

Prestimulus manual squeezes and relation to choice and RT
An important issue for understanding the LRP is the extent to
which the neural activity it reflects is associated with motor ac-
tivity. Specifically, it is useful to understand whether the shift in
the prestimulus LRP baseline activity toward the higher-paying
alternative reflects actual squeezing of the dynamometer by the
hand associated with that alternative. We analyzed single-trial
squeeze force data for the two hands over a window from 600 ms
before stimulus onset to 50 ms after onset. The analysis revealed a
partial squeeze, above prestimulus baseline but below criterion
force level (see Materials and Methods), on one or both dyna-
mometers before stimulus onset on some trials, both in the biased
and neutral payoff conditions. For the two biased payoff condi-
tions combined, Figure 10 shows the LRPs separately for trials in
which prestimulus dynamometer activity was observed toward
the high reward side only (18.3% of total trials), low reward side
only (4.4% of total trials), or neither side (67.1% of total trials).
The remaining 10.2% of trials showed dynamometer activity on
both sides during this period. As expected, on trials with pre-
stimulus dynamometer activity on one hand, the LRP favored the
hand on which the dynamometer activity occurred. On trials with
no prestimulus activity, there was also no prestimulus LRP. These
findings are consistent with the possibility that, in our experi-
ment at least, the LRP is a reflection, not of preparation to pro-
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duce motor activity, but of motor activation itself. In the absence
of motor activity, there is no LRP.

Because of the dynamometer data provides a sensitive record
of prestimulus squeeze events, we conducted a further analysis to
determine whether this prestimulus motor activity was associ-
ated with subsequent choice or RT (see summary in Table 2). The
probability of making a correct choice did not differ between
trials with prestimulus motor activity favoring the high reward
alternative (pre-high trials) and trials with no prestimulus dyna-
mometer activity (no-pre trials) (t(12)� 0.80, p � 0.44 for con-
gruent trials, t(12) � �1.03, p � 0.33 for incongruent trials).
Further, prestimulus motor activity favoring the high reward side
had only a very slight, if any, relation to RT. In fact, for incongru-
ent trials, there was no reliable difference in RT for correct or
incorrect responses between pre-high and no-pre trials (t(12) �
0.26, p � 0.80 for correct responses; t(12) � �0.57 and p � 0.58
for incorrect responses). For congruent trials, there was no dif-
ference in RT for incorrect responses (t(12) � 0.004, p � 0.99).
Correct responses in the congruent condition were on average
5.57 ms faster on pre-high trials than on no-pre trials (t(12) �
�2.43, p � 0.05). This small consequence for RT in one of many
contrasts should be considered marginal given the number of
different comparisons considered; even if an effect is present, it
would appear to be consistent with a generalized readiness effect:
trials in the congruent condition with prestimulus dynamometer
activity toward low reward (pre-low trials) also showed a numer-
ically similar speedup compared with no-pre trials (see next para-
graph). In summary, the overall lack of significance and the small
numerical size of all of the contrasts considered indicates that
prestimulus motor activity toward the high reward side had no
detectable consequence for choice and only a very minor conse-
quence for RT.

A subtle but reliable relationship is present, however, between
the trials with prestimulus motor activity favoring the low reward
side (pre-low) and trials with no prestimulus (no-pre) motor
activity. Compared with no-pre trials, pre-low activity was asso-
ciated with: (1) fewer correct responses on congruent trials
(mean difference � �0.06, t(12) � �2.83, p � 0.05); (2) faster
errors (mean difference � �8.88 ms, t(12) � �2.41, p � 0.05) on
congruent trials; and (3) faster correct responses (mean differ-
ence � �9.68 ms, t(12) � �3.06, p � 0.01) on incongruent trials.
Correct responses were numerically faster on pre-low versus no-
pre trials, though the difference was not statistically reliable

(mean difference � �5.62 ms, t(12) � �1.63, p � 0.13). The RT
difference between pre-low and no-pre errors on incongruent
trials was not significant (mean difference � �0.59 ms, t(12) �
�0.14, p � 0.89). The effect on response probability was fairly
small and only appeared on congruent trials and none of the RT
differences exceeded 10 ms. Nevertheless, the pattern indicates
that, on at least some of the trials with prestimulus motor activity
favoring the low reward side, this activity reflected a commitment
toward the side opposite the alternative associated with a high
reward and was associated with final choice and RT.

Overall, the findings suggest that prestimulus motor activity
favoring the high reward side often occurs without signaling a
strong precommitment, whereas pretrial activity favoring the low
reward side sometimes does signal such a precommitment. Of
course, we cannot rule out the possibility that some trials with
prestimulus motor activity favoring the high reward side may also
involve a strong precommitment. The effects of a few such trials
mixed in with other, noncommitted trials would not necessarily
show up in the comparison with the no-prestimulus motor ac-
tivity trials.

LRPs on incongruent trials and their relation to manual responses
We next consider the relationship between the LRP on incongru-
ent trials and manual responses. For this analysis, we separated
trials into four subtypes based on the choice outcome (correct or
incorrect) and the presence of non-negligible motor activity on
just one or both of the dynamometers (unimanual or bimanual
responses). The resulting LRPs are shown in Figure 11. Approx-
imately 60% of incongruent trials were correct responses. Of
these, about half (29% of total) were unimanual, whereas the
remainder (31% of total) were bimanual. Importantly, the LRP
for the unimanual correct responses showed no dip toward the
incorrect side (solid black curve in figure), whereas the bimanual
trials (dotted black curves) showed a slight dip toward the incor-
rect side followed by an abrupt rise toward the correct side. About
40% of the trials were errors and, of these, �2/3 (27.6% of total
trials) were unimanual error responses. These responses (solid
magenta curve) showed a very large LRP toward the incorrect
side starting about 150 ms after stimulus onset. The remaining
trials, constituting about 1/3 of errors (12.5% of total trials),
came from bimanual error trials. Here, the LRP shows a very
weak pattern with a relatively small and fairly late deflection to-
ward to incorrect response side.

The LRP patterns shown in Figure 11 support several tentative
inferences that motivated our consideration of a fast guess model
of the effect of payoff bias on performance in our task. First, the
absence of a downward going deflection of the unimanual correct
responses is consistent with the idea that the bolus of activity
toward the incorrect, high reward side arises from trials in which
there was at least some degree of motor activity toward the incor-
rect response side. A consideration of the correct bimanual and
incorrect unimanual LRP curves further supports the conclusion
that a large part of the bolus of activity toward the incorrect, high
reward side arises from trials that end up producing error re-
sponses because the downward trend in these two curves is far
stronger for the unimanual errors than for the bimanual correct
responses. The early onset of the downward deflection in the
unimanual error curves is a key feature of the data supporting the
conjecture that these errors may reflect a fast guess process trig-
gered by stimulus onset and unaffected by the accumulation of
evidence about the direction of shift of the stimulus. The subtle
downward going deflection in the bimanual correct curve is con-
sistent with the view that an early but weak, transitory, or slowly
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rising squeeze on the incorrect, high reward side, triggered by
stimulus onset, was followed shortly thereafter with a strong
stimulus-driven squeeze to the correct side that was the first or
only response to reach threshold, making the outcome come out
scored as correct. Finally, the late downward deflection of the
curve for the bimanual error trials is consistent with the idea that
these errors were predominantly driven by an slower, stimulus-
driven process that happened to favor the incorrect response on
this fraction of trials. Activity toward the correct response on
these trials may be a mixture of weak, early signals and some late
stimulus-driven activity toward the correct side that was too late
to determine the outcome of the trial.

The idea that the incorrect unimanual responses in the incon-
gruent condition largely arise from a fast guess process biased
toward the high reward alternative predicts that the RTs for such
responses will be relatively fast. The behavioral data confirm this
prediction. Mean RT was 346 ms in the incorrect unimanual
condition and this was faster than the mean RT in any of the other
conditions (368 ms for correct unimanual responses; 372 ms for
incorrect bimanual responses, and 385 for correct bimanual re-
sponses). All 13 participants had faster mean RTs for incorrect
unimanual responses than any of the other response types (in all

13 cases, a t test comparing RTs for incorrect unimanual re-
sponses to responses of all other types showed the incorrect uni-
manual responses to be faster; t values ranged from ��10 to
��16, p �� 0.001 in all cases).

Manifestation of choice in response-locked LRP
The averaged response-locked LRPs of correct and incorrect tri-
als in the three payoff conditions (Fig. 12A) revealed that there
was no significant difference in lateralization of activity between
correct and incorrect responses until very close to the response
time. To better visualize this difference between lateralization of
correct and incorrect responses, the differential activity between
correct and incorrect was computed (Fig. 12A’). This differential
activity was close to 0 up to 200 ms before response, suggesting
that the information about choice was only reflected in the LRP
close to the time that the response occurred. Furthermore, the
observed difference in amplitude of the LRP waveform for correct
and incorrect trials led us to reverse the LRP of the incorrect trials
(Fig. 12B) to be able to better compare the amplitudes. A mixed-
effects linear model of the maximum amplitude regressed on accu-
racy (correct vs incorrect) with random intercept and slope for
subjects revealed that the LRP amplitude of correct trials was signif-
icantly larger than the LRP amplitude of incorrect trials (Fig. 12B�,
b � 0.86, SE �.33, t � 2.63). One possible reason for this finding is
that many error responses are followed by a later response on the
correct side. Since the LRP reflects the difference in motor activity in
the two hands, this later response may mask the later part of the
motor activity produced by the error response itself.

Manifestation of RT in the LRP
Thus far, our analysis has concentrated on the ways in which the
LRP is related to participants’ choices. We next considered the
relationship between LRP and participants’ RT, focusing on cor-
rect trials only. For this analysis, we split the RTs into the fastest
40% and the slowest 40% for each participant across the three
payoff conditions. For each participant, we computed the average
stimulus-locked and response-locked LRPs for correct trials sep-
arately for each combination of RT speed (fast or slow) and each
condition (congruent, neutral, or incongruent). We then averaged
across participants separately for each of the six cases (Fig. 13). The
stimulus-locked LRP waveforms (Fig. 13A) showed no difference in
bias during the prestimulus period (defined as sum of LRP in the 200
ms time window before stimulus onset) in the fast trials compared
with the slow trials in any of the payoff conditions (neutral: b �
�8.09, SE � 18.87,�0.43; congruent: b � 9.15, SE � 19.03, t � 0.48;
incongruent: b � �17.04, SE � 19.00, t � �0.90).

In the poststimulus period, fast trials in all payoff conditions
were associated with a slowly rising activity immediately after
stimulus presentation and before stimulus integration time
(�200 ms). For slow responses, this ramp-like activity before
stimulus integration was absent. Furthermore, the LRPs of the
slow trials, although shifted in time, demonstrated a sharper rise
after onset than the LRP of fast trials. To determine whether this
observed difference between fast and slow trial LRP waveforms
was merely a result of smearing due to stimulus-locked averaging,
we turn to response-locked LRP waveforms.

Table 2. Behavioral measures contingent on prestimulus motor activity

Probability correct Mean RT for correct responses (ms) Mean RT for incorrect responses (ms)

Prestimulus motor activity High reward Low reward None High reward Low reward None High reward Low reward None

Congruent 0.83 (0.02) 0.76 (0.03) 0.82 (0.01) 352.98 (5.94) 353.93 (6.24) 358.55 (5.87) 368.48 (6.50) 359.59 (5.70) 368.47 (6.06)
Incongruent 0.57 (0.03) 0.58 (0.03) 0.59 (0.02) 377.32 (6.71) 368.48 (7.44) 378.16 (6.35) 352.58 (6.34) 353.49 (7.56) 354.09 (5.31)

Values shown are the mean value across participants (in parentheses, the SE).
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correct, 6844; bimanual correct, 7310; unimanual error, 6517; and bimanual error, 2933.

Noorbaloochi et al. • Payoff Bias and Decision Making J. Neurosci., August 5, 2015 • 35(31):10989 –11011 • 11001



Response-locked LRPs (Fig. 13B) maintained the difference
between fast and slow trials: the onsets of LRPs of fast trials (solid
lines) were earlier with respect to response time than the onsets of
LRPs of slow trials (dashed lines) across all payoff conditions. To
better visualize this difference, the LRP waveforms of the three
payoff conditions were averaged into a single waveform for each
RT bin (Fig. 13C). The averaged LRPs of fast and slow responses
showed a difference around the time of onset, with slow trials
having a later onset, as well as a sharper rise, than the fast re-
sponses. The differential waveform (Fig. 13D) of fast versus slow
responses, obtained by subtracting the response-locked LRP of
slow trials from the corresponding LRP of fast trials, shows that
this difference was indeed significant based on the 95% confi-
dence interval around this difference score.

To delineate the source of the difference in response-locked
LRPs of fast versus slow correct responses, we compared the
response-locked manual squeeze behavior of the two RT groups
using the dynamometer data. In all the trials considered, the re-
sponse was scored correct—that is, the squeeze force on the cor-
rect dynamometer reached the criterion force level first. We
calculated the average squeeze force to the dynamometers for the
correct and incorrect hand and the difference between these av-

erages for each payoff condition for each participant and then
averaged across participants (Fig. 14). In slow trials, the average
squeeze force activity (dashed line) showed muscle activity in the
incorrect response dynamometer starting about 100 ms before
the criterion is reached on the correct hand. This results in a “dip”
in the force difference toward the incorrect response, suggesting
that the slower RTs occurred on trials in which there was a sub-
critical squeeze on the incorrect hand before completion of acti-
vation on the correct hand.

A further finding from this analysis is that the rise in squeeze
force on the correct hand does not differ between fast and slow
trials. Such a finding is consistent with the view that the apparent
steeper rise of the LRP on slow trials reflects, not a difference in
activation of the correct response hand, but the presence of ac-
tivity in the incorrect response hand on a subset of the slower
trials that masks the early rise of LRP activity associated with the
correct response hand.

Results of competitive model fitting
The results described above motivated the idea that payoff effects
in our experiment were mediated by a fast guess process that
tended to favor the high reward alternative. The high degree of
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Figure 13. LRP of fast and slow correct trials. A, B, Stimulus-locked LRP (A) and response-locked LRP (B) for fast and slow correct trials. Solid lines show average LRP for fast trials and dashed lines
show slow trials. C, Response-locked LRP of fast versus slow correct trials averaged across payoff conditions. D, Differential LRP waveform obtained from subtracting the slow LRP from the fast of C.
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Figure 14. Average response-locked squeeze force of fast and slow correct responses, plotted separately for the correct channel (A) and the incorrect channel (B). C, Difference in squeeze force
(correct minus incorrect). In A, neutral fast and slow and incongruent fast and slow curves are coincident. B shows activity in the incorrect channel that begins about 100 ms before the squeeze on
the correct hand reaches criterion in slow trials in all three conditions (curves corresponding to congruent and neutral are coincident, for both fast and slow trials). In C, the difference in squeeze force
activity on slow trials showed a “dip” toward the incorrect response �150 ms before response onset in all three conditions. On average, each participant contributed 730 trials to the congruent fast
trials, 495 to congruent slow trials, 289 to incongruent fast trials, 580 to incongruent slow trials, 476 to neutral fast trials, and 580 to neutral slow trials.

Noorbaloochi et al. • Payoff Bias and Decision Making J. Neurosci., August 5, 2015 • 35(31):10989 –11011 • 11003



payoff bias in relatively fast responses, coupled with the finding
that a poststimulus LRP in the direction of the higher-paying
alternative is only present in a subset of trials (those in which
dynamometer activity in the incorrect hand is also present) sug-
gested the possibility that the payoff bias seen both in behavior
and in the LRP may be associated with a fast response in the
direction of the higher-paying alternative on a subset of trials.
Accordingly, we constructed a third model incorporating this
idea into the competitive model fitting described in this section,
along with models in which the effect of payoff is mediated by a
shift in the starting point or the rate of accumulation of activation
toward a response threshold. The fast guess, starting point, and
drift rate models were all formulated within the framework of the
LBA model, which captures several key elements of many other
decision making models in a mathematically tractable formula-
tion that facilitates model comparison (see Materials and
Methods).

All of the models are thought to describe the buildup of acti-
vation to a bound corresponding to the squeeze-force threshold,
encompassing buildup to the initiation of poststimulus motor
activity as well as subsequent buildup of the motor activity to the
squeeze-force threshold. It is interesting to consider the possibil-
ity that this entire buildup is transparently propagated through to
motor activity detectable on the dynamometers. Although this is
an intriguing possibility, we note that the models assume some
buildup of stimulus-related activity in both accumulators on all
trials, yet there are many trials in which there is no detectable
motor activity on one of the two hands. This finding is consistent
with the idea that, under the conditions of the present experi-
ment, there is an intermediate bound in the evidence accumula-
tion process that must be crossed before motor activity is
propagated to the motor system and becomes detectable either in
the LRP or in activation of the dynamometers. To keep the mod-
els analytically tractable, we have not incorporated this interme-
diate bound in any of the models.

The models that we had originally planned to compare are the
LBA with starting point shift and the LBA with drift rate change.
The additional model motivated by the findings reported above is
the fast guess LBA model. As illustrated in Figure 3, all three
models assume two LBAs for the accumulation of stimulus-
driven activation toward the response threshold. As shown in
Figure 3, the LBAst assumes that reward bias affects the starting
points of the accumulators, whereas the LBAdc assumes that re-
ward bias affects the drift rates of the two alternatives. The FG-
LBA model introduces a third accumulator, corresponding to the
proposed fast guess process, which is assumed to be triggered by
detection of the onset of the stimulus on a subset of trials. This
can occur in the neutral condition, but is more likely to occur
when the payoff favors one of the two alternatives. In the latter
case, the guess is usually, but not always, in the direction of the
higher-paying alternative. These models were applied to the dis-
tributions of both correct and incorrect responses for the congru-
ent, incongruent, and neutral conditions; each participant’s data
were fitted separately. For all participants, the FG-LBA shows the
closest fit to the data when compared with the other two models
(see Materials and Methods for full details of the models and the
fitting process). Table 3 shows the mean estimates of the param-
eters of each model averaged across participants. The fits of the
models to individual participant RT data are shown in Figure 15.

To compare the performance of the three models, Table 4
provides the log likelihood, the AIC, and the BIC values averaged
across participants. For all 13 participants, the FG-LBA had the
best performance— highest log likelihood and lowest AIC and

BIC values— compared with the LBAst and LBAdc models. Vi-
sual inspection of each of the 13 participants in Figure 15 reveals
large and systematic deviations between predicted and observed
patterns for both the LBAst and LBAdc models; the discrepancies
are smaller for the FG-LBA model, consistent with the lower AIC
and BIC values. Furthermore, the pattern of discrepancies makes
clear where the disadvantage of the LBAst and the LBAdc lies: the
error response distributions peak at shorter times than these
models predict, whereas correct response distributions peak at
longer times than these models predict. This pattern is easily seen
in the fit to participant S1, for example. The error distributions
(circles) have peaks at shorter times than is estimated by either
the LBAst or LBAdc models (dashed curves), whereas the correct
response distributions (diamonds) have peaks at longer times
than estimated by either of these models (solid curves). In con-
trast, the fitted distributions for both correct and error responses
from the FG- LBA model are much more closely aligned with the
data histograms, capturing the faster occurrences of errors com-
pared with correct responses. This pattern is characteristic of the
advantage of the FG-LBA for all participants, although it is easier
to see in the results of S1 than some other participants.

To test whether the FG-LBA model was the best model for all
participants, we used individual participant’s AIC values and
computed the relative likelihood of the FG-LBA model with re-
spect to LBAst and LBAdc models (see Materials and Methods for
more details). These single-subject AIC values, along with their
relative likelihoods, are provided in Table 5. The results (Table 5,
columns 5 and 6) can be interpreted as the relative probability
that the ith model minimizes the information loss. The extremely
low values observed for the relative likelihood of the LBAst and
the LBAdc models compared with the FG-LBA model indicate
that these models are several orders of magnitude less likely to
minimize information loss compared with the FG-LBA model. It
is unlikely that the reported results can be attributed to differen-
tial effects of outlier responses on fit statistics under the different
models. We found that pseudo-AIC values computed after ex-
cluding RT bins containing only a single (potentially outlier)
response (see Materials and Methods) were only �1% smaller
than those computed as described above and the FG-LBA model
still had the smallest AIC value for each participant by a margin
comparable to that reported in Table 4. Overall, the model com-
parison results suggest that the starting point shift and drift rate
change models do not adequately address our data, whereas the
FG-LBA provides a far better fit.

Given the superior fit of the FG-LBA, it is worthwhile to con-
sider the parameters of the model further. As expected, the prob-
ability of initiating a fast guess is higher in the biased payoff
condition than in the neutral condition (pfb � 0.61; pfn � 0.52);

Table 3. Mean parameter estimates for the three models

Parameters LBAst LBAdc FG-LBA

B (fixed) 500 500 500
v0 1.25 1.14 1.55
�s 0.06 0.06 0.14
�s 0.15 0.14 0.22
A 92.19 87.36 62.67
T0 27.33 55.01 91.93
r 16.65 0.05 �
ppu � � 0.61
ppn � � 0.52
�f � � 1.5
�f � � 0.5
ph � � 0.83
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Figure 15. Data and model fits for each participant’s RT histograms. Diamonds and circle points depict actual proportion of trials in each 20 ms bin for correct and incorrect responses, respectively.
For a given condition, the sum of the proportions across correct and incorrect bins is equal to 1. Solid and dashed lines depict model-predicted proportions for correct and incorrect response trials
respectively. CC, Congruent correct; IC, incongruent correct; NC, neutral correct; CE, congruent error; IE, incongruent error; NE, neutral error.
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Figure 15. Continued.
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Figure 15. Continued.
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in the biased condition, the guess is initiated in the direction of
the higher-paying alternative most, but not all of the time (ph �
0.83). The mean rate of the fast guess process (�f) is comparable
to the value of the v0 parameter, indicating that all three accumu-
lators share a strong, stimulus independent drive toward the
bound (mean �f and v0 both �1.5). In comparison, the stimulus-
dependent component is quite small (mean �s � 0.14). There-
fore, it appears that the speed advantage of the fast guess process
primarily depends on its being initiated 50 ms sooner than the
stimulus-driven accumulation processes. It may be of some in-
terest that the fast guess process has more variable drift rate than
the stimulus-driven process (mean �f � 0.5; mean �s � 0.22).
Given this variability, the fast guess process will sometimes lose to
one of the stimulus-driven accumulators, so that the fast guess,
when it occurs, does not always determine the response. This
process may, however, often reach a level sufficient to generate a
subcriterial squeeze, accounting for the relatively high frequency
of trials with subcriterial dynamometer activity on the incorrect,

high reward side in the incongruent condition. We estimated the
average probability that the fast guess process wins when it occurs
to be 0.56, based on the following reasoning. The probability of a
fast guess determining the response in either biased conditions is
equal to the probability that the fast guess process occurs, given
by model parameter pfb times the probability that it wins when it
occurs (pw). In the congruent condition, the fast guess is correct
when it is in the direction of the high reward, given by model
parameter ph, whereas in the incongruent condition, the fast
guess is correct when it is not in the direction of the high reward,
which occurs with probability (1 � ph). Therefore, the probabil-
ity that a fast guess is correct in the congruent condition is equal
to pfbpwph, whereas the probability that a fast guess is correct in
the incongruent condition is equal to pfbpw(1 � ph). Because the
contribution of the stimulus-driven accumulators is the same for
both conditions, it follows that the difference in probability cor-
rect between the congruent and incongruent conditions, (pcc �
pci) should equal the difference between the probabilities that the
fast guesses are correct, pcc � pci � pfbpw[ph � (1 � ph)]. For each
participant, we determined the participant’s values of pcc and pci

from the data and inserted these, along with the participant’s
fitted values of the parameters pfb and ph, into this expression and
then solved for pw. The mean of these values was 0.56 across
participants, with individual values ranging from 0.34 to 0.67.
Note that, in this model, the probability that the fast guess process
wins is the same in the neutral condition as in the biased payoff
conditions because the parameters that affect time to bound are
not affected by payoffs in the model. Overall, then, the probabil-
ity that the fast guess occurs and also wins is about 0.34 in the
biased conditions (given by pfbpw) and about 0.29 in the neutral
condition (given by pfnpw).

In spite of the relative success of the FG-LBA model, there is
one aspect of the data that it does not perfectly capture. As Figure
4 illustrates, when correct and incorrect responses are considered
together, the distribution of response times differs between the
congruent and incongruent conditions, particularly for the easy
five-pixel stimuli: there are relatively more responses in short RT
bins in the congruent condition, and relatively more responses in
long RT bins in the incongruent condition. However, the FG-
LBA model predicts that these distributions should be the same.
This is because, in the model, fast-guess responses are completely
independent of stimulus information, and stimulus-driven re-
sponses are completely independent of the fast-guess process. In
other words, there is a parallel race between the fast-guess and
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Figure 15. Continued.

Table 4. The FG-LBA model provides the best fit to the data as measured by log
likelihood, AIC, and BIC

Model df Log likelihood AIC BIC

LBAst 6 �14123 (234) 28257 (469) 28297 (469)
LBAdc 6 �14161 (236) 28334 (471) 28374 (471)
FG-LBA 10 �13970 (223) 27961(446) 28027(446)

Average goodness-of-fit measures are shown for the three models. Values in parentheses are SE across13 partici-
pants for each measure.

Table 5. AIC and relative likelihood values show the FG-LBA model fits best for each
participant

Subject

AIC Relative likelihood

LBAst LBAdc FG-LBA LBAst vs FG-LBA LBAdc vs FG-LBA

S1 28442 28458 27918 1.64E-114 5.50E-118
S2 27867 28276 27743 1.19E-27 1.82E-116
S3 28125 28139 27855 2.35E-59 2.14E-62
S4 26886 26924 26836 1.39E-11 7.78E-20
S5 28561 28589 28342 2.78E-48 2.32E-54
S6 25127 25169 24978 4.42E-33 3.35E-42
S7 27523 27538 27285 2.08E-52 1.15E-55
S8 29451 29495 29285 8.99E-37 2.51E-46
S9 31548 31572 31110 7.75E-96 4.76E-101
S10 27493 27561 27406 1.28E-19 2.20E-34
S11 26444 26489 25943 1.62E-109 2.74E-119
S12 29987 30206 29310 9.80E-148 2.73E-195
S13 29893 29933 29476 2.82E-91 5.80E-100
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stimulus processes with no interaction between them. The fast
guess should win out against the two stimulus processes just as
often in both the congruent and incongruent conditions, affect-
ing the overall distribution of RTs (again, disregarding response
accuracy) equally in the two conditions. It might be possible for a
version of the FG-LBA model to account for this discrepant
aspect of the data by including an interaction between the fast-
guess and stimulus-driven processes. For example, the stimulus-
driven motor response might boost the fast-guess-driven motor
response if the two are consistent or might dampen the fast-
guess-motor response if the two are inconsistent. Further re-
search is required to explore this possibility.

Comparison with findings of Simen et al. (2009)
A process very similar to the fast guess process in the FG-LBA
model was observed in the studies of Simen et al. (2009), which
found such effects with both a prior probability and a reward bias
manipulation. These studies used a perceptual decision-making
task with low-coherence random dot motion stimuli (we were
unaware of these studies when we designed the study reported
here). Comparison of our task and findings with those of Simen
et al. (2009) reveals interesting similarities and differences. Ex-
periment 2 in their study manipulated both prior probability and
the duration of the response–stimulus interval (the time between
the recording of a response to one stimulus and the presentation
of the next one) and found that fast responses in which the la-
tency distribution matched that of simple stimulus detection re-
sponses occurred on a subset of trials, with the size of the subset
determined both by the degree of prior probability bias and the
duration of the response-stimulus interval. Those investigators
relied on an optimality analysis of the 1D drift diffusion model
(Bogacz et al., 2006) to predict that the combination of a high bias
and a short response–stimulus interval should lead to a starting
point above the optimal evidence-integration-bound position,
thereby supporting the strategy of choosing the more probable
option upon detection of stimulus onset. Consistent with this, the
fast responses that they observed were nearly always in the direc-
tion of the high probability option. Indeed, some participants
appeared to adopt what was essentially a simple stimulus detec-
tion strategy in some conditions of their experiment, choosing
the higher-probability option with a very short latency immedi-
ately after stimulus onset on every trial. A similar pattern was
observed in the behavior of a subset of participants in their ex-
periment 3, in which a bias was induced by a 3:1 reward ratio
favoring one of the two responses. The remaining participants
revealed only a slight reward bias captured as a small, suboptimal
offset in the starting point of evidence accumulation in a fit of the
DDM to their participant’s data.

Our study differed from that of Simen et al. (2009) in a num-
ber of ways. First, we had two levels of stimulus difficulty rather
than only one. Second, we used a stringent deadline to encourage
fast responding, whereas they used a short response–stimulus
interval. Third, we cued the payoff condition before each stimu-
lus presentation and all payoff conditions were intermixed,
whereas, in their studies, payoff was not explicitly cued, but was
experienced over a block of trials with a homogeneous payoff.
Nevertheless, both investigations found that the predominant
effect of reward bias was to induce participants to rely on a fast
guess process favoring the higher reward alternative. In both
studies, a 50 ms lead time for fast guess responses relative to
stimulus-driven responses was inferred from the data, suggesting
that there is a 50 ms time cost associated with discriminative
responding relative to triggering a predetermined response by the

onset of a stimulus. Our findings differed from those of Simen et
al. (2009), however, in two respects. First, we found fast guess
responses even in the absence of a reward or probability bias in
our neutral condition, whereas they found no such tendency in
an equal probability condition. Second, we found that partici-
pants were not fully consistent in favoring the high reward alter-
native: they sometimes prepared a fast guess toward the low
reward alternative. Below, we consider possible reasons for these
differences.

Discussion
We investigated the effect of differential payoffs on perceptual
decision making under time pressure using behavioral and LRP
measures. As in other studies, payoff information affected choice
and response time measures of behavior (Diederich and Buse-
meyer, 2006; Diederich, 2008; Simen et al., 2009; Rorie et al.,
2010; Gao et al., 2011; Leite and Ratcliff, 2011; Mulder et al.,
2012): participants chose the higher-paying alternative more fre-
quently and did so with shorter response times, resulting in sig-
nificantly higher earnings per trial in the unequal payoff
condition compared with the neutral (equal payoff) condition.

Neurally, payoff asymmetry was represented in the LRP,
which could be decomposed into stimulus- and payoff-related
signals. The stimulus-related signal appeared �200 ms after
stimulus onset. The payoff signal consisted of a shift in the LRP
toward the higher-paying alternative before stimulus onset (static
component) and an abrupt rise in activity (dynamic component)
toward the higher-paying alternative �150 ms after stimulus on-
set and 50 ms before the stimulus-related signal. The prestimulus
shift only occurred on the subset of trials with prestimulus motor
activity and did not predict choice or response time when it fa-
vored the high reward alternative. Subtle choice and RT effects
were observed, however, when prestimulus activity favored the
low reward alternative. Other studies (Gratton et al., 1988; van
Vugt et al., 2014) found early LRP effects that were more strongly
associated with response outcomes. Our use of a stringent dead-
line and other methodological differences may be responsible for
this difference between experiments.

The dynamic component of the LRP predicted both choice
and response time. This component was also associated with mo-
tor activity toward the high reward side—activity that appears to
reflect a fast guess response triggered by stimulus onset and usu-
ally directed toward the response associated with the higher
reward.

Our work is different from most previous studies measuring
the LRP in that we have related this measure to activity in the
dynamometers used to record behavioral responses. Similar in-
formation may be measurable via the electromyogram (Gratton
et al., 1988; Scheibe et al., 2009). As noted above, the static and
dynamic payoff related LRP signals were only observed on trials
where we also detected motor activity in the hand consistent with
the direction of the LRP signal. Therefore, in our experiment, the
LRP appears to be a motor activation signal, rather than a motor
preparation signal. LRPs in other studies may reflect preparation
below the level measurable in motor activity and it will be impor-
tant for future work to assess this. A further point is that the
complex shape of the LRP in some conditions can be traced to
effects of motor responses on both hands within the same trial
and/or to mixing of trials with different patterns of motor behav-
ior. This raises the possibility that complex ERP patterns ob-
served in other studies might similarly arise from the
superposition of simpler components.
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A model in which payoff bias affects an optional fast guess
process fit our data better than alternatives in which payoff bias
affects the starting point or the rate of activation toward the
higher-paying choice. In our model, the fast guess is usually (but
not always) the response with the higher payoff. A process with
characteristics similar to our fast guess process was observed by
Simen et al. (2009). Our findings corroborate that study’s finding
that a fast guess process can be initiated 50 ms faster than an
activation process associated with stimulus-driven choice be-
tween alternatives.

Comparing findings across studies, it is apparent that payoff
and stimulus probability manipulations affect processing in dif-
ferent ways depending on task details. For example, Rorie et al.
(2010) found that a starting point shift accounted well for payoff
bias effects in their task, which required monkeys to withhold
responding until a go cue appeared, and Rao et al. (2012) found a
similar effect of prior probability using a similar procedure. In
contrast, Hanks et al. (2011) used a free-response RT task and
found that prior probability predominantly affected drift rate.
Each strategy is arguably optimal for the given task setting (Rorie
et al., 2010; Hanks et al., 2011). Testing predictions from an op-
timality analysis presented in Bogacz et al. (2006), Simen et al.
(2009) showed that a starting point shift can be optimal for mod-
erate levels of bias in their task, but with extreme levels of bias, it
becomes optimal simply to allow stimulus onset to trigger the
favored response. Their study observed both starting-point- and
fast-guess-like effects consistent with these considerations, al-
though to a lesser extent than necessary to maximize payoff.

One major difference between our task and the above studies
of payoff effects is the strong time pressure imposed on partici-
pants by the deadline. This may cause participants to rely on a fast
guess process on some trials. In this respect, our task is similar to
the deadlined decision-making tasks used by Diederich and Buse-
meyer (2006) and Diederich (2008). These studies explored mod-
els in which an early payoff-driven process may often lead to a
response before stimulus evidence integration begins, similar to
our fast guess process.

Scheibe et al. (2009) conducted an experiment that may have
invoked a fast guess strategy as well. In their case, a first stimulus
acted as a cue that provided information about the relative prob-
ability of the outcome of a subsequent decision. Scheibe et al.
(2009) observed a delay in LRP onset when a precue valid 75% of
the time proved invalid and used this to argue that there is inhi-
bition between competing hands when there is a conflict be-
tween precue and stimulus. In our study, we were able to
capture similar effects as consequences of a fast guess process
favoring the cued alternative without invoking competitive inhi-
bition. Further modeling work is required to determine whether
their inhibition-based model or our fast guess model best de-
scribes both sets of data or whether different models are needed
to account for performance in these two experiments.

The strategy that participants adopt in response to our task
demands may also be affected by uncertainty about the stimulus
difficulty, which, in our experiment, is randomly determined for
each trial (for similar reasoning, see Hanks et al., 2011). In the
case of the difficult stimuli (2 pixels shift), the right strategy may
be to guess, whereas for the easy stimuli (5 pixels shift), the right
strategy may be to allow the stimulus to determine the response.
In a mixed difficulty setting such as our task, the FG-LBA could
be seen as an attempt to benefit from both strategies. The race
between the fast guess process and the stimulus-driven process
sets up a situation in which the stimulus-driven process will be

more likely to win the race when driven by a strong stimulus and
more likely to lose it when driven by the weak stimulus.

In fitting the fast guess model to our data, we found that fast
guesses were not always in the direction of the high reward.
Therefore, even with a clear payoff bias, participants occasionally
prepared a response favoring the lower-paying alternative. This
strategy is clearly suboptimal and is reminiscent of the subopti-
mal “matching” (rather than “maximizing”) strategy of partici-
pants when the task is simply to guess which of two alternatives
will appear on the next trial. Together with evidence that partic-
ipants made fast guesses on some neutral trials in our experiment,
the findings suggest that participants may attempt to guess the
direction of the stimulus in the upcoming trial, with the payoff
cue affecting the probability of a guess in one or the other direc-
tion. Such a strategy is superior to completely ignoring the payoff
cue, but inferior to the strategy in which the fast guess responses
are consistently made in the direction of the higher payoff. Guess-
ing against the payoff bias and guessing in neutral conditions
were not observed in the study of Simen et al. (2009), consistent
with the idea that such strategies may arise as a response to a
mixture of difficulty levels or to the strong deadline pressure in
our experiment. Neither of these features was present in the Si-
men et al. (2009) experiments. However, there were other differ-
ences between the experiments. Different payoff conditions were
intermixed and cued before each trial in our experiment, whereas
they were fixed within a block in Simen et al. (2009), and this
difference could have contributed to the differences in the pattern
of results between the two studies.

In summary, our behavioral, neural, and muscle activation
data support the idea that, under the conditions of our task,
payoff information is incorporated in the decision-making pro-
cess through a probabilistic fast guess process that races with
stimulus-driven processes. This fast guess process is apparent in
both the LRP data and in the dynamometer data. Our experiment
shows that the use of the relatively high squeeze force criterion for
the dynamometers allows elements of the decision-making pro-
cess to be visible in motor behavior. Further experiments with
these characteristics might be a fruitful way of allowing the use of
muscle activation, as measured easily using dynamometers, to
shed further light on the dynamics of decision making.

Notes
Supplemental material for this article is available at http://web.stanford.
edu/group/pdplab/projects/NoorbaloochiEtAlPayoffBiases. The URL
contains data used in our analyses, MATLAB code used to fit the Fast
Guess LBA model, and a short description of all the files. This material
has not been peer reviewed.
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