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Hepatocyte Growth Factor and MET Support Mouse Enteric
Nervous System Development, the Peristaltic Response, and
Intestinal Epithelial Proliferation in Response to Injury
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Factors providing trophic support to diverse enteric neuron subtypes remain poorly understood. We tested the hypothesis that hepatocyte
growth factor (HGF) and the HGF receptor MET might support some types of enteric neurons. HGF and MET are expressed in fetal and adult
enteric nervous system. Inn vitro, HGF increased enteric neuron differentiation and neurite length, but only if vanishingly small amounts (1
pg/ml) of glial cell line-derived neurotrophic factor were included in culture media. HGF effects were blocked by phosphatidylinositol-3 kinase
inhibitor and by MET-blocking antibody. Both of these inhibitors and MEK inhibition reduced neurite length. In adult mice, MET was restricted
to a subset of calcitonin gene-related peptide-immunoreactive (IR) myenteric plexus neurons thought to be intrinsic primary afferent neurons
(IPANs). Conditional MET kinase domain inactivation (Mef""; Wnt1Cre+) caused a dramatic loss of myenteric plexus MET-IR neurites and
1-1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyamine perchlorate (Dil) labeling suggested reduced MET-IR neurite length. It vitro, Met";
WntlCre+ mouse bowel had markedly reduced peristalsis in response to mucosal deformation, but normal response to radial muscle stretch.
However, whole-bowel transit, small-bowel transit, and colonic-bead expulsion were normal in M e WntICre+ mice. Finally, Met™,
WntlCre+ mice had more bowel injury and reduced epithelial cell proliferation compared with WT animals after dextran sodium sulfate
treatment. These results suggest that HGF/MET signaling is important for development and function of a subset IPANs and that these cells
regulate intestinal motility and epithelial cell proliferation in response to bowel injury.
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The enteric nervous system has many neuronal subtypes that coordinate and control intestinal activity. Trophic factors that
support these neuron types and enhance neurite growth after fetal development are not well understood. We show that a subset of
adult calcitonin gene-related peptide (CGRP)-expressing myenteric neurons produce MET, the receptor for hepatocyte growth
factor, and that loss of MET activity affects peristalsis in response to mucosal stroking, reduces MET-immunoreactive neurites,
and increases susceptibility to dextran sodium sulfate-induced bowel injury. These observations may be relevant for understand-
ing and treating intestinal motility disorders and also suggest that enhancing the activity of MET-expressing CGRP neurons might
be a useful strategy to reduce bowel inflammation. j

ignificance Statement

Introduction epithelium, eliminate waste, and facilitate fluid reabsorption.

Survival depends on controlled intestinal motility to mix food This requires neuronal networks that sense stretch, villus distor-

with digestive enzymes, bring nutrients into contact with gut  tion, and luminal content composition, and then alter motility to
suit constantly changing conditions. Fortunately, this occurs
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without conscious thought because the bowel has an intrinsic
nervous system called the enteric nervous system (ENS), which
controls most aspects of intestinal function (Bornstein et al.,
2004; Grundy and Schemann, 2005; Wood, 2008; Furness, 2012;
Sasselli et al., 2012; Goldstein et al., 2013). The ENS contains =20
neuron subtypes that differ in function, neurotransmitters, ax-
onal projections, and electrophysiology (Furness, 2006b). Some
signals governing ENS development and maintenance are known
(Sasselli et al., 2012; Lake and Heuckeroth, 2013; Obermayr et al.,
2013), but it is unclear how diverse neuronal populations are
established or what factors support most enteric neurons after
birth. Trophic factors that affect ENS development, mainte-
nance, and function include glial cell line-derived neurotrophic
factor (GDNF; Moore et al., 1996; Sanchez et al., 1996; Treanor et
al., 1996; Chalazonitis et al., 1998; Hearn et al., 1998; Heuckeroth
et al., 1998), neurturin (Heuckeroth et al., 1998, 1999), nerve
growth factor (NGF; Mulholland et al., 1994), brain derived neu-
rotrophic factor (Grider et al., 1997b; Boesmans et al., 2008),
ciliary neurotrophic factor (Grider et al., 1997a; Chalazonitis et
al., 2001; Schifer et al., 2003), and neurotrophin-3 (Chalazonitis
et al., 1994, 1998, 2001). We hypothesized, that hepatocyte
growth factor (HGF) and its receptor MET might also be impor-
tant because HGF supports spinal motor neurons (Ebens et al.,
1996), dorsal root ganglion (DRG) subtypes (Maina et al., 1997),
retinal ganglion cells (Tonges etal., 2011), and hippocampal neu-
rons (Lim and Walikonis, 2008). Our prior studies also suggested
HGF expression in the ENS (Vohra et al., 2006). Finally, we were
intrigued by the protective effect of HGF in rodent colitis models
(Tahara et al., 2003; Mukoyama et al., 2005; Numata et al., 2005;
Oh et al., 2005; Hanawa et al., 2006; Kanbe et al., 2006), and
hypothesized that this might be mediated through MET-exp-
ressing enteric neurons.

We now demonstrate MET immunoreactivity in most ENS
precursors and in a subset of adult calcitonin gene-related
peptide (CGRP)-expressing myenteric neurons thought to be
intrinsic primary afferent neurons (IPANs; i.e., sensory neu-
rons; Furness et al., 2004a,b). In vitro, HGF/MET signaling
influences ENS precursor neurite growth and neuronal differ-
entiation, but conditional Met-null mutations driven by
WntlCre [i.e., Met"™; Wntl1Cre+ (Met cKO)] did not cause
major ENS developmental defects. Met cKO mice had a nor-
mal density of MET-immunoreactive (IR) myenteric neurons,
but fewer or shorter MET-IR neurites. Met cKO mice also had
a specific defect in the peristaltic response elicited by mechan-
ical deformation of intestinal villi. However, in vivo tests of
bowel motility were unaltered. Finally, Met ¢KO mice had
increased susceptibility to dextran sodium sulfate (DSS)-
induced mucosal damage, suggesting that CGRP-expressing
enteric neurons protect the bowel from injury and that HGF’s
ability to protect the bowel might depend on signaling within
the ENS.
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Materials and Methods

Animals. c-Met™ T mice (129SV/C57BL/6 background; Huh etal., 2004)
were generously provided by Dr. Snorri S. Thorgeirsson (National Can-
cer Institute, National Institutes of Health, Bethesda, MD). WntlCre
mice [STOCK Tg(Wntl-Cre)11Rth Tg(Wntl-GAL4)I11Rth/], Stock
#003829, C57BL/6; Swiss albino mixed background] and R26R-EYFP
reporter mice (B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/], Stock #006
148, C57BL/6]) were from The Jackson Laboratory. RET-EGFP mice
were previously described (Jain et al., 2006). ErvsMM and Etvd™"~;
Etv5"“/WT mice were kindly provided by Dr. Kenneth Murphy (Wash-
ington University School of Medicine, St. Louis, MO) and Dr. Silvia
Arber (University of Basel, Switzerland). CF-1 mice were from Charles
River. The morning of vaginal plug was considered embryonic day (E)
0.5. Mice of either sex were studied. The use and care of mice were
accredited and approved by the Washington University Animal Care
Committee and by The Children’s Hospital of Philadelphia Research
Institute Institutional Animal Care and Use Committee.

Antibodies and reagents. Primary antibodies for mouse analysis were
as follows: p75™™® antibody (rabbit, 1:1000; #AB1554, EMD Milli-
pore), Choline acetyltransferases (ChAT; goat, 1:10; #AB144P, Milli-
pore), calretinin (rabbit, 1:2500; #AB5054, EMD Millipore), HGF
(goat, 1:100; #sc-1357, Santa Cruz Biotechnology), HuC/D (mouse,
1:200; #A21272, Invitrogen), GFP (chicken, 1:1000; #GFP-1020, Aves
Labs), S100B (rabbit, 1:800; DAKO), PGP9.5 (guinea pig, 1:100;
#GP14104, Neuromics), TuJ1 (rabbit, 1:10,000; #PRB-435P, Cova-
nce), TuJ1 (mouse; #MMS-410P, 1:100, Covance), RET (goat, 1:800;
#GT15002, 1:800, Neuromics), RET (R787) (Rabbit, 1:100; #18121,
Immuno-Biological Laboratories), MET (goat, 1:100; AF527, R&D
Systems), CGRP (rabbit, 1:100; #C8198, Sigma-Aldrich), phosphohi-
stone 3 (pH3; rabbit, 1:800; #AB06-570, EMD Millipore), neuronal
nitric oxide synthase (rabbit, 1:1000; AB#5380, EMD Millipore), sub-
stance P (rabbit, 1:1000; Inestar), vasoactive intestinal polypeptide
(VIP; rabbit, 1:1000; Peninsula), NF145 (rabbit, 1:100; #AB1987,
EMD Millipore). Primary antibodies for human gut tissue were as
follows: PGP9.5 (rabbit, 1:100; #7863-0504, Serotec) and c¢-MET
(goat, 1:100; #AF276, R&D Systems). Secondary antibodies were as
follows: donkey anti-goat Alexa 594 (1:400; Invitrogen), donkey anti-
rabbit Alexa 488 (1:400; Invitrogen), donkey anti-mouse Alexa 647
(1:400; Invitrogen). Tissue culture reagents included GDNF
(Creedon etal., 1997), HGF (mouse; #2207-HG, R&D Systems), Neu-
robasal media (Life Technologies), B27 (Life Technologies), DMEM,
glutamine (Fisher), penicillin, and streptomycin (Fisher). Inhibitors
were as follows: PD98059 (MEKI1 inhibitor; #E1360-0005, Enzo Life
Sciences) and LY294002 (PI3K inhibitor; #ST420-0005, Enzo Life
Sciences).

Quantitative ENS analysis. Whole-mount myenteric plexus analysis
was performed using 8 —12-week-old mice (n = 3—6) as described previ-
ously (Wang et al., 2010). Briefly, gut was opened along the mesenteric
border, pinned to Sylgard, fixed [4% paraformaldehyde (PFA), 30 min,
25°C], and then dissected to separate muscle layers from submucosa.
After immunohistochemistry or NADPH diaphorase staining, quantita-
tive analysis was performed. For CGRP antibody staining, peeled gut
muscle layers were cultured with colchicine (0.1 mg/ml; C9754, Sigma-
Aldrich), DMEM, glutamine (2 mm), penicillin (100 IU/ml), and strep-
tomycin (100 ug/ml) for 24 h before fixation. Neuronal density was
quantified by counting cells within 20 randomly selected 20X fields per
mouse. At least three mice of each genotype were analyzed.

Immunohistochemistry and image processing. After fixation, cells, or-
gans, or peeled gut muscle layers were kept in TBST (100 mm Tris, 150
mM NaCl, 0.5% Triton X-100) for 30 min at 37°C, blocked with 5%
donkey serum/TBST (30 min, 37°C), and then incubated with pri-
mary antibody (overnight, 4°C). Images were obtained with an Olym-
pus BX60 microscope, Axiocam and AxioVision software (Zeiss) or
with Zeiss Axio Imager.A2, AxioCam MRm Rev.3 Camera, and ZEN
software. Image processing included only cropping and uniform ad-
justments of brightness, contrast, and saturation.

Human gut. Paraformaldehyde-fixed, paraffin-embedded human
colon was obtained from the Washington University Digestive Dis-
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Table 1. Primers for qRT-PCR
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5'to 3’ sequences

Accession number Gene symbol Unigene title Forward primer Reverse-strand primer
NM_008084 GAPDH Glyceraldehyde-3-phosphate dehydrogenase AACTTT GGCATT GTG GAA GG GTCTTCTGG GTG GCA GTG AT
NM_008591 Met Met proto-oncogene (CAGCA GCTTCA GTTACCGG GCGATGCTGACATGC CACTG
NM_008815 Ftv4 Ets variant gene 4 (CCAGATGATGT (TG CATTG GCCTGT CCA AGCAAT GAA AT
NM_023794.2 Ftvs Ets variant gene 5 GACCCCAGGCTGTACTTT GA CAGTCCAGG (GATGAAGT G

ease Research Core Center after approval from the Institutional Re-
view Board at Washington University School of Medicine. Five
micrometer sections were deparaffinized and rehydrated for
immunohistochemistry.

One-1'-dioctodecyl-3,3,3',3' -tetramethylindocarbocyamine perchlorate
labeling combined with immunohistochemistry. Adult mouse bowel was
dissected, fixed, and peeled as for quantitative whole-mount analysis.
Muscle layers from distal small intestine were cut into 3-cm-long pieces
and pinned out on a Sylgard dish. A dissecting pin dipped in NeuroTrace
Dil Tissue-Labeling Paste (#N-22880, Life Technologies) was inserted
into the middle of each tissue piece. Pierced samples were kept in 4% PFA
at 37°C for 3 weeks. Immunohistochemistry for MET was performed as
described above, except that instead of Triton X-100, 1000 wg/ml
digitonin (#D141, Sigma-Aldrich) was used to permeabilize tissue while
preserving 1-1'-dioctodecyl-3,3,3',3' -tetramethylindocarbocyamine
perchlorate (Dil) staining (Matsubayashi et al., 2008). For cell counting,
tissue pieces were evaluated using a 5 X 7 grid of 20X fields centered on
the pin insertion site. The grid was additionally subdivided into three
zones of varying distances from the pin (see Fig. 5K) and cells within each
20X field were counted.

Dissociated cell culture. E12.5 CF-1 ENS precursor cells from disso-
ciated bowel were immunoselected with p75NTR antibody (1:1000)
and maintained in culture as previously described (Sato and Heuck-
eroth, 2008) except that GDNF was not included in media for cell
dissociation or immunoselection. Briefly, whole bowel was treated
with collagenase (0.5 mg/ml) and dispase (0.5 mg/ml), triturated, and
filtered through a 40 um cell strainer before incubation with p75N™®
antibody and goat anti-rabbit-coupled paramagnetic beads (Miltenyi
Biotec). After separation of p75N"R-expressing cells using a MACS
Separation column (Miltenyi Biotec), immunoselected cells were
plated at 6000 cells/well on poly-p-lysine and laminin-coated eight-
well chamber slides. Cells were cultured in Neurobasal media supple-
mented with B27 (2%), glutamine (2 mm), penicillin (100 IU/ml), and
streptomycin (100 pg/ml) for 48 h before fixation with 4% PFA and
analysis by immunohistochemistry.

Slice culture. E12.5 CF-1 gut slice cultures were performed as described
(Fu et al., 2006) with minor modifications. Briefly, 300-500-um-long
small-bowel slices were cultured on fibronectin-coated plastic chamber
slides (Nunc Lab-Tek, Thermo Scientific) in DMEM, B27 (2%), glu-
tamine (2 mm), penicillin (100 IU/ml), and streptomycin (100 wg/ml).
Immediately after plating, slices were treated with PBS (vehicle), HGF, or
GDNF at the indicated concentration for 24 h before fixation (4% PFA,
15 min, 25°C) and processing for immunohistochemistry. For analysis,
the distance from the edge of the explant to the most distant TuJ1+
neurites or RET+ cells was determined in =3 and =8 regions per
explant.

In vitro peristaltic response. The colon of adult mice was opened along
mesenteric attachments to form flat sheets and pinned mucosal side up in
a three-chambered organ bath as previously described (Grider and Jin,
1994; Grider et al., 2010). Force-displacement transducers were attached
to the circular muscle to record ascending contraction in the orad pe-
ripheral compartment and descending relaxation in the caudad com-
partment. A sensory stimulus that initiates the peristaltic reflex was
applied to the bowel in the central chamber. We used a hook-and-pulley
system to produce graded (2—8 g) radial stretch of the circular muscle
layer to test the stretch-activated sensory pathway. Mechanical deforma-
tion of villi was tested using graded mucosal stroking with a fine brush to
stimulate the mucosal-activated pathway.

Whole gastrointestinal transit assay. Adult mice were fed by intragastric
gavage with 300 ul of 6% carmine red dye solution (#C1022, Sigma-

Aldrich) dissolved in distilled water containing 0.5% methylcellulose
(#274429, Sigma-Aldrich). Mice then were placed into individual cages
without bedding. A white sheet of paper covered the cage bottom to
facilitate detection of carmine in fecal pellets. Following gavage, cage
bottoms were checked for dyed fecal pellets at 10 min intervals. Each
mouse was tested three times with =3 d between tests.

Colon motility assay. After adult mice were anesthetized with isoflu-
rane, a fire-polished glass rod (3 mm in diameter, custom made by Uni-
versity of Pennsylvania Glass Shop) was used to insert a glass bead (3 mm
in diameter; #2143928, Sigma-Aldrich) into the rectum, 2 cm from the
anal verge. The glass rod and beads were lubricated with sterile corn oil
(#C8267, Sigma-Aldrich) before insertion. The time required to eject the
bead was measured as an estimate of colonic motility. Each mouse was
tested three times with =1 d between trials.

Small-intestine transit assay. Adult mice were fasted overnight and
then fed by intragastric gavage with 100 ul of 10 mg/ml fluorescein
isothiocyanate-dextran (FITC-dextran; average molecular weight,
70,000; #46945 Sigma-Aldrich) dissolved in distilled water containing
2% methylcellulose. Animals were killed 90 min later and the stom-
ach, small intestine, cecum, and colon were collected in 1X PBS.
Small intestine was divided into 10 segments, cecum into two seg-
ments, and colon into three segments. Each segment was opened
along the mesenteric border without losing luminal content and
placed into an individual 1 ml Eppendorf tube containing 500 ul 1 X
PBS. Tubes were vortexed 15 s and then centrifuged (2000 X g, 10
min) to obtain FITC-dextran-containing supernatant. FITC fluores-
cence was measured in 100 ul aliquots of supernatant in a 96-well
plate using a FilterMax F5 (Molecular Devices) plate reader. Small-
intestine transit was evaluated by determining the geometric center of
the FITC-dextran in the bowel. The geometric center (Miller et al.,
1981) was calculated as follows: geometric center = > (fluorescence
in each segment X segment number)/total fluorescence recovered.

DSS injury. Colitis was induced with DSS (2.5% in drinking water)
as previously described (Pull et al., 2005). Control littermate mice
were placed in separate cages at the time of the experiment and re-
ceived water without DSS. Anatomic analysis of the colon was done
on day 14 after starting DSS or water with the exception of bromode-
oxyuridine (BrdU) experiments, which were completed on day 7. For
BrdU studies, mice received intraperitoneal injections (10 mg/ml, 100
png/g body weight) and were analyzed 1 h later. Colons were pinned
flat mucosal side up and fixed (4% PFA, 30 min, 25°C) before gross
morphologic analysis. Longitudinal 5 wm sections of paraffin-
embedded distal and proximal colon were stained with hematoxylin
and eosin for additional analysis.

Quantitative reverse transcriptase PCR. Total RNA isolated using TRI
Reagent (Sigma-Aldrich) and purified using RNeasy Mini kit (Qiagen)
was reverse-transcribed using SuperScript II Reverse Transcriptase (In-
vitrogen). Quantitative reverse transcriptase PCR (qQRT-PCR) was per-
formed in duplicate using SYBR green PCR Master mix (Applied
Biosystems) and an iCycler iQ (Bio-Rad). Primers are in Table 1.

Statistical analysis

SigmaPlot 11 (Systat Software) was used for statistical analyses. All stud-
ies included =3 biological replicates. Measurements were made by ob-
servers blinded to conditions used for studies. Student’s ¢ test or one-way
ANOVA with post hoc multiple-comparisons tests (Dunn or Holm-
Sidak) were used for statistical analysis. Log-rank testing was performed
for analysis of the Kaplan—Meier survival curves. Data are plotted as
mean * SEM for all graphs. For all tests, p < 0.05 was considered
significant.
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Figure 1.

MET immunoreactivity was detected in a subset of myenteric plexus CGRP+ IPANs. A, MET immunoreactivity was detected in 34 == 6% of Hu(/D+ myenteric neurons of the adult

mouse small bowel. All MET+ cells expressed the pan-neuronal marker HuC/D. B, MET staining was absent from S100B+ enteric glia. C, D, MET was detected in human myenteric neurons using
colon cross sections. E, F, MET and RET are detected in mutually exclusive sets of neurons as confirmed by immunohistochemistry (E) and by using a RET-£GFP reporter mouse (F ). G-1,100% of MET +
neurons were CGRP+ and 50% of CGRP + neurons were MET +. J—L, MET was also found in 16 == 5% of calretinin+ cellsand 8 == 2% of MET+ cells are calretinin +. Arrows highlight a MET +
calretinin+ neuron. M—0, 12 = 0.1% of ChAT+ cells were MET+ and 8 = 0.1% of MET + neurons were ChAT+. P—R, There was no overlap between MET and NADPH diaphorase-stained nitric
oxide-producing neurons. S—U, HGF was detected in 43 = 11% of MET+ neurons and 100% of the HGF + neurons were MET+. V, In cross sections of E14.5 fetal bowel, HGF-IR was found in
mesenchymal cells surrounding developing ENS stained with TuJ1 (W). X, At E14.5, MET+ cells were present in the region of developing ENS as well as in gut epithelium and mesenchymal cells.
Scale bars in U applies to A, B, E-U. Scale bar in D applies to Cand D. Scale bar in X applies to V-X. N = 3 replicates/staining condition.

Table 2. Inmunohistochemical localization of MET and HGF in the adult mouse small-bowel myenteric plexus

Method Percentage of MET+ cells that are positive for the “second marker” tested Percentage of “second marker"-positive cells that are MET+
MET + HuC/D 100% of MET+ are Hu(/D+ 34 = 6% of Hu(/D+ are MET+

MET + $100B 0% of MET+ are S100B+ 0% of S100B+ are MET+

MET + CGRP 100% of MET+ are CGRP + 49.9 = 2% of CGRP + are MET+

MET + RET; MET + RET-EGFP 0% of MET+ are RET+ 0% of RET+ or EGFP+ are MET+

MET + HGF 43 = 11% of MET+ are HGF+ 100% of HGF + are MET+

MET + ChAT 7.6 = 0.1% of MET + are CHAT+ 12.3 £ 0.1% of ChAT + are MET+

MET + calretinin 8.3 = 2.3% of MET+ are Calretinin+ 16.4 = 5.2% of calretinin+ are MET+

MET + NADPHd 0% of MET are NADPHd + 0% of NADPHd + are MET+

Results servation, since ChAT is largely expressed in the same cell popu-

MET and HGF are expressed in a subset of adult enteric neurons

Immunohistochemical analysis of adult mouse small bowel dem-
onstrated that MET is present in 34 = 6% of HuC/D+ myenteric
neurons (Fig. 1A) and that all MET+ cells express the pan-
neuronal marker HuC/D+ (Table 2). As expected, MET immu-
noreactivity was not detected in S100B+ enteric glia (Fig. 1B).
MET-IR myenteric neurons were also detected in cross sections
of human colon, where MET was coexpressed with the neuronal
marker PGP9.5 (Fig. 1C,D). To determine which enteric neuron
types express MET, remaining studies used adult mouse small-
bowel whole-mount preparations to facilitate analysis of many
cells at once. Interestingly, RET and MET were detected in mu-
tually exclusive subsets of myenteric neurons as confirmed by
immunohistochemistry (Fig. 1E) and by using a RET-EGFP re-
porter mouse thought to faithfully reproduce normal Ret expres-
sion patterns (Fig. 1F). One hundred percent of MET + neurons
were CGRP-IR and 49.9 = 2.0% of CGRP+ neurons were MET +
(Fig. 1G=I). MET/calretinin staining demonstrated MET immu-
noreactivity in 16 £ 5% of calretinin+ cells and that 8 = 2% of
MET + cells are calretinin+ (Fig. 1J-L). Consistent with this ob-

lation, we also detected MET immunoreactivity in 12 = 0.1% of
ChAT-IR neurons and found that 8 * 0.1% of MET+ neurons
were ChAT+ (Fig. 1M-0). There was no overlap between MET
and NADPH diaphorase-stained nitric oxide-producing neurons
(Fig. 1P-R). Thus, MET appears to be primarily expressed in a
subset of adult CGRP-expressing cells that are likely to be IPANS.
To determine where the MET ligand HGF was expressed in adult
mouse bowel muscle layers, HGF/MET double-label immuno-
histochemistry was performed. Surprisingly, HGF was detected
in 43 = 11% of MET+ neurons and 100% of the HGF+ neurons
had MET immunoreactivity (Fig. 15-U). Finally, MET and HGF
were also detected in cross sections of E14.5 fetal bowel (Fig.
1V-X). HGF immunoreactivity (Fig. 1V) was prominent in the
mesenchymal cells that surround the developing ENS (seen with
TuJ1 in Fig. IW) and also was detected at lower levels in devel-
oping gut submucosa. MET immunoreactivity was present in the
region of the developing ENS, but prominent signal was also
detected in gut epithelium and in the mesenchymal cells sur-
rounding the ENS, as well as in developing enteric neurons (Fig.
1X). This fetal immunoreactivity for HGF and MET suggested
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HGF promoted neurogenesis and neurite growth in cultured £12.5 ENS precursor cells. A-C, E12.5 ENS precursors immunoselected with p75 "™ antibody were maintained in culture for

48 h in the presence of HGF plus 1 pg/ml GDNF before TuJ1 and/or MET immunohistochemistry and DAPI nuclear staining. All TuJ1-+ enteric neurons were MET-IR. D-F, M, N, HGF caused a
dose-dependent increase in Tul1-IR neuron number and neurite length. *p << 0.05, ANOVA with Dunn’s multiple-comparison test. F, M, N, MET blocking antibody (Aby) reduced TuJ1+ neuron
number and neurite length in surviving cells. Control (Ctrl) is 50 ng/ml HGF plus 1 pg/ml GDNF. **p << 0.01, Student’s t test. G-L, 0, P, When ENS precursors were grown in GDNF alone, the MEK
inhibitor PD98059 (PD) had no effect on neuron number or neurite length, but the PI-3Kinhibitor LY294002 (LY) reduced neuron number and neurite length. In contrast, in HGF (50 ng/ml) plus GDNF
(1 pg/ml)-treated cells, both MEK and PI-3K inhibition reduced neurite length (P), whereas only PI-3K inhibition reduced neuron number (0). *p << 0.01, ANOVA with Dunn’s multiple-comparison
test. Scale bar in Capplies to A—F. Scale bar in L applies to G-L. (N = 3 biological replicates/group; 12 individual wells/group).

that these proteins might have roles during development as well
as in the adult ENS.

HGF and MET signaling support fetal ENS neurogenesis and
neurite growth in vitro

To determine whether HGF/MET signaling could affect fetal ENS
development, we cultured ENS precursors from E12.5 bowel af-
ter immunoselection with p75™"® antibody. In these dissociated
cell cultures, we initially tried adding HGF at a range of concen-
trations (0—100 ng/ml) to Neurobasal media, with B-27 supple-
ment and L-glutamine, but in the absence of added GDNF, ENS
precursors grew poorly or died and there was no evidence that
HGF had any effect. When we tried including GDNF at com-
monly used concentrations (e.g., 50 or 100 ng/ml) in the media,
the trophic effects of GDNF were so strong that no additional
effect of HGF could be discerned. Recognizing that the concen-
trations of GDNF used commonly in culture are higher than the

ED50 for GDNF-induced ENS precursor proliferation (1.5 ng/
ml; Heuckeroth et al.,, 1998) and dramatically higher than the
dissociation constant value (Kd) for GDNF binding to GFRal
(30 pg/ml; Jing et al., 1996), we decided to titrate the GDNF to
low levels that might be more physiologic, yet support ENS pre-
cursor survival and permit effects of HGF to be observed. Under
these conditions, all TuJl1+ enteric neurons were also MET
antibody-IR (Fig. 2A—C). Remarkably, including GDNF at 1
pg/ml (50,000—100,000-fold less than is typically used in culture)
led to robust and dose-dependent effects of HGF (Fig. 2D, E).
ENS precursors were therefore immunoselected with p75~N"™® and
cultured atlow density with 1 pg/ml GDNF plus either 0, 1, 20, 50,
or 100 ng/ml HGF. In cultures containing only low levels of
GDNEF, there were very few TuJ1+ cells in culture after 48 h.
Increasing HGF doses led to progressively more TuJ1+ cells in
culture, with a sixfold increase in TuJ 1+ cells in cultures contain-
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ing 100 ng/ml HGF plus 1 pg/ml GDNF compared with cells
maintained in GDNF alone (Fig. 2M). Including HGF in culture
media also dramatically increased average neurite length com-
pared with 1 pg/ml GDNF alone (Fig. 2N). We confirmed that
the HGF effects are MET dependent using MET-blocking anti-
body and 50 ng/ml HGF (Fig. 2 E,F,M,N). Under these condi-
tions, the blocking antibody almost completely prevented HGF
effects on TuJ1+ cell number and neurite length.

Given the similarity of HGF and GDNF effects on the number
of TuJ1+ cells in culture and on neurite length, we hypothesized
that GDNF and HGF depend on the same signaling pathways to
support neurogenesis and neurite growth. We previously re-
ported, using rat enteric neurons, that GDNF-induced increases
in neuron number and neurite length depend on phosphatidyl-
inositol 3-kinase (PI3K), but not MEK signaling (Srinivasan et
al., 2005). Using the MEK inhibitor PD98059 and the PI3K in-
hibitor LY294002, we confirmed these findings in mice using
p75N"™ . immunoselected E12.5 ENS precursors in culture (Fig.
2G-I,0,P). Similar to the results obtained using GDNF alone at
50 ng/ml, the number of TuJ1+ cells present after 48 h in culture
with HGF (50 ng/ml) plus GDNF (1 pg/ml) was reduced by the
PI3K inhibitor, but not by the MEK inhibitor. In contrast, neurite
length was reduced by both PI3K and MEK inhibitors in HGF-
containing cultures (Fig. 2J-L), but only by the PI3K inhibitor in
the GDNF (50 ng/ml) cultures (Fig. 2P). This difference in down-
stream effectors suggests that HGF/MET-induced neurite growth
and GDNF/RET-induced neurite growth support ENS precur-
sors via partially overlapping signaling pathways.

HGF/MET signaling enhances ENS precursor differentiation into
neurons in vitro

The increase in TuJ1+ cells in dissociated ENS precursor cul-
tures in response to HGF plus 1 pg/ml of GDNF could occur
because of increased precursor proliferation, reduced cell
death, or enhanced differentiation of RET+/TuJ1— precur-
sors into RET+/TuJ1+ cells. To distinguish between these
possibilities, dissociated p75~"®-immunoselected cells from
E12.5 mouse bowel were cultured in media with GDNF (1
pg/ml) with and without HGF (50 ng/ml) for 48 h and then
stained with TuJ1, RET, and pH3 antibodies (Fig. 3A-H ). RET
is expressed in ENS precursors and differentiated neurons and
TuJ1 immunoreactivity is a marker of neuronal differentia-
tion, whereas pH3 identifies mitotic cells. While the total
number of RET+ cells was not significantly altered with HGF
(Fig. 3 I), the number of TuJ1+ cells and the proportion of
RET+ cells that are TuJ1-IR was increased by HGF (Fig.
3],K). HGF also decreased the number of RET+TuJ1— cells
in culture, and reduced the number of dividing (pH3+/
RET+) ENS precursors (Fig. 3L). Collectively these data sug-
gest that HGF increased the number of TuJ1+ enteric neurons
in vitro by enhancing ENS precursor differentiation into neu-
rons instead of through increased precursor proliferation or
survival.

HGF/MET signaling did not increase ENS precursor migration

in vitro

Since HGF and MET are expressed in fetal bowel when ENS
precursors migrate and have well known effects on migration of
other neuronal cell types (Giacobini et al., 2007; Garzotto et al.,
2008), we hypothesized that HGF/MET signaling might influence
ENS precursor migration. To test this hypothesis, E12.5 gut slices
were cultured on fibronectin-coated culture dishes and ENS pre-
cursors were allowed to migrate from the slice onto the culture
dish for 24 h. Addition of GDNF (100 ng/ml) to the media mark-
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edly increased the distance that ENS precursors migrated onto
the culture dish (Fig. 4). In contrast, HGF (50 or 100 ng/ml) did
not increase enteric neural crest-derived cell (ENCDC) migra-
tion onto the culture dish compared with no added factor, sug-
gesting that HGF may not be needed for ENCDC migration in
vivo.

MET inactivation within ENS precursors causes selective
defects in MET-expressing enteric neurons

Met '~ mice die in utero between E13.5 and E16.5 (Huh et al.,
2004). Therefore, to investigate the role of HGF/MET signaling in
the ENS in vivo, we bred mice with LoxP sites surrounding Met
exon 16 to WntlCre transgenic animals to generate Met cKO mice
(Met™: Wnt1Cre+). CRE-dependent recombination inactivates
MET by removing the intracellular kinase domain, but should
permit production of a truncated protein that includes the extra-
cellular and transmembrane domain. The Wnt1Cre transgene is
expressed in the developing neural tube and neural crest deriva-
tives, including the ENS, but not in other cells within the bowel.
Thus Met cKO mice should have selective loss of MET activity in
ENS precursors within the bowel without affecting other intesti-
nal cell lineages. Met cKO mice survive to adulthood and are born
at rates that are not statistically different from expected Mende-
lian ratios (p > 0.99, x? test).

To test the hypothesis that Met mutations might slow migra-
tion of ENS precursors down the fetal bowel, we evaluated ENS
structure in Met cKO and control littermates (Met WT or CRE
deficient) using TuJ1 and RET antibodies. Consistent with in
vitro migration studies, control and Met cKO mice had ENCDCs
in the entire small bowel and half the colon at E12.5 and there
were no obvious differences in ENS structure (data not shown).
We then examined the adult mouse myenteric plexus to test the
hypothesis that HGF/MET signaling influences the development
of MET-expressing CGRP+ enteric neurons. Using an antibody
to the MET extracellular domain to stain the myenteric plexus,
we found that MET+ neuronal cell bodies are easy to identify in
Met cKO mice and that these cells were normal in size (Fig. 5A)
and abundance (Fig. 5B). In contrast, MET-IR interganglionic
and intraganglionic neurites are very difficult to see in Met cKO
mice compared with control animals (Fig. 5C,D). To determine
whether this staining pattern reflects a difference in neurite
length for myenteric plexus MET-expressing neurons, we
performed Dil labeling combined with MET immunohistochem-
istry. Dil paste on a dissecting pin was inserted into fixed small-
bowel muscle layers containing the myenteric plexus and tissue
was incubated for 3 weeks. Dil taken up by axons undergoes
passive retrograde diffusion through lipid membranes to label
cell bodies away from the pin site (Fig. 5E—]). Costaining of Dil-
labeled samples with MET antibody revealed that the number of
Dil and MET-double-positive cell bodies was dramatically re-
duced in Met cKO mice compared with controls, especially as the
distance from the Dil-labeling site increased (Fig. 5K—N). In con-
trast, the average number of MET-positive cell bodies was not
different at varying distances away from the pin site (Fig. 5M, O).
Furthermore, the number of MET-negative neuron cell bodies
labeled by Dil did not significantly differ in WT and Met ¢cKO
mice (data not shown). These data suggest that neurites in
MET-IR myenteric neurons of Met cKO mice are shorter than in
WT mice.

Functional analysis of gut motility

To test the hypothesis that HGF/MET signaling is important for
intestinal motility, the peristaltic response to stretch or to me-
chanical stimulation of the mucosal lining was measured in WT
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HGF/MET signaling enhanced ENS precursor differentiation into neurons in vitro. A~H, E12.5 ENS precursors were maintained in culture after p75 "™ immunoselection for 2 d in the

presence or absence of 50 ng/ml HGF before immunohistochemistry using RET (4, B), TuJ1 (C, D), and pH3 (E, F) antibodies as well as DAPI nuclear staining (A—H ). G, H, Merged images. /=K, While
the total number of RET+ cells was not altered by HGF (/), the total number of TuJ1+ neurons (/) and the percentage of RET+ cells that were TuJ1+ (K) increased with HGF treatment. L, The
number of dividing precursor cells (pH3 and RET double positive) decreased with HGF treatment, suggesting that HGF increased neuronal differentiation and decreased proliferation. White arrows,
Nonmitotic RET+ pH3— ENS precursors. Yellow arrow, Mitotic RET+PH3+ ENS precursors. White arrowhead, RET+TuJ1+ neurons. Scale bar in G applies to all images (N = 3 biological

replicates/group; 12 individual wells/group; *p << 0.01, Student’s  test).

and Met cKO mice using an oxygenated three-compartment or-
gan bath. These studies showed that the ascending and descend-
ing components of the peristaltic reflex were strongly blunted in
Met™"; WntICre+ mice in response to gentle brushing of the
mucosa (Fig. 6 A, B,E). In contrast, both components were similar
in WT and Met cKO mice when the peristaltic reflex was elicited
by muscle stretch (Fig. 6C,D). These data suggest that Met muta-
tions cause a selective defect in one of the sensory signaling mo-
dalities capable of initiating peristalsis (i.e., the reflex elicited by
mucosal stimulation). Despite this defined defect in the peristal-
tic reflex, whole gastrointestinal transit as measured using car-
mine dye (Fig. 6F), gastric emptying and small-intestine transit
measured by FITC-dextran gavage (Fig. 6G), and colonic motility

measured by expulsion of a glass bead from the rectum (Fig. 6H)
were not altered in Met cKO mice compared with controls. These
data suggest that intact sensory response to villus deformation is
not required for normal transit of luminal contents through the
bowel.

HGF/MET signaling and bowel injury

HGF/MET signaling potently reduces bowel injury in response to
the toxins DSS and 2,4,6-trinitrobenzene sulfonic acid in rodent
models and supports epithelial cell proliferation (Tahara et al.,
2003; Mukoyama et al., 2005; Numata et al., 2005; Oh et al., 2005;
Hanawa et al., 2006; Kanbe et al., 2006; Setoyama et al., 2011). We
hypothesized that these effects might be mediated by the newly
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Figure4. HGF/METsignaling did notincrease ENS precursor migration in culture. A-C, E12.5
qut slices were cultured 24 h on fibronectin-coated dishes with no added factor, HGF, or GDNF
before staining for RET and Tu) 1. A, ENCDCs migrate from the gut slice onto the culture dish even
without any added factors. B, HGF did not increase the distance that ENCDCs migrated from the
edge of the gut slice. C, GDNF markedly increased the distance ENCDCs migrate from the edge of
the gutslice. D, Quantitative data (no added factor, 15 slices; 50 ng/mI HGF, 14 slices; 100 ng/ml
HGF, 19 slices; 100 ng/ml GDNF, 30 slices; N = 3 independent experiments). *p << 0.001 for
GDNF versus no added factor, ANOVA with Dunn’s multiple-comparison test.

discovered MET-expressing neurons. To test this hypothesis, we
treated Met™"; Wnt1Cre+ mice or control littermate animals
with 2.5% DSS in drinking water and analyzed the colon after 2
weeks of DSS treatment. Met””; Wnt1Cre+ mice had signifi-
cantly more mucosal damage than control animals after 14 d of
DSS treatment (Fig. 7A—F) and higher death rates (Fig. 7G). Be-
cause increased damage in specific models, including DSS, is
linked to diminished epithelial proliferation, we examined intes-
tinal stem and progenitor cell proliferation and found that Met
cKO mice had reduced proliferation compared with control ani-
mals after 7 d of DSS (Fig. 7H-J). Collectively these data suggest
that HGF/MET signaling protects the intestinal mucosa from
DSS-induced injury through the activity of MET-expressing en-
teric neurons since the only cells in the bowel that express CRE in
this model are in the ENS.

GDNF/RET signaling increased Met and Etv5 mRNA in cultured
ENS precursors, but MET protein levels in vivo do not depend on
Etv5/Etv4

The requirement for very small amounts of GDNF to detect any
HGEF effects on neurite growth and neuron numbers is striking,
especially since MET and RET are closely related tyrosine kinase
receptors. One possible explanation is that GDNF/RET signaling
is needed to induce Met expression in cultured ENS precursors as
occurs in the kidney and motor neurons via the Etv4 (Pea3) and
Etv5 (Erm) transcription factors (Haase et al., 2002; Livet et al.,
2002; Lu et al., 2009; Kuure et al., 2010). To test this hypothesis,
we cultured E12.5 immunoselected ENS precursors for 18 h with
or without 1 pg/ml GDNF. Although extended culture without
GDNF results in death of ENS precursors, there were many
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healthy-appearing ENS precursors in the GDNF-deprived cul-
tures and in cultures containing 1 pg/ml of GDNF when the
mRNA was collected after 18 h in culture. Relative mRNA levels
for Etv4, Etv5, and Met were analyzed by real-time qRT-PCR. We
found that compared with cells cultured without GDNF, ENS
precursors grown with 1 pg/ml GDNF had an eightfold increase
in Etv5 mRNA, a 230-fold increase in Mer mRNA, but no change
in Etv4 mRNA. These data suggest that low levels of GDNF in-
duced Met expression, allowing HGF to affect ENS precursor
development (Fig. 8A, B).

To further explore the role of ETV5 signaling in MET expres-
sion in vivo, we examined MET expression in the ENS of Ery5M™M
animals, as well as in Etv4~/~; Etv5“““"T compound mutants
(Lu et al., 2009). Etv5™™M allele is a weak allele that permits sur-
vival to adulthood. In contrast, the Etv5" allele used in the
Etvd™'~; Etv5"““"T mice causes early fetal lethality, prohibiting
analysis of the Etv5"“““ ENS. We found that the ENS of
Etv5™Mand Etvd™'~; Etv5"“’"T compound mutants was grossly
normal, with MET-IR neuron density comparable to that of WT
littermates (Fig. 8C—H). In contrast, in the developing kidney,
where GDNF also induces Met expression, the Etvd
Etv5"“"T compound mutants fail to express Met in the ureteric
bud, causing serious defects in renal development (Lu et al.,
2009). This suggests that ETV4 and ETVS5 are dispensable for
MET expression in enteric neurons or that at single allele of Efv5
is adequate for MET expression in the ENS.

Discussion

HGF enhanced fetal enteric neuron differentiation and neurite
growth in vitro, but did not affect ENS precursor migration from
gut slices or bowel colonization by ENS precursors in vivo. In
adults, MET immunoreactivity was found in a subset CGRP+
myenteric neurons thought to be IPANs (Qu et al., 2008).
MET-IR neuron density was normal in Met cKO mice, but
MET-IR neurites were short and sparse. Met cKO mice also had
reduced peristalsis after mucosal deformation and increased mu-
cosal injury after DSS exposure. These data suggest HGF and
MET support a subset of CGRP-expressing [IPANs that regulate
intestinal motility and epithelial function.

HGF, MET, GDNF, and RET

MET influences many cellular functions (Trusolino et al., 2010),
including neuron survival (spinal motor, sympathetic, sensory, and
retinal neurons; Ebens et al., 1996; Maina et al., 1997; Thompson et
al., 2004; Lamballe et al., 2011; Tonges et al., 2011), differentiation
(sensory and hippocampal neurons; Maina et al., 1997; Lim and
Walikonis, 2008), axon outgrowth and guidance (spinal motor,
gonadotropin-releasing hormone (GNRH), sensory, and retinal
neurons; Ebens et al., 1996; Maina et al., 1997; Giacobini et al., 2007;
Tonges et al., 2011), precursor migration (cortical and GNRH neu-
rons; Giacobini et al., 2007; Garzotto et al., 2008), and synaptic plas-
ticity (hippocampal neurons; Akimoto et al., 2004). Our data reveal
previously unsuspected roles for MET and HGF in the ENS, but
there is more to learn. One intriguing question is whether HGF in
some MET-IR neurons acts as a chemoattractant to support forma-
tion of the extensive network of IPAN-to-IPAN connections (Fur-
ness et al., 2004a). HGF is chemoattractive for spinal motor axons
(Ebens et al., 1996), but has autocrine roles in sympathetic neurons
(Maina et al., 1998) and may have similar ENS functions. Another
interesting finding was that HGF effects required small amounts of
GDNF, which increased Met and Etv5 mRNA (Lu et al., 2009;
Costantini, 2010). In kidney, Met was absent in Etv4~/~; Etv5"#/"T
mice, but MET was readily detected in myenteric neurons, suggest-
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Figure 5.  MET deletion within ENS precursors caused selective defects in MET-expressing enteric neurons in adult mice. 4, B,
The myenteric plexus of mice lacking functional MET receptors in the ENS (Met™"; Wnt1Cre+) contained MET+ neuronal cell
bodies of normal size and abundance (N = 3 mice of each genotype/condition). C, D, Met™: Wnt1Cre+ mice had few intergan-
glionicand intraganglionic MET-IR neurites (N = 6 mice of each genotype/condition). E-J, Double-labeling for myenteric neurons
combining Dil labeling and MET immunohistochemistry. Cells shown were two 20X fields away from the Dil application site.
Yellow arrow, Dil + MET+ cell body. White arrow, Dil+ MET— cell body. White arrowheads, Dil — MET+ cell bodies (N = 4
mice of each genotype; N > 8 distal small-bowel Dil-labeled regions/genotype). K, Schematic for analysis of Dil/MET-labeled
samples: tissue pieces were divided intoa 5 X 7 grid of 20 X fields centered on the pin insertion site. The grid was additionally
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ing single Etv5 alleles may support ENS Met
expression. Unfortunately, Etv5““"*“ mice
die early (Lu et al., 2009) and milder
Etv5™™ mutations did not affect MET-IR
myenteric neuron density, so ETV5 func-
tion in the ENS remains uncertain. Finally,
MET and RET appear in nonoverlapping
adult myenteric neuron populations, high-
lighting the need to define mechanisms re-
stricting receptor tyrosine kinases (e.g.,
RET, NTRK3, and MET) to specific enteric
neuron subtypes (Chalazonitis et al., 1994,
2001; Schuchardt et al., 1994; Heuckeroth et
al., 1999; Uesaka et al., 2007, 2008).

HGF/MET and ENS development

The requirement for 1 pg/ml GDNF to ob-
serve HGF effects on ENS precursors is remi-
niscent of synergistic HGF and NGF effects in
DRG. HGF alone did not support DRG neu-
ron survival or axon outgrowth, but HGF
enhanced survival, differentiation, and axono-
genesis with NGF present (Maina et al.,, 1997,
1998). In the ENS, low GDNF levels maintain
cells as progenitors (Uesaka et al., 2013) and
may support survival while enhancing HGF
responsiveness. In contrast, high GDNF trig-
gers neuronal differentiation and migration,
masking HGF effects. GDNF concentrations
in vivo are unknown but are probably below
the 50-100 ng/ml commonly used in vitro,
since increased and reduced GDNF alters en-
teric neuron number (Gianino et al., 2003;
Wangetal.,2010) and the Kd for GDNF bind-
ing to GFRal is only 30 pg/ml (Jing et al,
1996). These observations suggest that it may
be appropriate to evaluate how other factors
affect ENS precursors in the presence of low
concentrations of GDNF instead of the levels
typically used in culture.

HGF/MET and IPAN subtypes

Functional data suggest IPANSs are heter-
ogeneous (Clerc and Furness, 2004; Fur-
ness et al.,, 2004a; Furness, 2006a). For
example, stretch opens IPAN gadol-
inium-insensitive mechanosensitive ion
channels (Kunze et al., 1999), whereas
mucosal deformation triggers serotonin
and ATP release from enteroendocrine
cells to activate IPAN 5HT,/5HT, or P2X
receptors (Grider and Jin, 1994; Pan and

<«

subdivided into three zones of varying distances from the pin.
L, M, Heat map representations of the average number of
MET+ Dil+ cells (L) and total MET+ cells (M) in each 20X
field of the grid. Dark red > light red > blue for the number of
cellsin each region. N, The number of Dil + MET+ cell bodies
was dramatically reduced in Met cKO mice compared with con-
trols in Zones 1 and 2. *p << 0.02 (Student’s ¢ test). 0, The
number of total MET+ cell bodies did not differ at varying
distances from the pin site.
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Figure6.  MET deletion within ENS precursors resulted in selective defects in the sensory arm of the peristaltic response. 4, B, E, Mice lacking functional MET receptors in the ENS (Met™"; Wnt1
(re+) had an abnormal peristaltic reflex in response to mechanical stimulation of the villi, as evidenced by a severely blunted ascending contraction () and descending relaxation (B). C, D, In
contrast, the peristaltic reflex elicited by circular muscle stretch had normal ascending contraction (€) and descending relaxation (D) in Met™":-Wnt1 Cre+ mice, suggesting a selective sensory defect
(N = 3 mice/genotype; *p < 0.01, Student’s ttest). F, Whole gastrointestinal transit as measured by the time needed to pass orally gavage-fed carmine dye in stool was not altered in Met™":Wnt1
(re+ mice (N = 8 Met cKO and 7 control mice). G, Small-bowel transit as measured by determining the geometric center of FITC-dextran within the bowel 90 min following oral gavage was not
altered in Met™":Wnt1 Cre+ mice (N = 4 Met cKO and 4 control mice). H, Colonic transit, as measured by the time taken to expel a bead placed 2 cm into the distal colon was not altered in
Met"":-Wnt1 (re+ mice (N = 8 Met cK0 and 7 control mice).
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Figure7.

MET inactivation in ENS precursors increased mucosal injury in response to DSS treatment. A—F, Met™"; Wnt1Cre+ mice and Met™": Wnt1Cre control animals were treated with 2.5%

DSS in drinking water for 14 d and then examined using a dissecting microscope (4, B) or after paraffin sectioning and hematoxylin and eosin staining (C, D). E, F, Quantitative analysis of ulcer area
in the descending colon and ulcer length in the rectum demonstrated increased ulcers in Met”": Wnt1Cre+ mice compared with controls. *p << 0.01, Student’s ¢ test. G, Kaplan—Meier analysis
demonstrated that DSS-treated Met™": Wnt1Cre+ mice had higher death rates than controls (N = 8 Met ck0 and 11 control mice). p << 0.05, log-rank test. H-J, BrdU labeling after 7 d of
DSS treatment showed reduced colonic epithelial cell proliferation within crypts of Met”; Wnt1Cre mice compared with control animals. *p << 0.01, Student's ttest. Yellow arrows: ulcerated regions

(N'= 5 Met cK0 and 4 control animals/group for ulcer analysis and BrdU labeling).

Gershon, 2000; Raybould et al., 2004; Patel, 2014). These IPANs
all express CGRP. However, only 49% of CGRP+ neurons are
MET+. MET signaling is not needed for survival of MET-IR
neurons, but Met cKO mice have impaired peristalsis in vitro after
mucosal stroking consistent with a functional defect in a subset of
IPANS. In contrast, bowel stretch-responsive IPANS are either
MET-negative or do not require MET for function. It is not clear
whether the selective functional defect results from reduced neu-
rite growth in MET + neurons or from reduced function. In DRG
neurons, for example, MET enhances nociceptor peptidergic dif-
ferentiation (Gascon et al., 2010). Nonetheless, in contrast to in
vitro results, whole-bowel transit, gastric emptying, small-bowel
transit, and colonic-bead expulsion were normal in vivo in Met
cKO mice. These data add to recent studies suggesting that mu-
cosal deformation-induced peristalsis is not required for normal

transit through the bowel, at least when stretch response is intact
(Lietal., 2011; Heredia et al., 2013).

HGF, the ENS, and intestinal injury

HGF’s ability to reduce bowel injury is fascinating (Tahara et al.,
2003; Arthur et al., 2004; Mukoyama et al., 2005; Numata et al.,
2005; Oh et al., 2005; Ohda et al., 2005; Hanawa et al., 2006;
Kanbe et al., 2006; Gong, 2008; Setoyama et al., 2011). Remark-
ably, Met cKO mice had increased mucosal damage, reduced ep-
ithelial stem and progenitor cell proliferation in response to
injury, and increased mortality compared with controls after DSS
treatment. Although gut epithelial cells express Mer (Prat et al.,
1991), Met”" Wnt1Cre mice do not express CRE in epithelium
(Danielian et al., 1998), suggesting that MET effects on epithelial
proliferation after DSS are not cell-autonomous.
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Figure 8.  GDNF/RET signaling increased Met and Etv5 mRNA in cultured ENS precursors, but MET protein immunoreactivity appeared normal in mice with Etv4 and Etv5 mutations. A, ENS
precursors grown with T pg/ml GDNF had an eightfold increase in £tv5 mRNA, but not in £tv4 mRNA when compared with precursors cultured without GDNF. B, ENS precursors grown with 1 pg/ml
GDNF also had a 230-fold increase in Met mRNA (N = 3 biological replicates). C~H, The myenteric plexus of adult Etv5™* mice and P14 Etv4~/~; Etv5°“™T compound mutants appeared grossly
normal with no differences in MET-IR neuron density (V = 3 mice for each group). *p << 0.01 (Student’s ¢ test).

Many mechanisms might underlie our observations. One
hypothesis is that impaired injury response results from re-
duced CGRP release from MET + enteric neurons. CGRP mu-
tations increased colonic damage in DSS-treated mice
(Thompson et al., 2008). Furthermore, CGRP is a potent va-
sodilator (Pawlik et al., 2000) and adequate mucosal blood
flow may facilitate injured bowel repair. CGRP also supports
bowel epithelial proliferation via mast cells and fibroblasts
producing transforming growth factor o (Hoffmann et al.,
2010) and by regulating gene expression in macrophages
(Baliu-Piqué et al., 2014) that influence the set point of intes-
tinal epithelial proliferation (Baliu-Piqué et al., 2014; Sun et
al., 2015). MET+ neurons might also support epithelial pro-
liferation via acetylcholine release from ChAT+MET+ neu-
rons, since acetylcholine enhances epithelial growth (Tutton,
1975; Lundgren et al., 2011; Gross et al., 2012).

Consistent with ENS support for bowel epithelium, enteric
neurons express the receptor for glucagon-like peptide 2, a
potent epithelial mitogen (Bjerknes and Cheng, 2001; Guan et
al., 2006), and neuronal serotonin increases epithelial prolif-
eration (Gross et al., 2012). However, myenteric plexus abla-
tion increases epithelial cell proliferation (Zucoloto et al.,
1988; Holle, 1991; Hadzijahic et al., 1993; Holle et al., 2003)
and hypomorphic Ret"’~ mice (Gianino et al., 2003) had in-

creased epithelial proliferation after small-bowel resection
(Hitch et al., 2012). These data suggest distinct enteric neuron
subtypes enhance or inhibit intestinal epithelial proliferation,
but it is unclear how these processes are integrated.

We also note that CRE-induced MET mutations are not
restricted to the ENS in Met cKO mice (Danielian et al., 1998).
MET should be disrupted in CGRP-expressing DRG neurons
(Gascon et al., 2010) that might normally enhance mucosal
repair (Takami et al., 2009; Engel et al., 2011, 2012; Lee et al.,
2012). MET inactivation in vagal neurons (Freem et al., 2010)
could also increase severity of DSS-induced injury (Mazelin et
al., 1999; Ghia et al., 2006, 2007; Van Der Zanden et al., 2009)
since some vagal nuclei express Met (Caton et al., 2000; Wu
and Levitt, 2013). Distinguishing between these possibilities is
not straightforward, but these data fit with an emerging liter-
ature suggesting neuronal activity regulates intestinal epithe-
lial progenitor proliferation and barrier function (Bjerknes
and Cheng, 2001; Nezami and Srinivasan, 2010; Hitch et al,,
2012; Sharkey and Savidge, 2014).

It is tempting to speculate that neurogenic control under-
lies high rates of enterocolitis in children with Hirschsprung
disease, a birth defect where the ENS is absent from distal
bowel (Frykman and Short, 2012; Heuckeroth, 2013). ENS
damage in inflammatory bowel disease or necrotizing entero-
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colitis may also perpetuate bowel inflammation (Margolis and
Gershon, 2009; Zhou et al., 2013). Indeed, many ENS trans-
mitters affect bowel inflammation and injury, including
CGRP (Eysselein et al., 1992; Wang et al., 2006; Ramachan-
dran et al., 2013), serotonin (Bischoff et al., 2009; Gershon,
2012), neuropeptide Y, VIP (Chandrasekharan et al., 2013),
and substance P (Landau et al., 2007), as do enteric glia (Bush
etal., 1998; Savidge et al., 2007), enteric neuron density (Mar-
golis et al., 2011), and toll-like receptor 2 (Brun et al., 2013).
Our data reinforce this literature and suggest that new thera-
peutic strategies to treat or prevent intestinal motility or bowel
inflammatory diseases may be targeted to the nervous system
instead of the immune system.
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