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Human Amygdala Represents the Complete Spectrum of
Subjective Valence
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Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the
hedonic potency of odor stimuli and the amygdala’s anatomical proximity to the peripheral olfactory system, we combined high-
resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human
subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity
analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimen-
sional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial
valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore
the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability
of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the
pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence
affective boundaries for guiding behavior.
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Introduction
An important function of the brain is to extract hedonic value, or
valence, from external stimuli, as a key first step in guiding emo-
tional responses, decision-making, and behaviors. Extensive an-

imal research has implicated the amygdala in neural coding of
both positive (Nishijo et al., 1988; Holland and Gallagher, 1999;
Baxter et al., 2000; Setlow et al., 2002; Sugase-Miyamoto and
Richmond, 2005; Shabel and Janak, 2009) and negative (Paton et
al., 2006; Belova et al., 2008) stimulus values, and human imaging
studies have shown that the amygdala responds to both pleasant
and unpleasant emotional valence (Hamann et al., 1999; Costa-
freda et al., 2008; Sergerie et al., 2008; for review, see Zald, 2003;
Phelps and LeDoux, 2005; Barrett and Wager, 2006; Ball et al.,
2009). Interestingly, despite the well-accepted role of the
amygdala in stimulus processing of emotional content, the form
in which this information is encoded in the human brain remains
poorly understood.

Whether pleasant and unpleasant valence is differentially rep-
resented in the human amygdala has not been definitively estab-
lished (Ball et al., 2009; Lindquist et al., 2015). The absence of
valence-related differences in neuroimaging data likely reflects
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Significance Statement

Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents
the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that
pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence
extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum
between pleasant and unpleasant poles, offers a robust mechanism by which context, expectation, and experience could alter the
set-point for valence-based behavior. Finally, identification of spatial and temporal differentiation of valence in amygdala may
shed new insights into individual differences in emotional responding, with potential relevance for affective disorders.
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the limitations of conventional functional imaging methods. For
example, if regional representations of positive and negative va-
lence were interspersed and overlapping within the amygdala,
univariate fMRI techniques would be insensitive to teasing apart
these unique populations due to spatial smoothing and normal-
ization (Norman et al., 2006; Mur et al., 2009). Furthermore, if
positive and negative valence evoked temporally distinct time-
series profiles, then conventional imaging approaches that rely
on hemodynamic convolution models might reduce sensitivity to
temporal differences. Thus, although human neuroimaging re-
search has yielded important insights into where negative and
positive valences are coded in the brain, important questions
remain unanswered: How is the valence of a stimulus uniquely
represented in the amygdala if it is responsive to both positive and
negative valence? Do amygdala representations of valence map
onto self-reported experience of valence?

Considering that the vast number of stimuli in the environ-
ment are associated with a potentially limitless and finely graded
range of valences, it would be highly inefficient for the brain to
represent unique valence content for each and every stimulus. A
more plausible strategy is that neuronal populations in the
amygdala support a second-order representation of valence,
based on stimulus similarity within an abstract space ranging
from unpleasant to pleasant (Chikazoe et al., 2014). Behaviorally,
it is well established that emotional experience is characterized
along a valence dimension ranging from unpleasant to pleasant
and an arousal dimension ranging from low to high (Russell,
1980; Lang et al., 1993). It is also evident that unpleasant (vs
pleasant) stimuli are perceived as being more potent and percep-
tually more distinct from each other (Kahneman and Tversky,
1979; Rozin and Royzman, 2001). Finally, behavioral, physiolog-
ical, and neural data indicate that the temporal dynamics of an
emotional response can vary depending on both stimulus fea-
tures and individual differences (Davidson, 1998; Blackford et al.,
2009; Schuyler et al., 2014).

Here, we asked whether multivariate patterns of fMRI ensem-
ble activity in the amygdala support continuous dimensions of
subjectively experienced valence or arousal (indexed as stimulus
intensity) and whether there are within-trial temporal differences
between valence extremes. To this end, we measured odor-
evoked distributed patterns of fMRI activity in the amygdala in
healthy subjects as they smelled a series of nine odors that system-
atically varied in perceived pleasantness. Olfaction is an ideal
modality to study valence coding in the amygdala because valence
is a primary perceptual dimension of smell (Berglund et al., 1973;
Schiffman, 1974) and because the amygdala is only two synapses
removed from odor receptors in the nose (Carmichael et al.,
1994; Shipley and Ennis, 1996). Our main prediction was that,
across odor stimuli, pairwise similarity ratings of perceived va-
lence would correspond to pairwise similarity measurements
(fMRI correlations) of population-level amygdala activity, such
that ensemble activity patterns for highly unpleasant and pleasant
valence are furthest apart.

Materials and Methods
Participants
Eleven participants (7 females, mean � SD age, 25.4 � 2.0 years) gave
informed consent to participate in an olfactory fMRI study approved by
the Northwestern University Institutional Review Board. Participants
reported no abnormal sense of smell or taste, history of neurological or
psychiatric disease, history of nasal disorders, allergic rhinitis or sinusitis,
or other fMRI counterindications. One subject was excluded from fMRI
data analyses due to a lack of behavioral data, which were lost due to a
technical problem, resulting in 10 subjects.

Odor stimuli
Nine different odorants were chosen to span the range of perceived va-
lence: 0.05% ammonium sulfide, 0.25% trimethylamine, 0.3% isovaleric
acid, 10% butanol, 3% acetophenone, 10% �-ionone, 100% vanillin,
50% limonene, and 15% methyl salicylate (see Fig. 1a). The odorants
were diluted in either mineral oil or pure water (depending on odorant
solubility). Odorants were delivered to subjects using an MRI-
compatible, computer-controlled 10-channel olfactometer, based on a
design by Lorig et al. (1999). Airflow was maintained at 2.5 L/min, and
control of air valves was achieved using Cogent 2000 software (Welcome
Department of Imaging Neuroscience, London), as implemented in
MATLAB (The MathWorks).

Behavioral ratings
Before scanning, subjects rated odor valence using a visual analog scale
(with anchors “extremely unpleasant” and “extremely pleasant”) as well
as odor intensity (anchors “extremely weak” to “extremely strong”). All
ratings were recorded via MATLAB and were converted to a scale ranging
from �10 to 10 for analyses purposes. Mean differences in valence and
intensity ratings were analyzed in SPSS using repeated-measures
ANOVA. If Mauchly’s test indicated that the assumption of sphericity
had been violated, degrees of freedom were corrected using Greenhouse-
Geisser estimates of sphericity.

Experimental design
The experiment consisted of 12 fMRI scanning sessions per day for 2
consecutive days (total of 24 sessions). Each odorant was presented once
per scanning session (total of 9 trials per session) for 3 s, with a 12 s
intertrial interval between odorants. Each trial consisted of a red fixation
cross for 2 s that prepared subjects for odor onset, followed by a 3 s sniff
cue (green fixation cross) that coincided with odor delivery. Each trial
terminated with a black fixation cross that appeared at odor offset and
stayed on until the next trial. The stimulus sequence of odorant presen-
tation was counterbalanced across sessions.

fMRI data acquisition
fMRI data were acquired on a Siemens Trio 3T MRI scanner, using a
12-channel head coil and an integrated parallel acquisition technique
known as Generalized Autocalibrating Partially Parallel Acquisition to
improve signal recovery in medial temporal and basal frontal regions.
Imaging parameters included: repetition time (TR), 1.51 s; echo time
(TE), 20 ms; slice thickness, 2 mm with a gap of 1 mm; in-plane resolu-
tion, 1.72 � 1.72 mm; field of view, 220 � 206 mm, matrix size, 128 �
120 mm. To reduce susceptibility artifact in olfactory areas, a 30° tilt
angle was applied to the image acquisition plane (Deichmann et al.,
2003). A total of 24 slices per volume was collected ensuring an adequate
coverage of olfactory brain regions. Additionally, a 1 mm 3 T1-weighted
MRI scan was acquired to define anatomical ROIs. An additional lower-
resolution anatomical scan was acquired with the same slice protocol as
the functional scans for image preprocessing and realignment.

Respiratory monitoring
For both the behavioral ratings and fMRI tasks, subjects were instructed
to try and make the same-sized sniff on each and every trial. Respiration
was monitored during fMRI scanning via breathing belts placed around
the chest and abdomen. Sniff peak amplitude, duration, and inspiratory
volume were computed for each trial, averaged across runs, and normal-
ized within subjects by subtracting the mean parameter value (across
conditions) from each condition-specific value. These data were then
entered into individual repeated-measures ANOVA for statistical testing.
One subject was excluded from the sniff data analyses due to technical
problems in respiration data recording but was included in all other
analyses.

Univariate fMRI analyses
fMRI data were analyzed with SPM8 software (http://www.fil.ion.ucl.ac.
uk/spm/software/spm8/). For univariate analysis only, the functional
images for each participant were spatially realigned, coregistered to that
participant’s first functional image and high-resolution anatomical T1
scan, spatially normalized using the MNI template brain, and smoothed
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with an isotropic Gaussian kernel of FWHM of 6 mm 3. The first 6
“dummy” volumes of each run were discarded before statistical analyses.

For each subject, the BOLD contrast data were modeled separately for
each odorant for each session using stick (�) functions convolved with
the canonical hemodynamic response function. The model included a
128 s high-pass filter to remove low-frequency fluctuations and an AR(1)
model to account for temporal nonsphericity due to autocorrelations.
Model estimation in SPM resulted in 216 (9 odorants � 24 sessions)
parameter estimates (�) for each and every voxel, representing the mag-
nitude of activation associated with each odorant. The odorant-related
parameter estimates were then entered into a mixed-model ANOVA in
SPM8 with subjects as a random factor and valence (pleasant, neutral,
and unpleasant) as a fixed factor. The odorant-related parameter esti-
mates were assigned to pleasant, neutral, or unpleasant condition based
on each subject’s ratings of the odorants. Hence, this analysis yielded
regions that were significantly modulated by subjective valence. The fix-
ation periods between trials constituted the implicit baseline used to
investigate the independent effects of pleasant, neutral, and unpleasant
odors. Conjunction “null” analyses (Friston et al., 2005; Nichols et al.,
2005) were also conducted in SPM8 to examine whether amygdala acti-
vation differentiates between pleasant, neutral, and unpleasant stimuli.
Conjunction contrasts of interest were pleasant � baseline, neutral �
baseline, and unpleasant � baseline, and significance was set at p �
0.001, uncorrected, whereby each individual contrast was thresholded at
p � 0.001.

Additionally, we examined whether univariate analyses showed differ-
ences in encoding valence in the amygdala at different time points fol-
lowing odorant onset by using finite impulse-response models. In the
finite impulse-response model, each odorant was modeled using a set of
impulse response function (7 bins of 1.5 s duration), with the first bin
aligned to the initial onset of each event. With a TR of 1.5 s, these time
bins corresponded to successive TRs (TR0 � stimulus onset, TR1 � 1.5 s,
TR2 � 3 s, TR3 � 4.5 s, TR4 � 6 s, TR5 � 7.5 s, and TR6 � 9 s). This
finite impulse-response model resulted in a map of 1512 (9 odorants � 7
time bins � 24 sessions) per-voxel � parameter estimates representing
the magnitude of activation associated with each odorant. The following
analyses focused on the time bins spanning the period between signal
take-off and signal peak of the BOLD response (3–7.5 s) (Boynton et al.,
1996; Aguirre et al., 1998), typically when emotional arousal-related dif-
ferences emerge (Sabatinelli et al., 2009). The odorant-related parameter
estimates were entered into a 3 � 4 full factorial ANOVA in SPM8 with
two factors: valence (pleasant, neutral, and unpleasant) and time bin (4
time bins spanning TR2-TR5, i.e., 3–7.5 s, after odor onset). The
odorant-related parameter estimates were assigned to pleasant, neutral,
or unpleasant condition for each subject based on the subject’s own
ratings of the odorants. Hence, this analysis yielded regions that were
significantly modulated by emotional valence at different time points
after odor onset. All results were examined with (1) a whole-brain thresh-
old of p � 0.05, family-wise-error (FWE) corrected; (2) an amygdala ROI
generated using the AAL atlas (Tzourio-Mazoyer et al., 2002) via the
WFU PickAtlas software (Maldjian et al., 2003; Maldjian et al., 2004), at
a threshold of p � 0.05, FWE corrected for amygdala volume; and (3) a
more liberal exploratory threshold of p � 0.005, uncorrected.

We also examined whether the mean activity in the amygdala ROI for
the 9 stimuli differed based on valence and intensity ratings. After base-
line correction (subtracting the mean activation across 3 TRs prestimulus
onset), we computed the mean activation intensity for each odorant at
each TR for each subject. Then, to examine whether the stimuli differed
when ordered according to the subjective valence ratings, or showed a
valence-related linear trend or intensity-related quadratic trend, we con-
ducted a 9 odorant � 4 time-bin (TR) repeated-measures ANOVA in
SPSS and tested the polynomial contrasts of linear, quadratic, and cubic
transformations of the valence rating variable at each TR. To test whether
mean amygdala activity differed based on the subjective intensity of the
odorants, we ordered the stimuli according to subjective intensity ratings
and tested whether there was a significant linear trend (from low to high
intensity) in the mean (univariate) level of amygdala activity. Addition-
ally, we also performed a direct test of the mean difference in amygdala
activity between the most intense and the least intense stimuli.

Multivariate fMRI analyses
Data preprocessing for the multivariate pattern-based analysis (MVPA)
followed a slightly different procedure compared with the univariate
analysis. For each scanning session, we discarded the first six “dummy”
volumes and then spatially realigned all functional images to the first
volume of the first session using SPM8. No image normalization or
smoothing was performed to preserve the subject-level fidelity of the
fMRI signal. Subsequent steps, including extraction of brain activity pat-
tern from each voxel, baseline correction, and assembly into linear vec-
tors of odor-specific voxel activity, were done using customized scripts in
MATLAB.

Multivoxel ensembles of odor-evoked fMRI activity patterns were ex-
tracted from left and right amygdala. For each subject, the left and the
right amygdala were combined to yield one amygdala ROI. Amygdala
ROIs were manually drawn on each subject’s T1-weighted MRI scan
using MRIcron software (http://www.mccauslandcenter.sc.edu/mricro/
mricron/), with reference to a human brain atlas (Mai et al., 1997). To
exclude voxels with excessive noise, such as voxels centered on large
blood vessels, for each subject and each TR, we computed the SD of the
response at each voxel and excluded voxels whose response was beyond 2
SDs of the mean across all the voxels within the ROI (Zelano et al., 2011).

To examine pattern coding of valence in the amygdala, we used an
analysis strategy referred to as representational similarity analysis (RSA)
(see Fig. 4). In RSA, multivoxel measures of fMRI activity are quantita-
tively related to each other and to computational models and behavioral
data by comparing representational dissimilarity matrices (RDMs)
(Kriegeskorte et al., 2008a,b). Importantly, before the RDMs were com-
puted, for each subject, the odorants were ordered based on each
subject’s own valence ratings. Thus, rather than imposing an arbitrary
ordering of stimuli across subjects, this procedure allowed for computa-
tion of RDMs based on individual perceptual ratings, which is particu-
larly relevant when examining valence. To this end, for the 9-odorant set
in our study, we created a 9 � 9 perceptual RDM, where each cell con-
tained a value reflecting the dissimilarity (absolute value of rating differ-
ences) of valence or intensity associated with a given pair of odorants. We
also created an amygdala RDM, where each cell in the 9 � 9 matrix
contained a value reflecting the dissimilarity between brain activity pat-
terns associated with a given pair of odorants. Details regarding how the
amygdala RDMs were computed are provided below.

Data extraction for RSA. For each subject and each of the 9 odorants
presented in each of the 24 sessions, time-series data were extracted from
each voxel within the amygdala (see Fig. 4a). Because single-trial data can
be noisy (Howard et al., 2009; Zelano et al., 2011), we then averaged the
time-series data across all trials within each day (12 trials per day for all
subjects, except one subject who had 11 trials on the second day) for each
odorant. The averaged fMRI time-series were then baseline-corrected by
subtracting the mean activity averaged across the 3 TRs before onset of
the stimulus. Because baseline activity of each voxel was subtracted from
its own averaged time series, this baseline correction procedure does not
affect the overall spatiotemporal pattern of the response.

Computation of the RDM. For each subject and each TR, the averaged
time-series data corresponding to each odorant were ordered based on
the subject’s valence ratings from the least to the most pleasant (Fig. 4a).
Next, we generated a 9 � 9 RDM in which each cell reflects the dissimi-
larity (measured as 1 minus Pearson’s r) between activity patterns for a
pair of odorants arranged based on the subjective valence rankings (Fig.
4b,c) (Kriegeskorte et al., 2008a,b). In total, for each subject, there were
eight RDMs: four corresponding to TR 2 to TR 5 for day 1 and four
corresponding to TR 2 to TR 5 for day 2. Then, we averaged the RDMs
across the 2 days, yielding four RDMs per subject. The RDMs were com-
puted using customized scripts in MATLAB and the RSA toolbox (http://
www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/).

For visualizing patterns in the RDMs, the amygdala activity pattern
RDMs were submitted to multidimensional scaling (MDS; criterion:
stress1, nonmetric) and displayed in a 2D space (see Fig. 5d). The stress
value indicates how well the MDS plots reconstruct the dissimilarity
matrices. A stress value �0.15 suggests a reliable representation of the
matrix. The RDMs submitted to the MDS were group-level RDMs com-
puted by averaging across all subjects for each TR. For each MDS plot, we
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computed the Pearson’s correlation coefficients between the projections
on the best-fitting axis (first dimension) and the mean valence ratings
averaged across all subjects for each of the 9 conditions.

Comparing brain and perceptual dissimilarity matrices. To statistically
examine the correspondence between neural and perceptual coding of
valence, Spearman’s rank correlation coefficients were computed be-
tween RDMs for fMRI ensemble patterns in the amygdala and behavioral
measures of stimulus similarity for each TR. Because RDMs are symmet-
ric about a diagonal of zeros, the correlation coefficients were computed
using values above the diagonal. To determine coherence between per-
ceptual and amygdala RDMs, statistical inferences were performed on
the RDM correlations. As classical inferential tests assume independence
between each pair of measurements (which is not the case for RDMs, in
which each cell also determines part of the rest of the matrix), we tested
significance using permutation tests by randomizing the odor labels, in
accordance with prior techniques (Kriegeskorte et al., 2008a,b). For each
brain-behavioral RDM pair, we performed a conservative Monte Carlo
random permutation 10,000 times, computing a Spearman’s rank corre-
lation coefficient in each iteration. These estimates served as a null dis-
tribution against which the actual correlation coefficient was compared.
If the actual correlation coefficient fell within the top 5% of the simulated
null distribution, we rejected the null hypothesis that the brain and per-
ceptual RDMs are unrelated (Kriegeskorte et al., 2008a). The same anal-
ysis strategy was applied to test the match between the brain RDMs and
both the valence and the intensity RDMs.

Next, to examine relative contribution of perceptual valence and in-
tensity RDMs to variance in the amygdala RDM, we conducted a GLM
using the vectorized valence and intensity RDMs as the linear predictors,
and the vectorized amygdala RDM as the dependent variable. The esti-
mated � coefficients for the predictor variables served as measures of the
degree of match between the valence and intensity predictors and the
amygdala ensemble pattern activity. To test for significance, for each TR
we conducted 10,000 random permutation tests to yield null distribu-
tions of � coefficients for valence and intensity predictors. If observed �s
fell beyond the 95th percentile of the null distributed �s, we rejected the
null hypothesis that there is no match between the valence and intensity
RDMs and the amygdala RDM.

Finally, we conducted a leave-one-out 10-fold cross-validation test to
examine the consistency between brain and perceptual RDM match
across subjects. In each iteration of the 10-fold cross-validation, we av-
eraged the fMRI RDMs from 9 of 10 subjects, and then computed the
Spearman’s correlation between this averaged brain RDM and the 10th
subject’s perceptual RDM (valence and intensity RDMs separately). This
was done 10 times, leaving one subject out each time. The group-level
significance was determined by using a one-sample t test compared with
0 correlation.

Additional RDM analyses. In addition to our main analyses based on
subjective valence ratings, we conducted two other RDM analyses. The
first of these involved creating a perceptual RDM based on objective
valence ratings (see Fig. 1b,c), rather than subjective valence ratings. This
was compared with a group-level amygdala RDM in which stimuli were
ordered based on the objective valence rankings, and enabled us to de-
termine whether there were differences between subjective and objective
coding of valence in the amygdala. The second analysis involved creating
a perceptual RDM based on subjective intensity ratings, rather than
valence-sorted intensity ratings. Specifically, odorants were arranged
based on each subject’s own intensity rankings, where each cell contained
a value reflecting the dissimilarity between subjective ratings of intensity
for each pair of odorants. This was compared with a group-level
amygdala RDM with stimuli ordered based on subjective intensity rank-
ing, and otherwise followed the same RDM procedures described above
for the main analyses.

Finally, to test whether subtle valence-specific changes in sniffing
could have accounted for the effects in the amygdala, we computed three
separate group-level sniff-related RDMs for sniff volume, peak ampli-
tude, and sniff duration, using the same procedures above for the sub-
jective valence RDMs. For each subject, the stimuli were ordered based
on subjective valence rankings, and then RDMs were created so that each
cell contained a pairwise difference in a sniff measure between each pair

of stimuli. Group-level RDMs were then created by averaging across all
subjects’ RDMs. Random permutation tests were applied to test the sig-
nificance of the correlation between sniff RDMs and the amygdala RDM
for each TR.

Temporal and valence-specific differences in valence coding. To examine
whether valence representations in the amygdala are asymmetric for the
two extremes of valence, we used two conceptual RDM models (see Fig.
6a). These models were created as 9 � 9 matrices, where each cell repre-
sented the dissimilarity between a pair of stimuli, on a color scale from
yellow (dissimilar) to blue (similar). Model 1 captures the distinctiveness
of unpleasant stimuli such that each stimulus shows greater dissimilarity
along a gradient from pleasant to unpleasant. Hence, in Figure 6a, in the
upper right triangle of the Model 1 RDM (symmetric about the diago-
nal), each column contains the dissimilarities between a stimulus and all
the other stimuli that are unpleasant relative to itself (e.g., column 7
contains dissimilarities between stimulus ranked seventh with stimuli
ranked first-sixth), and each row contains the dissimilarities between a
stimulus with all the other stimuli that are pleasant relative to itself (e.g.,
row 7 contains dissimilarities between stimulus ranked seventh with
stimuli ranked eighth-ninth). As a result, in Model 1, columns reflect
dissimilarities (or differentiation) from relatively unpleasant stimuli and
rows reflect no differentiation from relatively pleasant stimuli. Con-
versely, Model 2 captures the distinctiveness of pleasant stimuli, such that
rows reflect differentiation from relatively pleasant stimuli and columns
reflect lack of differentiation from relatively unpleasant stimuli.

To examine whether these two models (one emphasizing unpleasant
differentiation and another emphasizing pleasant differentiation) ac-
counted for unique variance in the amygdala RDMs across time, the
models were vectorized and used as two predictors in a linear regression
model, with the vectorized amygdala RDMs for each time point (TR2-
TR5) as the dependent variable. Each regression yielded a � coefficient
for each model. These � coefficients are a measure of the match between
the conceptual models and the amygdala activity RDMs. Again, a ran-
dom permutation test was used to test the significance of the � coeffi-
cients, as described above.

RDM analyses in additional regions. To examine whether valence cod-
ing is specific to the amygdala, we conducted RDM analyses in two con-
trol regions: the piriform cortex (PC), which receives olfactory afferent
input from the olfactory bulb, and the orbitofrontal cortex (OFC), which
receives projections from both piriform cortex and amygdala and is ex-
tensively implicated in value-based coding. As in the construction of the
amygdala ROI, the PC and OFC ROIs were manually drawn on each
subject’s T1-weighted scan. The olfactory OFC was defined based on a
previous meta-analysis (Gottfried and Zald, 2005), describing its locus
near the transverse orbital sulcus. The piriform cortex was drawn with
reference to a human brain atlas (Mai et al., 1997). The time-series for
each stimulus was extracted and ordered based on each subject’s own
valence rankings. Following exactly the same procedures applied to the
amygdala analysis, we generated group-level RDMs of the PC and OFC
by averaging across subjects separately for each TR. We tested the signif-
icance of correlation between the perceptual RDM (based on subjective
valence ratings) and the PC or OFC RDM by using the Monte Carlo
random permutation test. We also tested the pleasant and unpleasant
models on the PC and OFC RDMs.

Results
Behavioral
We began by characterizing the perceptual space of the nine
odors that included smells, such as vanilla, pine, and rotting
fish (Fig. 1a). Repeated-measures ANOVAs were conducted to
examine valence and intensity-related differences. Behavioral
ratings of perceived valence were effectively distributed across
the full spectrum of pleasantness (Fig. 2a) and exhibited a
significant effect of valence (F(2.4,21.51) � 95.95, p � 0.0001),
with a linear trend from least to most pleasant (F(1,9) � 212.27,
p � 0.0001). By comparison, individual ratings of perceived
intensity (F(8,72) � 4.68, p � 0.0001) spanned a range between
“moderate” and “extremely” intense (Fig. 2b), exhibiting a
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significant quadratic trend for intensity (F(1,9) � 14.76, p �
0.004), in keeping with prior reported arousal profiles for vi-
sual stimuli (Kuppens et al., 2013). Overall, these findings
validate the use of this odor stimulus set to evaluate the fMRI
response space for valence.

Given that the perceptual ratings were collected only once
before scanning, we also conducted several analyses to examine
rating consistency both across subjects and across rating mea-
sures. Objective valence ratings were computed as the average
rating across subjects for each of the odorants, and objective va-

Figure 1. List of odor stimuli and stimulus-based rating results. a, Chemical names of odorants and their descriptors. b, Mean valence ratings for each odorant across subjects. For the
analyses related to subjective valence presented in the main text, odorants were ranked from most to least pleasant, according to each subject’s own perceptual ratings. Error bars
indicate SEM across 10 subjects. c, Variance of subjective valence rankings for all odorants. Each color represents one subject. Each bar within a cluster represents each subject’s valence
ranking for that odorant.

Figure 2. Subjective valence ratings of the odor stimuli from the present study. a, Ratings of the nine odorants, rank-ordered for each participant, show a significant effect of valence,
with an increasing linear trend from unpleasant to pleasant. Blue dots represent individual subjects; red dots represent group mean. U, Unpleasant; N, neutral; P, pleasant. b, Intensity
ratings of odorants rank-ordered by valence also show a significant effect of intensity, with a quadratic trend from unpleasant to pleasant odorants.
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lence rankings were based on these objective valence ratings.
First, the between-subject Pearson’s correlation coefficients of
objective valence ratings for the set of 9 odorants had a mean of
0.85, ranging from 0.63 to 0.98. Second, when stimuli were ar-
ranged according to subjective valence ratings, the between-
subject correlation coefficients for stimuli from most unpleasant
to most pleasant had a mean of 0.95, ranging from 0.85 to 0.99.
Third, we compared each subject’s subjective ratings from most
unpleasant to most pleasant with the group-level objective rat-
ings, which were the averaged ratings of each odorant ranked
from low to high (Fig. 1b, red dots). The results had a mean
correlation (r) of 0.98, ranging from 0.95 to 0.99. This strong
inter-rater agreement, across three different analyses, provides
some confidence in the perceptual robustness and stability of our
stimulus set.

Analysis of the respiratory data, collected online during scan-
ning, did not reveal any significant differences across the odor
stimuli. Specifically, repeated-measures ANOVA results showed
no systematic differences in sniff peak amplitude (F(2.53,20.24) �
1.06, p � 0.38), duration (F(3.77,30.17) � 1.2, p � 0.32), or inspira-
tory volume (F(8,64) � 1.47, p � 0.19) between odorants. One
subject was excluded from sniff data analysis due to loss of data
caused by technical problems.

Univariate fMRI results
Our initial imaging analysis explored whether the mean level of
amygdala activity (as estimated using univariate fMRI ap-
proaches) significantly discriminated among different valence
levels. The amygdala showed robust activation for pleasant, neu-
tral, and unpleasant stimuli. A mixed-model ANOVA with three
valence categories (pleasant, unpleasant, and neutral) as a factor
showed no significant effect of valence and no significant pairwise
differences (pleasant vs unpleasant, unpleasant vs neutral, pleas-
ant vs neutral) in the amygdala, either when considered across the
whole brain or within an amygdala ROI (at either FWE-corrected
thresholds or a more liberal whole-brain p � 0.005, uncorrected
threshold). Correspondingly, a conjunction “null” analysis (Fris-
ton et al., 2005; Nichols et al., 2005) showed greater activation for
pleasant � baseline, neutral � baseline, and unpleasant � base-
line in the amygdala (p � 0.001, uncorrected).

Next, to examine whether there was temporal difference in the
amygdala’s response to valence, we conducted a 3 � 4 repeated-
measures ANOVA with valence categories (pleasant, unpleasant,
and neutral) and time bins (4 time bins at 1.5 s intervals corre-
sponding to 3–7.5 s after odor onset) as factors. Results showed
no significant effects of valence or a valence � time interaction in
the amygdala (all p values �0.005, uncorrected). Finally, when
mean activity in the amygdala ROI was submitted to a repeated-
measures 9 � 4 ANOVA, with the 9 odorants (arranged by sub-
jective valence ratings from least to most pleasant) and 4 time
bins (TR2-TR5) as factors, no significant linear trend (suggestive
of valence-based differences, F(1,9) � 0.268, p � 0.617) or qua-
dratic trend (suggestive of arousal-based differences, F(1,9) �
3.901, p � 0.08) was observed, nor was there an overall effect of
valence (F(8,72) � 0.788, p � 0.615) (Fig. 3). Together, these uni-
variate results show robust activation of the amygdala to all three
types of odor stimuli with no evidence of differential coding of
valence in the amygdala. Finally, we examined intensity-related
differences in univariate amygdala activity. To do so, we submit-
ted the mean activity of each stimulus in the amygdala ROI to a
2-way (9 stimuli � 4 time-bins) repeated-measures ANOVA,
with the 9 stimuli ordered by subjective intensity ratings from low
to high. There was no significant main effect of intensity (F(8,72) �

0.82, p � 0.588) or an interaction between intensity and time
(F

(24,216) � 0.981, p � 0.492). Additionally, when comparing the
most intense and the least intense odors across subjects, no sig-
nificant main effect of intensity (F(1,9) � 0.005, p � 0.947) or
interaction between intensity and time bin (F(3,27) � 0.27, p �
0.847) was observed.

Multivariate fMRI results and amygdala ensemble coding
of valence
In the absence of mean response differences across valence cate-
gories, we examined whether valence is encoded in finer-grained
fMRI ensemble activity patterns in the amygdala. Ratings of odor
valence were used to yield a 9 � 9 group-level, pairwise valence
dissimilarity matrix (see Fig. 5a, left). Visual inspection of the
valence RDM confirmed that odorants with similar valence show
higher correlations along the diagonal than those with dissimilar
valence on the off-diagonal. An intensity dissimilarity matrix was
also generated, suggesting that intensity ratings of unpleasant and
pleasant odorants were similar to each other and different from
the neutral odorants (see Fig. 5a, right). The odorant stimuli in
both the valence and intensity dissimilarity matrices were or-
dered on the basis of the subjective valence ratings (from least to
most pleasant, Fig. 2a), as opposed to the objective valence rat-
ings shown in Figure 1b.

Using the same stimulus order based on subjective ratings, we
also generated a 9 � 9 amygdala RDM in which each cell repre-
sents the fMRI ensemble pattern dissimilarity for a given pair of
stimuli (Figs. 4b, 5b) (Kriegeskorte et al., 2008b). Visual inspec-
tion of amygdala RDMs across time points showed a representa-
tion structure similar to the valence rating RDM, with stronger
correlations between ensemble patterns for perceptually similar
odors and weaker correlations for perceptually dissimilar odors
(Fig. 5b). Multidimensional scaling of these RDMs further con-
firmed that amygdala activity patterns are organized based on
valence (Fig. 5d; see Materials and Methods). Plots show that

Figure 3. Univariate analysis of fMRI time-series. Odor-evoked BOLD time-series of mean
amygdala activity showed no significant differences across the nine odor stimuli at any time
point, and no significant differences between the three levels of valence. Plots were baseline-
corrected by subtracting mean signal intensity across 3 TRs before odor onset. Error bars indicate
SEM across 10 subjects.
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perceptually similar odorants tend to cluster together, consistent
with their evoking similar fMRI ensemble patterns.

We then compared the perceived valence similarity RDM
with the amygdala activity RDMs at each poststimulus time
point. Random permutation tests confirmed that the
amygdala RDM significantly mapped onto the valence RDM
but not onto the intensity RDM (Fig. 5c). This analysis re-
vealed a significant match between the perceived valence sim-
ilarity RDM and the amygdala RDM from 3 s to 7.5 s after odor
onset (r � 0.444, p � 0.0057 for TR2; r � 0.570, p � 0.0007 for
TR3; r � 0.349, p � 0.0214 for TR4; r � 0.445, p � 0.0018 for
TR5) (Fig. 5c). This result indicates that odors sharing more
similarity in perceived valence are associated with greater pat-
tern overlap of amygdala ensemble activity. In contrast to the
strong relationship between amygdala activity RDMs and va-
lence RDM, there was no significant match between amygdala
activity RDMs and the intensity RDM at any time point (Fig.
5c; r � 0.2903, p � 0.0970 for TR2; r � 0.1627, p � 0.2596 for
TR3; r � 0.0118, p � 0.4763 for TR4; r � �0.1797, p � 0.7443
for TR5).

Next, we tested the correlation between amygdala RDMs and
the objective valence RDM at each TR. The results were similar to
that of subjective valence RDMs, with significant correlations
from TR2 to TR5 (TR2, r � 0.35, p � 0.02; TR3, r � 0.46, p �
0.03; TR4, r � 0.40, p � 0.01; TR5, r � 0.30, p � 0.04). Given that

the odor stimuli were ranked very similarly by all participants
(Fig. 1c), these results were not too surprising. We also tested the
correlation between amygdala RDMs (with stimuli arranged
based on subjective intensity rankings) and the subjective inten-
sity RDM. The results showed no significant match at any of the
time points: TR2, r � 0.25, p � 0.10; TR3, r � 0.29, p � 0.09; TR4,
r � 0.13, p � 0.27; TR5, r � 0.05, p � 0.40. Finally, we examined
the correlation between amygdala RDMs and sniff volume, peak
amplitude, and duration RDMs for each TR (see Materials and
Methods). Random permutation tests on the resulting Spear-
man’s correlation coefficients revealed no significant correlation
for sniff volume (TR2, r � �0.18, p � 0.80; TR3, r � �0.22, p �
0.81; TR4, r � 0.11, p � 0.30; TR5, r � 0.31, p � 0.10), sniff peak
amplitude (TR2, r � �0.17, p � 0.80; TR3, r � �0.17, p � 0.76;
TR4, r � �0.10, p � 0.66; TR5, r � �0.05, p � 0.59), or sniff
duration (TR2, r � �0.28, p � 0.94; TR3, r � �0.16, p � 0.77;
TR4, r � �0.08, p � 0.65; TR5, r � 0.21, p � 0.14).

To assess statistically whether the similarity structure of per-
ceived valence or intensity independently explains the amygdala
RDM, we conducted a GLM using vectorized valence and inten-
sity RDMs as the independent variables and the vectorized
amygdala activity RDM as the dependent variable. The results
revealed that the perceptual valence matrix significantly corre-
lated with the brain data from TR2 to TR5 (GLM coefficients or �
coefficient for different TRs: � � 0.0037, p � 0.0096 for TR2; � �

Figure 4. Schematic diagram of MVPA. a, Odorant-specific spatial patterns of voxel activity in the amygdala were transformed into linear vectors of voxel activity (pattern vectors), separately for
each subject, each odorant, and each of 24 trials per odorant. The level of grayscale intensity indicates voxelwise BOLD signal intensity. b, Pattern vectors were averaged across 24 trials per odorant
to yield a mean pattern vector for each odorant and subject. Odorants were rank-ordered based on each subject’s valence ratings. The Pearson’s correlation (r) between each pair of odor pattern
vectors was computed and then converted into dissimilarity scores (1 � r), which together comprised the neural RDM. c, Subject-specific RDMs were averaged to yield a mean group RDM, separately
for each time-point following stimulus onset.
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0.0063, p � 0.0006 for TR3; � � 0.0033, p � 0.0087 for TR4; � �
0.0045, p � 0.0003 for TR5). In contrast, no significant match
was found for the perceptual intensity matrix (GLM coefficients:
� � 0.0044, p � 0.31 for TR2; � � 0.0033, p � 0.40 for TR3; � �
0, p � 0.53 for TR4; and r � �0.0077, p � 0.23 for TR5). Addi-

tionally, we used a leave-one-out analysis to assess the coherence
between amygdala and perceptual RDMs across subjects. Direct
comparisons of the correlations between the perceptual and
amygdala RDMs (one-sample t tests with the null hypothesis of
zero correlation) confirmed significant matches between the

Figure 5. Ensemble activity coding of valence in amygdala. a, RDMs of subjective valence (left) and valence-ordered intensity (right), based on odor pairwise differences in behavioral ratings in
the present study. Perceptual RDMs were computed for each subject, and then averaged across subjects. Blue represents least dissimilar; yellow represents most dissimilar. b, Imaging RDMs of
stimulus valence, based on all odor-pairwise correlations of fMRI ensemble activity in the amygdala, with odors ranked according to each subject’s valence ratings. c, Spearman’s rank correlations
were computed between the group-averaged perceptual RDMs (both valence and intensity) and the amygdala RDM for each TR. Ensemble fMRI activity patterns in amygdala show significant
valence coding (left column) but not intensity coding (right column) at each time point. Significance was established whether the correlation value (red vertical line) exceeded the 95th percentile
(black vertical line) of a null distribution from 10,000 random permutations of brain-behavior correlations. d, Multidimensional scaling shows that perceptually similar odorants tend to cluster
together, consistent with their evoking similar fMRI ensemble patterns. Stress values of 0.142 (TR2), 0.097 (TR3), 0.129 (TR4), and 0.103 (TR5) indicate how well the MDS plots match the dissimilarity
matrices. Correlations between valence ratings and the projections on the best-fitting axis (dashed line) showed a significant match at TRs 2, 3, and 5. The centroids of unpleasant, neutral, and
pleasant odorants (denoted as *) are plotted on this axis.
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amygdala RDM and the valence RDMs at all time points: TR2
(t(9) � 7.44, p � 3.9 � 10�5), TR3 (t(9) � 14.52, p � 1.5 � 10�7),
TR4 (t(9) � 16.95, p � 3.9 � 10�8), and TR5 (t(9) � 14.85, p �
1.2 � 10�7). In contrast, effects were not significant for the in-
tensity RDMs at any time point (TR2, t(9) � 2.05, p � 0.07; TR3,
t(9) � 0.21, p � 0.84; TR4, t(9) � �1.39, p � 0.20; and TR5,
t(9) � �1.77, p � 0.11). Overall, results indicate that the human
amygdala supports a continuous representation of the valence
dimension ranging from unpleasant to pleasant.

Temporal differences in valence-specific ensemble coding in
the amygdala
Earlier research has shown a bias, or asymmetry, in the dimen-
sional representation of valence, such that unpleasant stimuli
are perceptually more differentiated than pleasant stimuli
(Rozin and Royzman, 2001; Kuppens et al., 2013). Moreover,
asymmetry has been observed in the temporal dynamics of
emotional responses, with earlier mobilization and regulation
in the case of unpleasant stimuli (Taylor, 1991). It thus follows
that amygdala representations for unpleasant (vs pleasant)
stimuli might emerge earlier in the time course of stimulus
delivery, resulting in greater pattern dissimilarity among un-
pleasant odors at early time points. To test this bias, we used
two conceptual models: one in which ensemble pattern repre-
sentations with unpleasant stimuli are more distinctive and
another in which ensemble representations with pleasant
stimuli are more distinctive (Fig. 6a). Results indicate that,
early after stimulus onset, the observed amygdala RDM resem-
bled the results predicted from the unpleasant differentiation
model, whereas at later time points, the amygdala RDM more
closely resembled the results predicted from the pleasant dif-
ferentiation model (Fig. 6b,c), implying earlier differentiation
of unpleasant stimuli.

To establish significance, for each TR, we conducted 10,000
random permutation tests to yield null distributions of � coeffi-
cients for the pleasant and unpleasant models, following the same

strategy used for testing matches between the amygdala and per-
ceptual RDMs. In line with the above observations, the unpleas-
ant differentiation RDM significantly correlated with the
amygdala pattern RDMs from TR2 to TR4 (� � 0.0117, p �
0.0029 for TR2; � � 0.0147, p � 0.0056 for TR3; � � 0.0063, p �
0.0452 for TR4; � � 0.0068, p � 0.0792 for TR5). In contrast, the
pleasant differentiation RDM exhibited a significant match with
the brain data one TR later, from TR3 to TR5 (� � 0.0044, p �
0.1555 for TR2; � � 0.0107, p � 0.0406 for TR3; � � 0.0068, p �
0.0323 for TR4; � � 0.0122, p � 0.0001 for TR5).

RDM analyses in additional regions
Unlike the amygdala RDM results, we found no significant cor-
relation between the subjective valence RDM and the PC RDM
for TR2 (r � 0.075, p � 0.307), TR3 (r � 0.291, p � 0.054), or
TR4 (r � 0.026, p � 0.443), with only TR5 reaching significance
(r � 0.306, p � 0.037). We also tested our two valence models on
the PC. In contrast to our amygdala findings, the GLM coefficient
� was only significant for the unpleasant model at TR5 (� �
0.0088, p � 0.02), but at no other time point for either the un-
pleasant or pleasant model. In OFC, the correlation between the
subjective valence RDM and the OFC RDM was significant only
at TR4 (�6 s after stimulus onset, with r � 0.36, p � 0.02),
coinciding with the peak of the BOLD response (Fig. 3), but at no
other time points (TR2, r � �0.019, p � 0.538; TR3, r � 0.235,
p � 0.091; TR5, r � 0.202, p � 0.115). When tested on the
pleasant and unpleasant models, the positive model showed a
significant match with the OFC RDM only at TR4, with � �
0.0075, p � 0.0082.

Discussion
How valence information is encoded in the human amygdala
remains poorly understood. By combining olfactory fMRI with
pattern-based multivariate techniques, we identified a robust
correlation between ensemble pattern activity in the amygdala
and subjective perception of valence. Complementary imaging

Figure 6. Temporal differences in valence representation. a, Amygdala RDMs at different time points (only TR2 and TR5 are shown here) were fit with an RDM “Model 1” in which unpleasant odors
are most differentiated, and an RDM “Model 2” in which pleasant odors are most differentiated. These two models were treated as effects of interest regressors, in context of the GLM, with parameter
estimates (coefficients) � and error term E. b, The resulting � coefficients show that Model 1 accounted for significant unique variance in amygdala RDMs over Model 2 from TR2-TR3, whereas Model
2 accounted for significant unique variance over Model 1 at TR5, indicating that negative differentiation emerges at an earlier time point. c, The estimated amygdala RDMs were reconstructed from
the models and � estimates. The estimated RDM from Model 1 resembles the observed RDM at TR2; the estimated RDM from Model 2 resembles the observed RDM at TR.
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analyses revealed that amygdala representations of valence evolve
during stimulus presentation, prioritizing early sensitivity to-
ward unpleasant stimuli. These findings help clarify the mecha-
nisms of affective processing in the amygdala by underscoring the
idea that unique spatial (pattern) and temporal features encode
pleasant and unpleasant valence, and that the entire valence di-
mension from pleasant to unpleasant is represented in this brain
region.

Prior human neuroimaging work has not consistently identi-
fied differentiation of valence in the amygdala (Lindquist et al.,
2015). One reason why such findings have been elusive is that
most of these studies have relied on univariate fMRI approaches,
which are insensitive to distributed forms of valence content, as
suggested by our univariate analysis in Figure 3. To the extent that
pleasant and unpleasant stimuli are encoded as sparse and dis-
tributed representations in the amygdala (Paton et al., 2006; Be-
lova et al., 2008; Herry et al., 2008), it follows that mean changes
in the amygdala fMRI signal would be poorly suited to identify
differences in valence. Using multivariate approaches, we were
able to gain new insights into how subjective valence is encoded
in the human amygdala. These effects were regionally specific, in
that similar patterns were not observed in piriform cortex or
OFC, although it is worth noting that the limited sample size and
a potential gender imbalance in our sample could have affected
the power to detect significant positive findings.

Interestingly, univariate fMRI responses in our study were
also insensitive to the intensity of odor stimuli, findings that di-
verge from earlier findings showing that mean amygdala activity
codes intensity (Anderson et al., 2003). Whereas this earlier study
independently manipulated valence and intensity by using low
and high intensity levels of one pleasant odor and one unpleasant
odor, our study consisted of stimuli spanning the whole contin-
uum of valence with only one intensity level per stimulus, which
could explain why representations of odor intensity were not
identified in the amygdala. Additionally, our prior work (Win-
ston et al., 2005) indicated that perceived intensity does not exert
a linear effect on the amygdala response but only emerges at the
extremes of valence, when a neutral-valenced odor was also in-
cluded in the stimulus set. As such, our experimental design was
not optimized to replicate this particular finding.

By implementing multivariate fMRI techniques to examine
similarities of neural representations (Edelman, 1998; Haxby et
al., 2001; Hanson et al., 2004; Kayaert et al., 2005; Lehky and
Sereno, 2007; Kay et al., 2008; Kriegeskorte et al., 2008a,b), we
were able to show that spatial ensemble patterns in the amygdala
capture systematic changes for different stimuli across the full
valence spectrum. Thus, the amygdala showed stronger pattern
correlations among odors of similar valence and weaker correla-
tions among odors of dissimilar valence: for example, the
amygdala pattern representations of vanilla and lemon smells
were highly overlapping to each other but highly divergent to the
pattern representation of rotten egg smell. It is important to note
that, although our main goal focused on the match between the
similarities of amygdala ensemble coding of subjective valence,
the similarities of amygdala ensemble patterns were also corre-
lated with objective valence, supporting the notion that there was
strong intersubject consistency across valence ratings.

It is worth noting that our findings in the amygdala comple-
ment a recent neuroimaging study showing that ensemble pat-
terns in the orbitofrontal cortex support a continuous dimension
ranging from pleasant to unpleasant (Chikazoe et al., 2014).
These orbitofrontal population codes were independent of sen-
sory modality and could be used to classify experienced affect

across participants. Surprisingly, this other study did not identify
population coding of subjective valence in the amygdala, possibly
because imaging parameters were not optimized for the medial
temporal lobe, or because the amygdala may be less sensitive to
visual and gustatory (as opposed to olfactory) stimuli, which
were used in this other study. However, consistent with the
Chikazoe data, our results did identify a multivariate valence
code in the OFC at the peak TR, although it is worth noting that
valence coding in the amygdala emerged earlier (from TR2) and
was more prolonged (through TR5) than in the OFC. Addition-
ally, the temporal differentiation from unpleasant to pleasant was
demonstrated only in the amygdala. It will be important to ex-
amine in future studies whether the valence codes in amygdala
and orbitofrontal cortex are redundant or whether these support
unique functionality.

Our results showed a systematic linear differentiation of
amygdala fMRI patterns from the pleasant end to the unpleasant
end of the valence spectrum. This profile, in which the same set of
amygdala voxels encodes pleasant and unpleasant odor content,
but with different response topographies, provides positive sup-
port for a unidimensional bipolar model. However, our findings
are unable to rule out the possibility of separate codes for pleasant
(ranging from mid-neutral to very pleasant) and for unpleasant
(ranging from mid-neutral to very unpleasant) in the amygdala,
either within the same sets of voxels or across entirely different
sets of voxels. Such representations might be more likely to
emerge at the single-voxel level, or even at the neuronal (cell
body) level beyond the resolution of our fMRI technique. Thus,
although we believe that our multivariate pattern results are more
compatible with a unidimensional representation ranging from
pleasant to unpleasant, further investigation will be necessary to
explore whether different codes are embedded in the amygdala
response patterns at the neuronal or voxelwise level.

A unidimensional representation of valence in the amygdala is in
line with similar valence structures observed in similarity judgments
of emotional words across different cultures (Russell, 1983) and
emotional expressions by adults and preschoolers (Russell and Bull-
ock, 1986). The unidimensional representation implies that stimuli
at opposite ends of the dimension are mutually exclusive, such that
any degree of pleasantness is assumed to preclude unpleasantness
and vice versa (Russell and Carroll, 1999), a proposal that has also
received experimental support from several behavioral studies (Har-
ris, 1929; Carroll et al., 1999; Zellner et al., 2003, 2006; Rashotte and
Wedell, 2012). Our findings showing stronger correlations between
ensemble patterns for perceptually similar odors, which decrease
monotonically for perceptually dissimilar odors, imply that unpleas-
ant and pleasant valence cannot coexist (be represented simultane-
ously) in the amygdala at the level of fMRI ensemble codes because
pattern overlap of these two valence extremes would obscure their
unique content. Such an organization would create greater flexibility
in determining pleasantness or unpleasantness of stimuli. It would
also provide a mechanism by which expectation, context, attention,
and learning could influence decision boundaries for driving ap-
proach or avoidance responses via amygdala modulation
(O’Doherty et al., 2002; Ochsner et al., 2002; Pessoa et al., 2002;
Swanson, 2003; Etkin et al., 2006). The dense and bidirectional con-
nectivity between amygdala and cortical and subcortical brain re-
gions (Young et al., 1994; Barbas, 1995; Pessoa, 2008) reinforces the
idea that the amygdala is an ideal substrate where second-order rep-
resentations of value could be robustly modulated.

In conclusion, our study shows that valence representations in
the amygdala are not static but change over time, prioritizing
early differentiation of unpleasant stimuli. Amygdala representa-
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tions for unpleasant (vs pleasant) stimuli were more distinctive as
reflected by greater pattern dissimilarity among the unpleasant
odors earlier during stimulus presentation. These findings are in
line with behavioral studies that have shown that negative stimuli
are generally construed as more elaborate and differentiated than
the corresponding positive stimuli (Peeters, 1971; Peeters and
Czapinski, 1990). A more diverse representation of negative stim-
uli may ensure a richer repertoire of behaviors that individuals
can choose from more rapidly. As opposed to a generic approach
behavior toward pleasant outcomes, adaptive emotion regulation
in response to unpleasant stimuli involve more subtle differenti-
ation earlier in time (Barrett et al., 2001). Finer, and earlier, dis-
crimination of unpleasant stimuli in the amygdala is also in line
with studies of behavioral and neural temporal dynamics of the
emotional response (Huang and Luo, 2006; Yang et al., 2007,
2007) showing earlier mobilization and regulation of response
for unpleasant compared with pleasant stimuli. Overall, whereas
the amygdala represents the entire valence code ranging from
pleasant to unpleasant, asymmetry in the spatial and temporal
characteristics of this valence code ultimately allows for a greater
advantage for unpleasant stimuli.
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