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The posterior parietal cortex (PPC) is
uniquely suited to coordinate goal-related
action because of its rich connectivity
with frontal motor regions and posterior
sensory regions. Among other functions,
PPC is essential for computing sensorimo-
tor transformations that require perceptual
representations to guide goal-related motor
behavior. To achieve this, specialized areas
within PPC are thought to integrate distrib-
uted multimodal sensory inputs into cohe-
sive spatial maps of the workspace (Filimon,
2010). From these maps, PPC may encode
multiple flexible representations of a move-
ment plan to be further processed by frontal
motor areas (Sabes, 2011).

Visuomotor adaptation paradigms can
help decipher the role of PPC in sensori-
motor transformations by experimentally
manipulating the relationship between vi-
sual and movement space. In standard
tasks, visual feedback is transiently dis-
torted (e.g., rotated by a fixed angle) to
induce novel mappings between motor
plans and perceptual feedback. After a few
misreaches, subjects reliably adapt to the
distorted feedback to regain high accu-
racy. Once the distortion is removed, af-
tereffects on subsequent reaches suggest
that subjects have indeed encoded a new
or altered visuomotor map (Wolpert et al.,

2011). Human and nonhuman primate re-
search has implicated PPC as a key player
within a larger network of regions that facil-
itate this visuomotor adaptation. However,
isolating the specific role of PPC activity is
particularly challenging because activity
may correspond to newly learned mappings
or to multiple pre-existing sensorimotor
mappings.

In a recent issue of The Journal of Neu-
roscience, Haar et al. (2015) addressed this
question by examining whole-brain direc-
tional selectivity with multivariate pattern
analysis (MVPA) of fMRI data collected
while human subjects performed a visuo-
motor adaption task. In contrast to tradi-
tional univariate analyses that average
activity across relatively large brain regions,
MVPA offers a refined framework that can
reveal information represented by fine
patterns of spatial activation. This allows
researchers to decode cognitive represen-
tations from brain activity and to dissoci-
ate between neural mappings that would
otherwise show the same overall level of
activation. The ubiquity of user-friendly
software packages for MVPA has provided
researchers with a new lens through which
to examine their fMRI data (Haxby, 2012).
Importantly, these analyses yield nuanced
distinctions that are fundamentally dif-
ferent from standard statistical approaches
based on the general linear model and thus
warrant careful consideration in their
interpretation.

Haar et al. (2015) implemented a slow
event-related fMRI design in which par-

ticipants made out-and-back hand move-
ments to one of four visual targets. All
movements were performed on a small
MRI-compatible tablet that provided the
participants online cursor feedback and
recorded precise movement kinematics.
The visual information varied across three
sequential phases of trials. In the baseline
phase, cursor feedback matched the actual
movement direction. In the critical rota-
tion phase, a 45° counterclockwise rota-
tion was introduced to separate the visual
target and cursor feedback from the
movement. A final “washout” phase re-
moved the rotation so that the visual feed-
back again matched the actual movement.

Using complementary region-of-interest
and searchlight analyses, Haar et al. (2015)
tested whether movement direction could
be decoded from single-trial multivoxel re-
sponse patterns. For each condition, they
trained a classifier to predict direction on all
but one of the trials and then used it to
predict the direction of the omitted trial.
Overall classification accuracy was calcu-
lated as the percentage of correctly decoded
directions over all trials. In all conditions,
the authors found significant above-chance
classification of movement direction in
early visual cortex (Vis), dorsal premotor
cortex (PMd), supplementary motor area
(SMA), primary motor cortex (M1), ante-
rior cerebellum (aCB), and both the supe-
rior parieto-occipital cortex (SPOC) and
medial intraparietal sulcus (mIPS) within
PPC.
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Although these results identify regions
whose activity shows direction specificity
during visuomotor tasks, they do not reveal
what aspects of the task drive this specificity.
Accurate within-condition decoding could
have resulted from a classifier using any
combination of visual (target location/
online cursor feedback), motor (movement
vector/goal location), or proprioceptive
(arm position) task features. More strin-
gent generalization (cross-classification)
tests that probe whether local activity pat-
terns elicited by one context generalize to
other contexts can help distinguish which
task features steer classification. This ap-
proach has been particularly fruitful in
discovering the underlying components
of movement from fMRI response pat-
terns (Eisenberg et al., 2011; Ogawa and
Inui, 2012; Barany et al., 2014; Krasovsky
et al., 2014). The authors’ generalization
approach consisted of training a classifier
to dissociate movement direction in base-
line trials and using that classifier to pre-
dict direction on the rotated trials in two
independent generalization tests. The classi-
fier was “correct” if it predicted (1) the ro-
tated visual direction or (2) the actual
movement direction. They found general-
ization in Vis and SPOC to the rotated visual
direction and generalization in PMd, SMA,
M1, and aCB to the movement direction.
These results align closely with the proposed
functional roles for these regions in visually
guided movement (Andersen and Cui,
2009; Gallivan and Culham, 2015). mIPS
was the only region to exhibit accurate
within-condition classification without also
generalizing from the baseline to rotated
trials.

Since the task used by Haar et al. (2015)
involved four possible targets, the nature of
the misclassifications could potentially re-
veal important characteristics about neural
coding within a region, as any “incorrect”
predictions might be systematically biased.
For example, on each rotated trial, the clas-
sifier might frequently predict a target that is
45° from the visual direction but is in line
with (0° from) the movement direction.
Plotting the classifier’s predictions as a func-
tion of distance from the visual or motor
directions yielded tuning curve-like histo-
grams [Haar et al. (2015), their Fig. 6B]. As-
sessing the peak of these distributions
allowed the authors to infer whether the
classifier was relying more on visual or mo-
tor information. In Vis and SPOC, the clas-
sifier most frequently predicted the visual
direction, whereas for PMd, SMA, M1, and
aCB, the classifier most frequently predicted

the motor direction. Consistent with the
generalization analysis, mIPS did not show
significant tuning, although the two most
frequently predicted directions were the ro-
tated visual and the actual motor directions.

Haar et al. (2015) suggested that the
lack of generalization in mIPS (a null result)
provides evidence that mIPS stores new
visuomotor mappings as a result of adapta-
tion. Although this interpretation is in line
with proposed contributions of PPC to
visuomotor adaptation, there are equally
plausible alternative explanations to con-
sider given the limitations of MVPA in fMRI
and the known functional organization of
PPC. MVPA often cannot accurately decode
intermixed neural representations within
one region and, likewise, within a particular
voxel (Gallivan and Culham, 2015). Thus,
MVPA would not be able to detect or distin-
guish between two pre-existing mappings
that encode conflicting information during
the rotation phase. Suppose there are two
separate neural populations in mIPS: one
coding the visual target (or online feedback)
and one coding the movement direction to
the target (or proprioceptive estimates). A
classifier trained on baseline trials in which
the directions for these representations are
congruent could make use of any weighted
combination of the neural populations to
accurately decode the direction of baseline
or washout trials. On rotated trials, the neu-
ral populations represent two different di-
rections (45° apart), but the classifier still
operates under the assumption that they are
identical. Each generalization prediction
may therefore be arbitrarily driven toward
either the visual or movement direction
based on which of the two neural popula-
tions contributed slightly more to the classi-
fier’s model for that particular trial. This
could lead to the tuning curve results seen in
mIPS, where both the rotated visual and ac-
tual movement directions exhibited above-
chance, but not significant, tuning.

Null classification in mIPS might also
be related to the feedback control mecha-
nisms and contextual modulation of sen-
sory feedback used to improve motor
performance (Diedrichsen et al., 2005). In
this case, the feedback control necessary to
drive movements in the rotation condition
would be different than in the baseline con-
dition, leading to chance generalization.

A third potential source for the observed
null classification result in mIPS on rotated
trials is that the relative neural response pat-
terns for visual and motor features vary
across the time course of a single trial (Shen
and Alexander, 1997). Given the temporal
resolution of the BOLD signal, this would be
difficult to detect without explicitly separat-

ing each phase of a trial in the experimental
design. Using a similar visuomotor rotation
paradigm, Ogawa and Inui (2012) separated
the target, delay, and execution stages. In
this work, mIPS was found to encode move-
ment features, but only before the execution
stage. Area V6A (i.e., SPOC) encoded visual
features during target presentation, as in the
study by Haar et al. (2015), but switched to
encoding the movement features during the
delay period.

It is important to note that none of
these alternative hypotheses necessitate a
fundamental change in how neural popu-
lations respond during visuomotor adap-
tation relative to baseline. Rather, null
classification may be simply attributable
to the classifier’s failure to detect invariant
features between the baseline and rotated
conditions.

Haar et al. (2015) have convincingly
shown that mIPS, in addition to multiple
brain regions along the motor hierarchy,
can dissociate between reaches to differ-
ent directions and that coding in mIPS is
not specific to only the visual or motor com-
ponents of the task. A key avenue for future
research is to resolve the extent to which
PPC encodes new visuomotor mappings
relative to pre-existing maps after adapta-
tion to altered feedback. Other multivariate
approaches, such as representational simi-
larity analysis and forward encoding mod-
els, can detect mixed representations within
regions and may be useful to assess specific
models of underlying neural representa-
tions within PPC (Eisenberg et al., 2011;
Serences and Saproo, 2012). Future work
using these techniques will help us gain a
deeper understanding of how the human
motor system adapts to an ever-changing
environment.
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