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Resonant Interneurons Can Increase Robustness of Gamma
Oscillations
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Gamma oscillations are believed to play a critical role in in information processing, encoding, and retrieval. Inhibitory interneuronal network
gamma (ING) oscillations may arise from a coupled oscillator mechanism in which individual neurons oscillate or from a population oscillator
in which individual neurons fire sparsely and stochastically. All ING mechanisms, including the one proposed herein, rely on alternating waves
of inhibition and windows of opportunity for spiking. The coupled oscillator model implemented with Wang–Buzsáki model neurons is not
sufficiently robust to heterogeneity in excitatory drive, and therefore intrinsic frequency, to account for in vitro models of ING. Similarly, in a
tightly synchronized regime, the stochastic population oscillator model is often characterized by sparse firing, whereas interneurons both in vivo
and in vitro do not fire sparsely during gamma, but rather on average every other cycle. We substituted so-called resonator neural models, which
exhibit class 2 excitability and postinhibitory rebound (PIR), for the integrators that are typically used. This results in much greater robustness
to heterogeneity that actually increases as the average participation in spikes per cycle approximates physiological levels. Moreover, dynamic
clamp experiments that show autapse-induced firing in entorhinal cortical interneurons support the idea that PIR can serve as a network gamma
mechanism. Furthermore, parvalbumin-positive (PV�) cells were much more likely to display both PIR and autapse-induced firing than
GAD2� cells, supporting the view that PV� fast-firing basket cells are more likely to exhibit class 2 excitability than other types of inhibitory
interneurons.
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Introduction
Several important cognitive functions (Fries, 2009; Lisman and
Jensen, 2013) have been hypothesized for gamma oscillations in

the 30 –90 Hz frequency band (Bressler and Freeman, 1980; Buz-
sáki and Wang, 2012). Multiple gamma mechanisms have been
identified in vitro (Bartos et al., 2007; Whittington et al., 2011),
including pyramidal-interneuronal network gamma (PING),
which requires interplay between populations of excitatory
and inhibitory neurons, and interneuronal network gamma
(ING), in which purely inhibitory interactions are sufficient.
Multiple gamma mechanisms are also likely operative in vivo
(Wang, 2010; Buzsáki and Wang, 2012). There are two well es-
tablished theoretical mechanisms that can generate inhibitory
network oscillations. In one, the individual neurons are mean-
driven, spontaneously spiking neurons in which noise does not
affect the mean rate; in the other, individual neurons are
fluctuation-driven, Poisson-process-like neurons (Schreiber et
al., 2009) driven by noise to fire at random. In the mean-driven
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Significance Statement

Gamma oscillations are believed to play a critical role in information processing, encoding, and retrieval. Networks of inhibitory
interneurons are thought to be essential for these oscillations. We show that one class of interneurons with an abrupt onset of
firing at a threshold frequency may allow more robust synchronization in the presence of noise and heterogeneity. The mechanism
for this robustness depends on the intrinsic resonance at this threshold frequency. Moreover, we show experimentally the feasi-
bility of the proposed mechanism and suggest a way to distinguish between this mechanism and another proposed mechanism:
that of a stochastic population oscillator independent of the dynamics of individual neurons.
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regime, individual neurons act as pacemakers that either syn-
chronize or desynchronize their activity depending upon how
these oscillators interact when coupled (Wang and Buzsáki,
1996). In the fluctuation-driven regime, individual neurons fire
irregularly, but the population rate oscillates (Brunel and Wang,
2003) due to strong, delayed, recurrent inhibition. In the latter
case, the network is a stochastic population oscillator. Bartos et al.
(2007) argued that the stochastic population oscillator model
alone cannot account for the high participation rates of interneu-
rons, which fire on most cycles during both ING (Whittington et
al., 2000) and PING (Hájos et al., 2004), and that synchrony in
the coupled oscillator network model is destroyed when physio-
logical levels of heterogeneity in excitatory drive are included
(Wang and Buzsáki, 1996).

Model neurons used previously to implement the neural os-
cillator or population oscillator models shared the same excit-
ability type (Hodgkin, 1948; Ermentrout, 1996; Izhikevich,
2007): integrators with a frequency/current relationship allowing
arbitrarily slow spiking near threshold. There is another excitabil-
ity type in which neurons are instead resonators with a cutoff
frequency below which they cannot fire. We call this type of res-
onance “spiking resonance” (Beatty et al., 2015) to avoid confu-
sion with the “subthreshold resonance” (Hutcheon and Yarom,
2000) that is often measured using a ZAP signal. There is strong
evidence that the parvalbumin-containing, fast-spiking (FS) bas-
ket cells are critical for gamma rhythmogenesis both in vitro (Gu-
lyás et al., 2010) and in vivo (Cardin et al., 2009). There is also
strong evidence that cortical FS interneurons are resonators.
Mancilla et al. (2007) found that these neurons rarely fire below
25–30 Hz and Erisir et al. (1999) reported a sharp threshold for
the onset of repetitive spiking that is characteristic of a resonator.
Tateno et al. (2004) showed several examples of neurons that
randomly alternate between regular firing and subthreshold os-
cillations near the threshold; this “stuttering” is clearly character-
istic of a resonator (Izhikevich, 2007). FS hippocampal basket
cells have not been studied as carefully, but an earlier study (Pike
et al., 2000) revealed that they spiked preferentially in response to
sinusoidally varying inputs at 30 –50 Hz. Moreover, resonator
characteristics and spiking resonance at 40 Hz has been reported
for striatal FS cells (Sciamanna and Wilson, 2011).

Recent computational studies (Baroni et al., 2014; Moca et al.,
2014) found that resonant interneurons enhance the ability of
both ING and PING networks to maintain a uniform frequency
in the presence of variable levels of extrinsic drive. Here, we focus
on minimal, purely inhibitory ING models and demonstrate ro-
bust synchronization in the presence of noise and heterogeneity
in synaptic connectivity, resonant frequency, and conduction de-
lays regardless of whether individual neurons are biased in the
mean or fluctuation-driven regimes. Furthermore, we explain
that the basis for this robustness is spike subtraction resulting in
sparse firing and use the dynamic clamp (Economo et al., 2010;
Lin et al., 2010) to provide proof of principle for the contribution
of resonance to network synchronization.

Materials and Methods
Simulations of resonator neurons. The two equations that describe the
state of each canonical spiking model neuron (Izhikevich, 2003) are as
follows:

dv j

dt
� kj �0.04vj

2 � 5vj � 140 � uj � Ij� (1)

du j

dt
� kj a�bvj � uj� (2)

where the index j indicates the jth neuron in a population of 300 neurons,
time is in milliseconds, membrane potential vj is in millivolts, the applied
current Ij is given in nanoamperes and is set to 0.15 unless otherwise
noted, and the recovery variable uj is dimensionless. We have added a
scale factor kj to some simulations to take into account that, in addition
to variability in external drive, represented by Ij, the intrinsic dynamics
will also be heterogeneous across the population, meaning that, in a
biological network, the F/I curve of all resonant neurons is not identical.
The parameters of the resonator were set to a � 0.1 and b � 0.26,
obtained from the MATLAB code at www.izhikevich.org for a resonator
cited in Figure 1 K of Izhikevich, 2004, and Figure 8 K of Izhikevich, 2007.
vj is reset when the potential reaches threshold and the recovery variable
uj exhibits spike-triggered adaptation with d � �1 as follows:

if vj � 30 mV then � vj ¡ c
uj ¡ uj � d (3)

The reset potential c was changed from �60 mV in the original parameter
set to �65 mV because resetting to �60 mV killed the oscillations in the
bistable regime described in the Results.

The variable external drive Ij represents an average general level of
excitation and remains inside the brackets for intrinsic dynamics to keep
the bifurcation structure uniform. In the network, we have added a noise
term and synaptic connectivity outside of the brackets to separate these
effects, so Equation 2 is unchanged but Equation 1 becomes Equation 4 as
follows:

dv j

dt
� kj �0.04vj

2 � 5vj � 140 � uj � Ij� � Jj�t�

� �vj � Esyn� �
i�1

N

gij sij �t � 	ij� (4)

where Jj(t) is a random process with zero mean and variance �N, the
parameters for the synaptic connectivity term are Esyn for the synaptic
reversal potential, gij for the synaptic conductance, sij(t) for the synaptic
activation levels, and 	ij for an optional conduction delay. The noise
process was only sampled every 0.1 ms and linearly interpolated between
these times to produce consistent results regardless of the time step. Esyn

is set to �70 mV to simulate inhibition and the value of gij in the network
is only nonzero for 40 randomly chosen inputs from interneuron i to
each interneuron j for sparsely connected networks (see Figs. 4, 5, 7, and
8) or for all 299 connections for all-to-all connected networks (see Figs. 9,
10). Note that, for both connectivity patterns, autosynapses are prohib-
ited; that is, gij � 0 if i � j. Additional differential equations are required
to describe activation of the biexponential synapses as follows:

s ij � �j � �j;
d�j

dt
� �

�j

	rise
;

d�j

dt
� �

�j

	fall
(5)

if vj � 30 mV, then �
vj ¡ c

uj ¡ uj � d
�i ¡ �i � f, i 
 j
�i ¡ �i � f, i 
 j

(6)

The values for the rise and fall time constants were 2 and 5 ms, respec-
tively, unless otherwise noted. The parameter f is always set to the value
that causes the peak of the biexponential synaptic activation to be 1. gij is
set to 0.03 nS for the resonator unless otherwise noted. Autapses were
used only in the single neuron simulations in Figures 2 and 3. For the
measurement of the phase-resetting curve, the average of the five cycle
periods before the untriggered input was used to estimate the intrinsic
period. The phase resetting was plotted as the network period divided by
the estimated intrinsic period such that delays produced positive
resetting.

Simulations of integrator neurons. We model integrator neurons as type
1, conductance-based Wang–Buzsáki model neurons (Wang and Buz-
sáki, 1996). The current balance equation for each Wang–Buzsáki model
neuron is as follows:
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CdV/dt � �INa � IK � IL � Isyn � Ii (7)

Where the capacitance C � 1 �F/cm 2, V is the cell membrane voltage in
millivolts and t is time in milliseconds. The leak current is given by IL �
gL(V � EL). The sodium current is given by INa � gNam


3h(V � ENa).
The steady-state activation m
 � �m/(�m � �m) where �m( V) � �0.1
(V � 35)/{exp[�0.1(V � 35)]�1} and �m( V) � 4 exp[� (V � 60)/18].
The rate equation for the inactivation variable h in the expression for
sodium current is as follows: dh/dt � �{�h( V)(1 � h) � �h( V)h} where
� � 5. The rate constants for the inactivation variable h are given by
�h(V) � 0.07 exp[� (V � 58)/20] and �h( V) � 1/{exp[�0.1(V � 28)]
� 1}. The potassium current is given by IK � gKn 4(V � EK ), where
the activation variable n satisfies the following equation: dn/dt �
�{�n( V)(1 � h) � �n( V)n} where the rate constants for n are �n( V) �
�0.01(V � 34)/{exp[�0.1(V � 34)]�1} and �n( V) � 0.125 exp[�(V �
44)/80]. The reversal potentials ENa, EK, and EL were set to 55, �90, and
�65 mV, respectively. The maximal sodium ( gNa), potassium ( gK), and
leak ( gL) conductances were set to 35, 9, and 0.1 mS/cm 2, respectively. Ii

is the applied current that functions as the external drive. Unless other-
wise stated, the values for the various parameters were equal to those
given above. The synaptic current is as described for the Izhikevich model
except that Esyn is equal to �75 mV. A synaptic event is triggered by an
upward crossing of a 10 mV threshold.

Network simulations. Both models were implemented in the simula-
tion package NEURON (Hines and Carnevale, 1997). For systems with
negligible delays, we often set the delays to 0.1 ms for greater computa-
tional efficiency while using multithreaded/MPI parallelization. Synaptic
activation initially was set to zero for all simulations.

In Figures 4, 5, 7, and 8, state variables v and u were randomly initial-
ized from Gaussian probability distributions with �51.86 � 20 mV and
�15 � 5 (mean � SD), respectively.

In Figure 8C, individual synaptic conductances were picked from log-
normal distribution (Song et al., 2005). The variance of the distribution
was increased by increasing the scale parameter of the distribution while
also adjusting the location parameter to keep the mean of the distribution
equal to 0.03 nS. In Figures 9 and 10, initial conditions were v � �65 mV
and u � �16.5 for each resonator and v � �15 mV, n � 0, and h � 1 for
each integrator to ensure that each neuron generated at least one spike.
Moreover, in Figures 9 and 10, we used all-to-all connectivity instead of
40 connections per neuron to remove spatial inhomogeneity from the
network; this manipulation favors the integrators because the resonators
are more robust to spatial inhomogeneity and therefore perform even
better than the figures indicate.

In Figure 9, a two-step procedure was used to set up a fair comparison
between resonators and the integrators in the tonic regime. First, the
external drive parameter Ij was set to give a 32–36 Hz spontaneous firing
rate in isolated neurons of both model types (i.e., 5 �A/cm 2 for integra-
tor and 0.2 nA for resonator). Then the synaptic conductance gsyn was
adjusted so that both networks had a frequency of 25–27 Hz (i.e., 1
nS/cm 2 for integrator and 0.035 nS for resonator). A 1 ms conduction
delay was required to get global synchrony in the integrator network, so
we added a 1 ms delay to both networks. A different strategy was used to
devise a fair comparison between the resonator network and the integra-
tor network in the phasic regime. Because the synaptic conductance
should be relatively strong in the phasic regime, the excitatory/inhibitory
balance was preserved across networks with gsyn(vrest � Esyn) � 0.125 Ij

for both models (i.e., gsyn � 0.125 �S/cm 2 for integrator and 0.005 nS for
resonator). In both cases, we then varied Ij across the population of
integrators by picking each value from a Gaussian distribution. We scaled
the intrinsic dynamics across the population of resonators by varying kj

to get approximately the same distribution of intrinsic frequencies. The

coefficient of variation (CV) for intrinsic frequencies was then calculated
from mean and SD in current using F–I curves for both model types.

In Figure 10A, Ij was set below threshold to 0.15 nA for resonator and
1.5 �A/cm 2 for integrator. Noise amplitude was set to give a mean firing
rate of 10 Hz in both isolated model neurons (i.e., 3 �A/cm 2 for integra-
tor and 0.87 nA for resonator). Then, gsyn was set to produce the same
level of synchronization for both networks (0.07 �S/cm 2 for integrator
and 0.03 nS for resonator). We then varied the total synaptic conduc-
tance across the population by using these values as the mean and picking
the value of gsyn for all synapses onto a given neuron from a Gaussian
distribution truncated to eliminate negative values (Fig. 10A). For Figure
10B, Ij and gsyn had the same values as in Figure 10A, with gsyn set every-
where to its mean value, but the noise amplitude was swept through
the range [2.8, 90] �A/cm 2 for integrator and [0.06, 13] nA for reso-
nator. We have summarized noise and connectivity parameters for all
figures in Table 1.

Novel synchrony measure. Oscillatory frequency can vary over time in a
nonstationary fashion (Siapas et al., 2005; Thounaojam et al., 2014),
which could cause linear methods such as cross-correlograms to under-
estimate synchrony. The vector strength statistic or its square, the R 2

statistic from circular statistics, is often defined in terms of the average
period (Batschelet, 1981), which could also underestimate synchrony.
We have chosen to quantify synchrony used a method we developed
based on the cycle by cycle population period, as defined by the peaks of
the population histogram. The spikes were binned in 1 ms windows and
a pulse with the height determined by the number of spikes in the bin was
placed at the center of the bin. The resultant pulse train was low-pass
filtered by convolution with a Gaussian kernel with � � 10 ms and a
length of 100 ms, which produced a time series with clear peaks in the
network activity to use as a clock to compute the vector strength. The
peaks were detected using downward zero crossings of the first derivative
of the smoothed signal. The peak at the beginning of each network cycle
was assigned a phase value of 0 and, at the end, a phase value of 2�. Each
spike was assigned a phase depending upon where it fell within the cycle
and a vector length of 1 starting from the origin. Then the vector sum of
all the spike vectors constructed in this fashion was taken and normalized
by the number of vectors, resulting in a vector with an average phase and
a length between 0 and 1. The R 2 statistic is the square of the vector
length. This measure quantifies the level of synchrony of the individual
neurons with the population rhythm, but gives no information regarding
the average level of participation in the oscillation, which we track sepa-
rately as the average number of spikes per cycle (SPC) normalized by the
population size. Note that random peaks of spike rate can be detected in
finite networks even in the absence of network oscillations, for example,
in random firing or in phase dispersion. In this case, the R 2 vector length
is close to 0, but the SPC still reflects the mean firing rate of the popula-
tion. All simulations were 10 s in duration. Simulations were classified as
nonoscillatory if the average spike time was 
2.5 s, indicating that spik-
ing dies out, and were rejected if the average spike time was �7.5 s,
indicating an unacceptably long period of transient activity. We doubled
simulation times and cutoff values and obtained similar simulation sta-
tistics, verifying the effectiveness of these criteria.

Experimental methods. All electrophysiological experiments were con-
ducted according to protocols approved by the University of Utah Ani-
mal Care and Use Committee. Brain slices were harvested from 18- to
35-d-old cre-dependent GAD2-IRES-tdTomato (Taniguchi et al., 2011)
or PV-tdTomato (Hippenmeyer et al., 2005) transgenic mice, which la-
beled all glutamic acid decarboxylase 2 gene (GAD2)- and parvalbumin
(PV)-expressing cells, respectively. All interneurons recorded were lo-
cated in layers 1, 2, and 3 of dorsal medial entorhinal cortex. All PV � cells

Table 1. Connectivity and noise parameters for all simulations

Figure 1 2 3 4 5 6 7 8 9 10

Autapses N Y Y N N N N N N N
Connections/neurons 0/1 1/1 1/1 40/300 40/300 0/1 40/300 40/300 299/300 299/300
Noise �N nA 0 0.1 0.16 0.21 0.375 0 0 Aa, B–D 0 0 —a

aVariable.
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were in layers 2 and 3. These mice were anesthetized with isofluorane and
decapitated. The brain was then harvested, chilled in sucrose-substituted
artificial CSF (ACSF) containing the following (in mM): 185 sucrose, 2.5
KCl, 1.25 NaH2PO4, 10 MgCl2, 25 NaHCO3, 12.5 glucose, 0.5 CaCl2),
and cut parasagittally into 300-�m-thick slices using a vibrating mi-
crotome (Vibratome VT1200; Leica). Slices were incubated for 15 min in
ACSF containing the following (in mM): 125 NaCl, 2.5 KCl, 1.25
NaH2PO4, 10 MgCl2, 25 NaHCO3, 25 glucose, 2 CaCl2) at 37°C, and then
allowed to recover for at least 30 min at room temperature. For record-
ings, slices were transferred to a heated (32–34°C) slice chamber (Warner
Instruments) mounted on an upright microscope stage (BX53; Olym-
pus) and perfused with 95/5% O2/CO2 ACSF. GAD2/tdTomato � and
PV-tdTomato � neurons were visualized using fluorescence and whole-
cell patch clamped using patch pipettes (5– 6 M�) fabricated from boro-
silicate glass (1.5 outer diameter, 1.1 inner diameter; Sutter Instruments)
and filled with artificial intracellular fluid (ICF) containing the following (in
mM): 120 K-gluconate, 5 MgCl2, 0.2 EGTA, 10 HEPES, 20 KCl, 7 di(tris)
phosphocreatine, 4 Na2ATP, 0.3 Tris-GTP. Presented data were not cor-
rected for the junction potential, which was assumed to be 10–12 mV.

For all experimental protocols, synaptic conductances were simulated
using dynamic clamp software (Dorval et al., 2001; Bettencourt et al.,
2008; Lin et al., 2010) on a Pentium 4 computer running Linux Ubuntu
with a patched version of the real-time application interface (RTAI)
kernel. Voltage was measured and a control current applied with a Mul-
tiClamp 700B amplifier (Molecular Devices

Isyn�t� � gmax � s�t� � �V � Esyn�, (8)

where gmax is the maximal conductance, V is membrane voltage, Esyn is
the reversal potential of the synapse (�75 mV for inhibitory, 0 mV for
excitatory), and s(t) is the difference of two exponentials with time con-
stants of 	rise � 1 ms and 	fall � 3 ms. Maximal conductances ranged
between 0.8 and 2 nS. To examine a neuron’s ability to exhibit post-
inhibitory rebound firing, single artificial inhibitory postsynaptic con-
ductances (IPSGs) were elicited near threshold with varying maximal
conductances. If the initial trial elicited little to no postinhibitory re-
bound (PIR) firing, then the cell was depolarized further and the trial was
conducted again. This process was repeated until the cell exhibited faster
than 1 Hz firing. The most depolarized IPSG trial was then used to test for
PIR firing. This process ensured that PIR firing was not undetected due to
the cell being too hyperpolarized. In the most depolarized trial, if a neu-
ron was able to exhibit PIR firing in �15% of induced IPSGs, then it was
determined to be capable of PIR spiking.

In neurons exhibiting PIR firing, an artificial autapse condition was
simulated wherein the detection of an action potential (determined by a
crossing of the �20 mV potential threshold) was followed by an artificial
IPSG with a 2 ms delay. Some neurons were able to exhibit IPSG-induced
PIR firing, but were not able to maintain autapse-induced firing. At least
10 autapse trials at maximum IPSG amplitude and varying membrane
potentials were conducted to test for autapse-induced firing. This pro-
cess ensured that small IPSG inputs or holding membrane potentials did
not produce false negatives in determining whether cells could exhibit
autapse-induced firing. To show phase resetting by an additional non-
autapse-induced IPSG, in some trials, an IPSG was inserted randomly
100 –300 ms after the initiation of autapse-driven firing. The magnitude
of the disruptive IPSG was matched to an initial, PIR-inducing IPSG and
was generally 100 –150% of the magnitude of the IPSGs used to maintain
the autapse. This ensured that the disruptive IPSG was large enough to
trigger an IPSG. For the phase-resetting curve, the median interspike
interval (ISI) for all spikes in the autapse-driven regime was used to
estimate the intrinsic period. The phase resetting was plotted as the total
ISI of the cycle that received the disruptive IPSG divided by the estimated
intrinsic period, such that delays produce positive resetting. A one-tailed
Z test was used to determine whether the assumed binomial distributions
for exhibiting PIR and exhibiting autapse-induced oscillations had a
higher probability for the PV � population compared with the GAD2 �

population.
In addition, the likelihood of the presence of a discontinuity in the

input current-to-firing frequency relationship was assessed by measuring

this relationship in current clamp. In these trials, a bias current was
injected to hyperpolarize the cell to �70 and a series of 1 s current pulses
were injected between �100 pA up to peak firing potential (between 500
pA and 1500 pA, depending on the cell) in 20 pA increments. The lowest
non-zero firing frequency was reported using this protocol, with a higher
value corresponding to greater likelihood of a discontinuity associated
with type 2 excitability.

Results
Resonant interneurons
Postinhibitory rebound can occur if an inward current is acti-
vated or deinactivated by hyperpolarization or, conversely, if an
outward current is deactivated or inactivated by hyperpolariza-
tion. The net, short-term effect of the hyperpolarization is to shift
the balance in favor of the inward currents if the original mem-
brane potential is revisited before the recently engage PIR current
returns to steady state. We are interested here only in PIR mech-
anisms fast enough that can be engaged by inhibitory postsynap-
tic potentials (IPSPs) generated at GABAA synapses; for example,
removal of sodium channel inactivation. In a type 2 oscillator, the
net steady-state current at membrane potentials traversed during
the ISI is outward, so pacing can only be maintained when the ISI
is traversed quickly enough that the inward current evoked by the
after-hyperpolarization can persist (Prescott et al., 2008); this
rate sets the lower bound on spiking frequency. Otherwise, the
oscillation will stop at the point the inward and outward currents
come into balance. Therefore, in a sense, pacemaking in type 2
neurons is driven by PIR. One signature of a type 2 neuron is an
oscillatory tendency near spike threshold. The membrane poten-
tial of a quiescent neuron generally relaxed exponentially back to
rest after a perturbation (Kandel et al., 2000). Conversely, a type
2 neuron can exhibit damped oscillations that overshoot the
holding potential after the perturbation: this overshoot is evi-
dence of rebound. In the model, the slow adaptation variable is
reduced by hyperpolarization, which favors the balance of inward
currents so a simulated IPSP produces a damped oscillation (Fig.
1A1). Moreover, an IPSP of sufficient amplitude produces a re-
bound spike (Fig. 1A2).

To test whether GABAergic interneurons could exhibit type 2
dynamics and postinhibitory rebound, we used Linux-based dy-
namic clamp (Economo et al., 2010; Lin et al., 2010) to apply
simulated virtual conductance waveforms that would be ex-
pected during IPSPs mediated by GABAA receptors. Measure-
ments were made in GAD2� neurons, presumably representing
the entire GABAergic population, and in PV� neurons, repre-
senting mainly FS basket cells that play an important role in
gamma. A key observation is that, if the neuron is too hyperpo-
larized, the PIR mechanism may be already fully engaged so ad-
ditional hyperpolarization has no effect. Therefore, no rebound
was observed from rest. However, when the membrane was
slightly depolarized by constant current injection, an overshoot
of the membrane potential accompanied by a damped oscillation
could be indeed be detected (Fig. 1B1) in many neurons. When
the amplitude of the simulated conductance was increased, a re-
bound action potential was triggered (Fig. 1B2) for 15% or more
of trials in 31 of 81 (39%) of GAD2� cells and 22 of 34 (65%) of
PV� cells. This effect is significant (one-tailed Z test, p 
 0.01).
Keeping in mind that the PV� population is a subset of the
GAD2� population, these results indicate that PIR-induced fir-
ing is very common among FS basket cells, but uncommon
among other cell types. Therefore, it is likely that a large fraction
of the basket cells in dorsal MEC exhibit type 2 dynamics. More-
over, PV� cells had a much faster lowest possible firing frequency
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(78.9 � 6.2 Hz) than GAD2� cells (16.0 � 3.2 Hz, p 
 0.001).
This suggests that PV� cells had more easily observable F–I curve
discontinuities, likely associated with type 2 excitability, com-
pared with GAD2� cells.

Proof of principle PIR network dynamics
We next wanted to test whether a constant-latency PIR could
form the basis for a network oscillation. We first used a single,
isolated model neuron and elicited a PIR spike with an initial
input (triangle in Fig. 2A1). Each spike in the model neuron
triggered a synaptic conductance waveform. We reasoned that
this self-feedback signal could approximate the population spike
evoked in other interneurons by network feedback when the
model neuron was embedded in a network. This protocol pro-
duced an oscillation sustained by feedback (Fig. 2A1). Current
noise was added to the model neuron to give a spread in the ISI
histogram (Fig. 2B1). We then repeated this protocol in a biolog-
ical setting, again using the virtual GABAA conductance imple-
mented using the dynamic clamp. In this case, after an initial
IPSP to evoke PIR, subsequent feedback IPSPs were triggered by
each spike emitted by the interneuron and, again, a sustained
oscillation was observed (Fig. 2A2). Indeed, the histogram of ISIs
observed in the self-connected neuron was narrow (Fig. 2B2),
indicative of a fairly constant latency, with a peak in the low
gamma range. Overall, we observed autapse-supported periodic
gamma in only 9 of 81 (11%) of GAD2� cells, but in 15 of 34
(44%) of PV� cells. This difference between PV� cells and the
broader GAD2� population was highly significant (one-tailed Z
test, p 
 0.001), consistent with the interpretation that only the
FS interneurons are able to support ING via resonance and PIR-
induced firing. Notably, the PV� cell population that exhibited

rebound action potentials had a significantly shorter latency
(input-to-spike delay) than the GAD2� cell rebound-firing pop-
ulation (25.4 � 1.8 ms vs 45.5 � 2.9 ms; p 
 0.001). PV� cells
that could also exhibit the autapse-induced firing had signifi-
cantly shorter latencies than those that could not (22.2 � 1.7 ms,
n � 15, vs 31.6 � 2.9 ms, n � 7; p 
 0.01). A longer latency allows
more opportunity for noise to kill the oscillation.

Using a model neuron with an autapse as in Figure 2A, an
additional, untriggered input was applied after a feedback IPSP,
but before the corresponding rebound spike was emitted (trian-
gle in Fig. 3A). The phase response curve (PRC) for the autapse-
induced oscillation was measured by defining a single cycle as the
ISI, then measuring the phase delay resulting from the additional
input at each phase in the cycle. We hypothesized that the untrig-
gered input would erase the memory of the most recent autapse
inhibition and effectively restart the clock for the PIR latency
between the hyperpolarizing input and the next rebound spike. If
the input is assumed to be saturating, then delivering an addi-
tional input at approximately the same time as the autapse should
have no effect and, indeed, we observed very little phase resetting
at early phases (Fig. 3A2). Moreover, if the latency were truly
constant, then the perturbed cycle period is simply the sum of the
time elapsed between the previous spike and the input and the
constant latency equal to the period of the autapse-induced os-
cillation. Therefore, the phase delay is predicted to be exactly
equal to the phase and the PRC should be a line passing through
the origin with a slope of 1. Indeed, we obtained a PRC with a
slope of 1.1 in the model. In the model, sometimes an input
applied during the upstroke of the action potential could not
prevent the action potential from occurring, resulting in a branch
with little to no resetting at late phases. This branch was ignored
in the slope calculation.

An additional, untriggered input was applied (triangle in Fig.
3B) to measure the PRC for autapse-induced oscillations in 10
PV� cells (Fig. 3). We obtained a linear relationship of slope
1.32 � 0.12 with a coefficient of determination of 0.83. Therefore,
the observed latency is close to the theoretical prediction in terms
of the shape, but is not exactly constant. As we will see in the next
sections, the fact that the slope is greater than required for a
constant latency does not substantially interfere with the robust-
ness of the network oscillation. What is important is that phase-
resetting data points do no occur frequently very far below the
diagonal with a slope of 1 because these points with short laten-
cies would lead to spikes before the rest of the population. The
next network wave of inhibition will reset the phase of neurons
on track to produce a spike with a longer latency than the network
period, so points far above the diagonal are not problematic (see
next sections). Moreover, our simulations (data not shown) re-
vealed that, for the minimal input required to evoke PIR, the
slope was larger than 1 (up to 1.3), but as the strength of the
synapse was increased, the slope converged to 1.

Cycle skipping in a noisy network
Having established the physiological feasibility of an ING
mechanism specific to type 2 neurons, we proceeded to use the
model to demonstrate the high levels of robustness to hetero-
geneity that can be achieved by this network mechanism. First,
we introduced a type of heterogeneity in the time domain by
applying independent current noise to each model neuron
(Fig. 4). In the absence of noise, global synchrony is an emer-
gent property of this network that arises from symmetry
(Golubitsky and Stewart, 2006). In this particular case, the
individual neurons are biased in the subthreshold (nonoscil-

A1 B1

A2 B2

Figure 1. Resonant properties in response to IPSP. Dampened oscillatory response to a weak
IPSP ( gsyn � 0.1 nS) in the model (A1) and in an EC GAD2 � interneuron (B1). A stronger IPSP
elicits a PIR spike in the model with gsyn � 0.5 nS (A2) and in an EC GABAergic interneuron with
gsyn � 1.2 nS (B2). Inset shows feedforward circuit.
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latory) regime, but random initialization causes random neu-
rons to emit spikes, recruiting the population into a globally
attracting PIR based network oscillation (for gsyn � 0.03 nS).
In the absence of any noise or heterogeneity, all neurons fire at
the exact same time because they are identical and receive an
identical number of identical inputs on each network cycle.
No neuron is prevented from firing because inhibition is not
instantaneous, but in general has at least a small conduction
delay, and a finite rise time is required for inhibition to reach
full strength.

When uncorrelated noise is applied to
each neuron in the network (bar in Fig. 4),
jitter emerges in the firing times of the in-
terneurons during a population burst. Neu-
rons that, in the absence of coupling, would
have spiked toward the end of the popula-
tion burst instead have their latency reset as
in Figure 3 and do not fire on that cycle (Fig.
5A1). The trace of the membrane potential
in a representative neuron (Fig. 4A1), as well
as the raster plot (Fig. 4A2), show that cycles
are skipped. The spike time histogram (Fig.
4A3) shows that the firing rate drops dra-
matically in the presence of noise, but cycle
skipping allows synchrony to be fairly well
preserved because mistimed spikes are
largely precluded. Finally, the histogram of
all ISIs (Fig. 4B) for each neuron within the
network includes a peak at the network fre-
quencies but also peaks at integral multiples,
with integral multiplier indicating the num-
ber of cycles that were skipped by individual
neurons. The connectivity in this network is
not all-to-all, but instead is sparse and ran-
dom. Although, in this simulation, all neu-
rons have the same number of postsynaptic
synapses, a random number of these inputs
are active due to the participation of ran-
dom neurons in each cycle. This is a criti-
cally important consequence of spatial
inhomogeneity in the subsets of presynaptic

neurons that is unmasked by the noise. In this particular simulation,
as stated above, all neurons are biased in the subthreshold regime;
therefore, in this case, randomness is increased because some neu-
rons on each cycle may not receive sufficient hyperpolarizing input
to evoke a rebound spike on the next cycle.

What controls the window in which firing is allowed?
To explain how cycle skipping enforces sparse synchrony, we
compared simulations in coupled versus uncoupled networks

A1

B1 B2

A2

Figure 2. Simulated network feedback using a virtual, spike-triggered IPSP. A, Membrane potential (top trace) and injected conductance waveform in the model (�N � 0.1 nA, gsyn � 0.5 nS)
(A1) and in a representative EC GAD2 � interneuron, gsyn � 5 nS (A2). Inset shows simulated virtual autapse. Triangles indicate an initial input not triggered by a spike. B, ISI probability histogram
for the model (B1) and a different EC GAD2 � (B2) neuron from the one shown in the previous figure.

A1 B1

A2 B2

Figure 3. External input resets the of phase self-sustained oscillations. A, Model. A1, Each spike triggers a feedback IPSP
( gsyn � 0.5 nS) as in Figure 2. An additional, untriggered synaptic input (triangle, gsyn � 1.0 nS) resets the phase of the
autapse-induced oscillation in a model neuron (�N � 0.16 nA). A2, The phase-resetting curve measured for a noisy model neuron
with an autapse is linear with a slope near 1, corresponding to a constant latency after the untriggered input. The best fit line is in
blue and the potential waveform is in red. B, Experiment with similar parameters as the model. Each spike triggers a feedback IPSP
( gsyn � 0.6 nS), as in Figure 3A1, and an additional, untriggered synaptic input ( gsyn � 1.2 nS) resets the phase of the autapse-
induced oscillation. B1, Measurement protocol for the PRC in an EC PV � interneuron. B2, PRC for the PV � neuron is also linear.
One outlying point in B2 was omitted.
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(Fig. 5A). The networks were randomly initialized as described in
the Materials and Methods, and then a strong common inhibi-
tory input was applied. The white region of the peristimulus time
histogram shows the dispersion of the spikes in an uncoupled,
sparsely connected but otherwise homogeneous, noisy network.
The gray region shows the dispersion of the spikes in a coupled
network: the gray region is a subset of the white region in which
spikes that occurred later were preferentially skipped. Increasing
the conduction delay from 0 to 3 ms broadened the window in
which spikes could be fired (Fig. 5B) by delaying the arrival of the
barrage of inhibition.

Dynamical systems explanation of cycle skipping that
underlies sparse synchrony
What determines whether a particular neuron skips a cycle? The
reason that the neurons either spike with the population or wait
until the next cycle to have another chance to fire results from the
qualitative nature of the dynamics near a subcritical Hopf bifur-
cation, which we will explain pictorially by potting the two state
variables, v and u, in the (v, u) plane. For a subthreshold, quies-
cent neuron (Fig. 6A), there are two points at which the net

current is 0 and the recovery variable u is at its steady-state value:
the stable resting potential of the model neuron (open circle) and
a second point (filled diamond) at which these conditions are also
met. The stable resting point is a focus, meaning that trajectories
spiral into it. The spiral in the phase plane produces the damped
oscillations seen in Figure 1, A1 and B1. Conversely, trajectories
in the phase plane are attracted to the saddle point (without
spiraling) from one direction (the stable manifold) and repelled
in another (the unstable manifold). The repulsion results from
the positive feedback built into the model by positive sign of the
coefficients of the v and v 2 terms in Equation 1, so any tiny
deviation from the saddle point results in the upstroke of an
action potential. The PIR dynamics can be simply explained by
stating that inhibition pushes the trajectories toward the left. Af-
ter a reset, trajectories move toward the open circle. If inhibition
is not sufficient to push the trajectory outside of the boundary to
the left, then no action potential is generated and a cycle is
skipped. Conversely, if inhibition pushes the trajectory to the left
outside the boundary, then it lands in a confined region of the
phase plane from which there is an approximately constant la-
tency until an action potential is generated unless inhibition from
the next population burst causes it to cross the boundary before a
spike is generated and skip a cycle.

For values of the applied current between 0.1795 and 0.2625
nA, an individual resonator model neuron is bistable between
quiescence and spontaneous pacemaking; this is characteristic of
the dynamics near a subcritical Hopf bifurcation. As the applied
current is increased from values that produce quiescence, the
vector field “pinches off” to form a closed curve that is an unsta-
ble limit cycle (dashed curve in Fig. 6B); this limit cycle now
assumes part of the role of marking the border between generat-
ing a spike or skipping the cycle. Trajectories that remain inside
or reenter the limit cycle spiral into the stable rest potential and
skip the next cycle. However, the remainder of the boundary is

A1

A2

A3

B

Figure 4. Robust synchronization in noisy sparsely connected network due to spike skipping.
All neurons fire a PIR spike on every cycle in the absence of noise. When noise is introduced,
some random subset of population fires after each population spike, which is evidenced in the
single neuron trace (A1), the network raster plot (A2), and spike rate histogram (A3). B, The
histogram of all ISIs in all neurons within the population shows a clear peak at the network
frequency. Peaks at multiples of this frequency indicate that one or more cycles were skipped.

A

B

Figure 5. Inhibition selectively removes spikes that occur later in the cycle. A, No delay. B,
Conduction delay of 3 ms. SD of noise � 0.375 nA. Connectivity is sparse with 40 connections
per interneuron.
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formed by the membrane potential nullcline (gray curve), which
divides the plane into regions in which the membrane potential is
decreasing (leftward movement) or increasing (rightward move-
ment). Trajectories that fall above the limit cycle but to the left of
the right branch of the nullcline also skip a cycle. During the
decay of inhibition, the trajectories begin to move to the right,
and trajectories to the right of the nullcline or below the limit
cycle when the effect of inhibition has dissipated fire an action
potential. In general, neurons that fire early in the cycle avoid
being pushed across the boundary that causes a missed cycle.

In the suprathreshold regime (Fig. 6C), the rest potential be-
comes unstable in a way that forces trajectories to spiral away
from it, such that model neurons become spontaneous pacemak-
ers. Moreover, the stable manifold of the saddle point now starts
at the now unstable “resting potential” (filled circle) and contin-
ues through the saddle point via the unstable manifold to infinity.
Trajectories to the right of below this boundary result in an action
potential, whereas others result in a skipped cycle. Each of these
three scenarios (subthreshold, bistable, suprathreshold) indicates
an oversimplified static picture of the dynamics because the level
of inhibitory conductance experienced by each neuron is con-
stantly changing, resulting in a movie rather than a snapshot
(Rotstein, 2015). However, in all cases, one of these snapshots

qualitatively characterizes the dynamics;
therefore, the mechanism of cycle skip-
ping is robust and conceptually similar in
all regimes. Although this model has sim-
plified dynamics, it is dynamically equiv-
alent to the more complex and better
known FitzHugh–Nagumo and Hodg-
kin–Huxley models and the results pre-
sented in the networks in this study
should be general.

How does inhibition control the
spiking window?
We next examined the effect of the synap-
tic parameters on the width of the window
in which firing was allowed (Fig. 7A). We
assessed by width of the window using the
SPC. We fixed 	rise at 2 ms and allowed 	fall

to increase from 2 to 10 ms and allowed
gsyn to vary from 0 to a very strong value.
In this parameter space, there is a region
of silence, a region of sparse synchrony
characterized by R 2 � 0.9 and a region of
intermittent synchrony in which R 2 drops
off rapidly. The latter two regions result

from random initialization: a globally synchronous solution is
bistable with sparse synchrony. Because there is no noise in this
figure, the only source of variability is the sparse connectivity.
Spatial inhomogeneity is sometimes called quenched random-
ness (van Vreeswijk and Sompolinsky, 1998). With all to all con-
nectivity, sparse synchrony (SPC 
1) is not exhibited in the
absence of independent noise sources or other forms of hetero-
geneity. With full connectivity and no variability, global oscilla-
tory synchrony (SPC � 1) or the trivial version of synchrony in
which all neurons are silent (SPC � 0) are the only solutions
exhibited by the network. With sparse connectivity, one or both
of these solutions can be bistable with sparse synchrony. How-
ever, in Figure 7, we are only interested in characterizing how the
synaptic parameters affect width of the window in which firing is
allowed, so we ignore this bistability.

For gsyn, there a minimum value below which PIR is not gen-
erated (Fig. 1) but it is barely visible on the scale in this figure. As
gsyn is increased, the window for spiking becomes narrowed, as
evidenced by the decrease in SPC and by the appearance of mul-
tiple peaks in the ISI histograms (Fig. 7B). Peaks other than the
first one indicate skipping one or more cycles and broader peaks
reflect a broadening of the window. Increasing gsyn increases the

A B C

Figure 6. Cycle-skipping mechanism. A, Subthreshold. Trajectories leading to and from the saddle (filled diamond) determine whether trajectories of individual neurons fire or skip a cycle. B,
Bistable. The unstable limit cycle (partially dashed/partially solid closed curve) intersects with the voltage nullcline (solid gray) where the net current � v� � 0. The dark part of both curves forms
the boundary for cycle skipping. The dashed line shows u � bV, where u is at its steady state u� � 0. The intersections of v� � 0 and u� � 0 give the fixed points. C, Suprathreshold. Again,
trajectories leading to and from the saddle (filled diamond) determine whether trajectories of individual neurons fire or skip a cycle. a.u., Arbitrary units.

A B1 B2

B3 B4

Figure 7. Effect of synaptic parameters on synchronization in a sparsely connected noiseless network. A, Parameter space
divides into regions of sparse synchrony and intermittent sparse synchrony and silence. B, ISI histograms. B1, Global synchrony.
B2, Cycle skipping. B3, Cycle skipping with a broader window. B4, Broad peaks superimposed on a baseline level of firing reflect
intermittent sparse synchrony.
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degree of quenched randomness and destroys the global attrac-
tiveness of full synchrony observed in the noiseless part of Figure
4A. For an instantaneous conductance (delta function), there is
no upper bound on gsyn because the effect of the synaptic con-
ductance saturates as the membrane potential approaches the
reversal potential. However, synchrony is weakened as gsyn is in-
creased because the inhibition becomes essentially tonic or, on
much of the time, blurring the simple picture presented in Figure
6 in which a neuron either skips a cycle or it does not. The simu-
lations are not stationary in the hatched regime in Figure 7A,
instead sparse synchrony waxes and wanes, with less synchrony as
gsyn continues to increase. This effect of increasing gsyn is, of
course, exacerbated as 	fall is increased. 	fall has no lower bound
because it is not allowed to drop below 	rise, but it clearly has an
upper bound when inhibition is so long-lasting that the stable
fixed point in Figure 6A is always achieved rather than PIR.

We did not systematically investigate the effect of 	rise because
increasing 	rise has a similar effect as increasing the conduction
delays in that it broadens the window. However, we did perform
simulations with single exponential synapses that were allowed to
reach their maximum value with no delay after the presynaptic
neuron reached the spike threshold. For a fully connected net-
work, very fast inhibition disrupted synchrony, in agreement
with decades of literature (Van Vreeswijk et al., 1994). Global
synchrony was also disrupted in a sparsely connected network
wired as described in the Materials and Methods. However,
sparse synchrony persisted due to cycle skipping. Global syn-
chrony requires that some time elapse before a spike in one neu-
ron delays the occurrence of a spike in its neighbors, otherwise
global synchrony is destabilized. Cycle skipping abolishes this
requirement and sparse synchrony persists in the face of strong,
instantaneous inhibition.

Robustness of synchrony in the presence of different types
of heterogeneity
We next systematically explored the effect of different types of
heterogeneities, starting with current noise (as in Fig. 4) that
provides heterogeneity in the temporal domain. As the noise level
increased, the SPC (dashed black curve in Fig. 4), which is the
fraction of network cycles in which each neuron participated on
average, decreased to maintain synchronization in a fashion sim-
ilar to that observed in Figure 4A. The level of the current noise
applied to each model neuron was varied from 0 to a level (1.8
nA) that produced a high level of spontaneous firing (�22
spikes/s) in otherwise quiescent neurons (Fig. 8A). The R 2 vector
strength (solid black curve) measure of synchronization re-
mained above 0.7 even for this strong level of noise. Next (Fig.
8B), we varied the level of external, constant excitatory current, or

drive across the network, introducing spatial heterogeneity. The
network responded to spatial heterogeneity in exactly the same
fashion that it responded to heterogeneity in the time domain
(i.e., noise). The vector strength dropped off gradually as the CV
of the drive was increased to 1 and the SPC again decreased to
allow the network to maintain synchrony by preferentially drop-
ping misaligned spikes. The network spanned the range of oscil-
lators and quiescent neurons, with an average drive of 0.2 nA
compared with a level of 0 – 0.1795 nA for quiescence, 0.1795–
0.2625 nA for bistability between quiescence and pacemaking,
and pacemaking only at drives �0.2625. We then introduced
spatial inhomogeneity in a different way by randomizing the
values of individual synaptic conductances in Figure 8C,
as described in the Materials and Methods and assessing this
variability using the CV of the total conductance resulting from
the 40 synapses per neuron across the population of 300 neurons.
Network synchrony as measured by the R 2 vector strength was
exceeding robust to this type of variability, likely because the PIR
latency of individual neurons is weakly dependent on the
strength of the inhibitory conductance so long as it is sufficient to
elicit a rebound spike as shown in Figure 1B). Nonetheless, the
SPC decreased as heterogeneity in connectivity was increased, but
the synchronization remained near perfect for a CV of 1. Finally
(Fig. 8D), we varied the conduction delays from a mean of 3 ms as
the SD of a Gaussian distribution was increased to 14 ms (the
distribution was truncated to avoid values of delay 
0.1 ms).
Once again, synchronization remained high as the variability was
increased to very high levels. In contrast to the other types of
heterogeneity, for variability in the delays, the SPC only declined
slightly until a threshold of a SD of �5 ms was reached, then they
dropped sharply to allow the network to maintain synchrony.
Introducing variability in the conduction delays spreads out the
inhibitory barrage in time, even for the case in which all neurons
fire simultaneously. For small variability, the inhibitory barrage
occurs after the population burst without suppressing any neu-
rons. For an SD of delays �5 ms, the inhibitory barrage was
sufficiently spread out that it began to suppress some neurons on
each cycle. Therefore, increasing the SD of the delay narrows the
window of opportunity to fire.

We also examined how gap junctions affect synchroniza-
tion and the robustness of the mechanism under study. We
inserted an electrical synapse with a conductance of 2 �S in
parallel with each chemical synapse in the model. In general,
the R2 and SPC values were very similar to those shown in
Figure 8 except, in Figure 8B, there was a slight increase in R 2

for large SD.

A B C D

Figure 8. Response of the network oscillation to heterogeneity. Only one type of heterogeneity was introduced in any given simulation. Vector strength R 2 is a measure of synchronization shown
by the black curves and average spikes of individual neurons per cycle (SPC) of the population oscillation (dashed curve). A, Noise. B, External drive. C, Synaptic conductance. D, Conduction delays.
In B, the R 2 is variable at low SPC and depends upon initial conditions.
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Comparison of purely inhibitory networks of suprathreshold
integrators or resonators
We varied the parameters of each model as described in the Ma-
terials and Methods to obtain a distribution in the frequency and
plotted the R 2 vector strength as a function of the CV of the
frequency. As expected from previous work (Wang and Buzsáki,
1996; White et al., 1998), the ability of a network of integrators to
synchronize in the presence of such heterogeneity is very limited.
There are two failure modes: phase dispersion, in which R 2 plum-
meted but participation (SPC) remains high, and suppression, in
which R 2 remains high but the faster neurons suppress other
neurons so the participation drops. The R 2 vector strength for a
network of integrators plummeted near 0 with a CV of only �0.1
or 10% (dashed curve in Fig. 9A). Conversely, a comparable
tuned network of resonators (see Materials and Methods) was
able to maintain strong synchronization (solid line near 1 in Fig.
9A) at a CV of 0.8, at a cost of decreasing the SPC (Fig. 9B). The
integrator network was tuned in a phasic regime with stronger
inhibition and it failed in a manner similar to the comparably
tuned resonator network (see Materials and Methods), but much
more precipitously than the resonator network in terms of par-
ticipation (cf. Fig. 9B and C2 vs C3). However, it is important to
note that these simulations were conducted in networks with
all-to-all connectivity, which shows the integrators in the best
possible light because they do not show the robustness to sparse
connectivity of resonator networks. Previous analyses suggested
that neurons with type 2 excitability and type 2 PRCs cannot
synchronize via inhibitory connections (Hansel et al., 1995;
Achuthan and Canavier, 2009). However, we find that strong
inhibition that invokes PIR can decouple the shape of the PRC
from the excitability type (Ermentrout, 1996) and that this is
sufficient to allow global synchronization of neurons with type 2
excitability coupled via inhibition.

Comparison of purely inhibitory
networks of subthreshold integrators
or resonators
We then wanted to make a fair compari-
son between the stochastic population os-
cillator model and the PIR network or
resonators. We took the same network of
300 neurons, made sure that the constant
level of drive resulted in a quiescent neu-
ron, and then adjusted the current noise
level so that the isolated resonator and in-
tegrator model neurons had the same
baseline frequency. Then, the synaptic
conductance in the network was adjusted
so that each connected network had an R 2

vector strength of 0.97. At this value of R 2,
the SPC was �0.2 in the resonator net-
work and �0.006 in the integrator net-
work. First, we demonstrated that
synchronization in the network of resona-
tors was more robust to variability in the
connectivity than in networks of integra-
tors, as shown by the more rapid decline
of vector strength for the integrator net-
work (dashed line in Figure 10A) com-
pared with the resonator network (solid
line in Fig. 10A) as the CV of the total
synaptic conductance was increased.
Next, we examined the relationship be-
tween participation of individual neurons

in the network oscillation as measured by the SPC and synchrony
as measured by R 2. To manipulate the SPC through a range, we
varied the noise amplitude as described in the Materials and
Methods. In the integrator network, increasing the SPC from
0.006 to �0.01 resulted in a precipitous drop in R 2 vector
strength (dashed curve in Fig. 10B). Conversely, increasing the
noise in the network of resonators changed the SPC in the oppo-
site direction, causing a decrease in participation to an SPC of
�0.1, and also decreased R2, but only slightly, until an inflection
point was reached. After the inflection point, R 2 decreased
sharply, but participation began to increase. Examination of the
ISI histograms suggest that regime in which participation in-
creases with increasing synchronization corresponds to a PIR
cycle-skipping oscillation, whereas the regime in which partici-
pation increases with decreasing synchronization more closely
resembles a stochastic population oscillator. In fact, the stochas-
tic population oscillator composed of integrators shows a similar
dependence of decreasing synchrony with increasing participa-
tion. In sum, Figure 9 shows that, in the suprathreshold regime,
resonators are much better able to synchronize in the face of
heterogeneity in frequency than integrators and Figure 10 shows
that, in the subthreshold regime, the synchronization of networks
of resonators operating under a PIR mechanism is largely insen-
sitive to increasing participation, but that of network of integra-
tors deteriorates rapidly with increasing participation. Only
when the noise is large enough to overwhelm the PIR mechanism
does the resonator network begin to resemble qualitatively a sto-
chastic population oscillator. We suspect that noise disrupts the
vector field, illustrated by the snapshots in Figure 6, which con-
strains trajectories to either fire together or skip a cycle. Consis-
tent with this idea, we decreased the factor kj in Equations 1 and 2
to decrease the strength of the vector field by the same factor at all
points and found that the noise required to reach the inflection

A B

C1 C2 C3

Figure 9. Robustness of synchrony in coupled oscillator networks of resonators versus integrators (all-to-all connectivity).
Increasing the CV of the intrinsic frequencies affected synchronization (A) and participation (B) differently. Raster plots (C) show
how synchrony fails for integrators in the tonic regime (C1), integrators in the phasic regime (C2), and resonators (C3). Note that
only one set of curves is plotted for the resonator networks, although two parameter regimes were explored as described in the
Materials and Methods because the curves were indistinguishable.
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point in Figure 10B decreased approximately proportionately
(data not shown).

It is clear in the histograms in Figures 7B and 10C that, as the
robust sparse synchrony due to PIR is lost due to increasing noise
or synapse strength, the “forbidden zones” between peaks at mul-
tiples of the network ISI fill in. In Figure 6, A and B, the neurons
have a stable fixed point inside of a well defined boundary and, in
Figure 6C, the situation is somewhat analogous because of the
very weak repulsion of the unstable fixed point. Forbidden zones
remain as long as the noise is not strong enough to move trajec-
tories from the fixed point across the boundary. To address the
effect of increasing synaptic strength in Figure 7, it is important to
keep in mind that the boundaries in Figure 6 were drawn for an
isolated neuron in the absence of inhibition to explain the trajec-
tories after the inhibition has dissipated. For sufficiently strong
inhibition, the inhibition never dissipates, so the phasic effect of
inhibition is largely lost and the timing of spikes becomes noise
driven.

Summary
We have demonstrated that interneurons with type 2 excitability
are not uncommon in the entorhinal cortex and the literature
provides evidence that they can be found in other brain areas as
well. We provided a “proof-of-principle” example experiment
using the dynamic clamp to show that inhibitory network feed-
back can produce an approximately periodic rhythm in otherwise
quiescent interneurons with type 2 excitability. We showed that
inhibitory networks of model neurons with type 2 excitability are
remarkably robust to heterogeneity introduced by uncorrelated
noise or spatial inhomogeneities introduced in the level of extrin-
sic drive and connectivity, including delays. We also show that, in
the suprathreshold regime, these networks are robust to hetero-
geneity in frequency and, in the subthreshold regime, they are
robust to high interneuronal firing rates that occur if the in-
terneurons participate in a large fraction of cycles. Next, we show
that the cycle-skipping mechanism is built into the essential dy-
namics underlying type 2 excitability regardless of whether the
neuron is biased in a subthreshold or suprathreshold regime.
Finally, PV� cells were much more likely to display both PIR and

autapse-induced firing than GAD2� cells, supporting the view
that PV� fast-firing basket cells are more likely to exhibit class 2
excitability than other types of inhibitory interneurons.

Discussion
Novelty
PIR can enable antiphase synchrony between two neurons
(Perkel and Mulloney, 1974), as well as propagating activity pat-
terns (Rinzel, Terman, Wang and Ermentrout, 1998). Wang and
Rinzel (1993) showed that all-to-all networks of neurons with
PIR due to a low-threshold calcium channel could synchronize
via mutual inhibition. Heterogeneity resulted in clusters of silent
versus active cells, with a slow variability in cluster composition.
In contrast, firing patterns in our networks appear much
more random and our networks do not require heterogeneity for
sparse synchrony if the coupling is strong enough (Fig. 7A) be-
cause the quenched variability (van Vreeswijk and Sompolinsky,
1998) introduced by each neuron having a different set of presyn-
aptic neurons suffices. Missed and skipped cycles (Glass and
Winfree, 1984; Kaplan et al., 1996) are characteristic of the sub-
critical Hopf bifurcation (Ermentrout, 1996; Rinzel and Ermen-
trout, 1998; Prescott et al., 2008) underlying type 2 excitability
(Hodgkin, 1948; Izhikevich, 2007). Fitzhugh (1976) described a
“limiting trajectory” in a model with type 2 excitability, a concept
that is very similar to the constant rebound interval after a strong
inhibition observed in our study. The novelty of our theoretical
work is to show that the tendency for missed cycles combined
with the concept of a limiting trajectory enables robustness of
sparse synchrony in an inhibitory network.

A damped oscillation (as in Fig. 1) in response to a small
hyperpolarization is predicted for neurons near a subcritical
Hopf bifurcation (Izhikevich, 2007; Rotstein, 2015), but we only
found examples in the literature of damped oscillations (Gut-
freund et al., 1995; Izhikevich et al., 2003) in neurons that exhibit
spontaneous subthreshold oscillations, which do not characterize
FS interneurons. PIR was first documented in hippocampal in-
hibitory interneurons by Cobb et al. (1995). The novelty of our
experimental work is to demonstrate that the ability of inhibitory
interneurons to exhibit both PIR and the damped oscillations
characteristic of resonators (Fig. 1) allows participation in a net-
work oscillation driven by PIR (Fig. 2), as well as a “limiting
trajectory”—that is, constant rebound—in response to strong
inhibition (Fig. 3).

Historical perspective
Our interest in mechanisms of inhibitory interneuronal network
gamma was sparked by a conundrum posed in a review of this
literature by Bartos et al. (2007). They noted that neither the
stochastic population oscillator (Brunel and Wang, 2003) nor the
coupled oscillator (Wang and Buzsáki, 1996) model provided a
satisfactory explanation of how inhibitory interneurons can par-
ticipate on many cycles and remained synchronized to create a
population rhythm despite documented variability in the level of
external drive. The problem with a pure ING stochastic popula-
tion model is that the SPC fired by a representative neuron is, on
average, negatively correlated with the tightness of the window in
which firing is disinhibited, whereas the tightness of synchrony is
positively correlated with the same quantity. The negative corre-
lation only holds true under the assumption that the firing times
in each neuron approximate a Poisson process and inhibition in a
network merely subtracts spikes during the periodic wave of in-
hibition. In the coupled oscillator model, each neuron is a rhyth-
mic pacemaker. Synchronization due to interactions between

A B

C1 C2 C3

Figure 10. Robustness of synchrony in stochastic network oscillator of resonators versus
integrators. These networks have all-to-all rather than sparse connectivity. In a subthreshold
regime, the CV of the conductance (A) and the SPC (B) were systematically varied. C, Peaks in the
ISI histogram became broader and the valleys filled in as noise was increased.
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neurons can then arise as an emergent property of the network
and participation is no longer inversely correlated with the level
of synchrony. However, the FS interneurons associated with in
vitro models of ING have a steep frequency– current relationship,
particularly at low levels of external drive and the physiological
variability in drive is likely to be quite high. For example, in the
context of the ING variant induced by bath application of metabo-
tropic glutamate (mGLU), there is a 35% coefficient of variability
(van Hooft et al., 2000) in the level of mGLU responses. Inhibitory
networks of neurons with type 2 excitability successfully overcome
both stated problems and may play a role in increasing the robust-
ness of synchrony to high levels of both participation on a given cycle
and heterogeneity between neurons.

What current is responsible for the PIR-based mechanism?
Although currents like the hyperpolarization-activated nonspe-
cific cation current (Ih) and the low threshold T-type Ca 2� cur-
rent mediate PIR in some neurons, only postinhibitory rebound
that is associated with currents responsible for spiking, as op-
posed to bursts or other slow oscillations (Wang and Rinzel,
1993; Rotstein and Nadim, 2014), is relevant for the robust cycle
skipping mechanism proposed here. In the original Hodgkin–
Huxley model, the relevant process is removal of inactivation of
the fast, voltage-dependent Na� channel. The Izhikevich model,
unlike the classic Hodgkin–Huxley model, is not conductance
based. However, the variable u, which functions as a net outward
current, represents all the slower, restorative processes that op-
pose spike initiation, which include putative candidates for the
PIR mechanism, including removal of inactivation of the sodium
current.

Network contributions from type 1 interneurons
There is a great diversity of inhibitory interneuronal subtypes
(Klausberger and Somogyi, 2008) and there is likely diversity
even within the PV� FS basket cell population, especially because
the excitability type can be modulated (Prescott et al., 2008). A
recent study (Ferguson et al., 2013) intentionally modeled PV�

fast-firing CA1 interneurons as integrators rather than resonators
because they observed no evidence of subthreshold oscillations,
unlike Figure 1, A1 and B1. We also did not observe damped
subthreshold oscillations unless the cell was depolarized from
rest using a constant current before applying the virtual inhibi-
tory conductance. An interesting direction for future research is
to determine the effect on robustness if only a fraction of the
inhibitory interneurons display type 2 excitability.

Network contributions from pyramidal cells
In intact brain, excitatory pyramidal interneurons also partici-
pate in gamma oscillations. Introducing pyramidal neurons into
stochastic population oscillator models (Brunel and Wang, 2003)
allows the average level of excitatory drive to the interneurons to
vary in time, which mitigates the conflict between participation
and synchronization and can allow cycle skipping, but is limited
by the degree to which excitatory neurons are allowed to synchro-
nize their activity (Atallah and Scanziani, 2009).

One recent PING model (Economo and White, 2012) was
constructed with pyramidal cells coupled to interneurons with
type 2 excitability. Weakly synchronized pyramidal cells partici-
pated in �1 in 10 cycles, whereas interneurons demonstrated
cycle skipping by participating with tight synchrony, on average,
every other cycle, which is consistent with in vitro models of
PING (Hájos et al., 2004). However, inhibition onto the in-
terneurons was shunting and not hyperpolarizing. The present

study focused on hyperpolarizing inhibition, so the mechanisms
underlying cycle skipping in this network may be different, but
may also arise from the intrinsic dynamics of interneurons with
type 2 excitability.

The differential robustness of PING networks containing in-
hibitory interneurons with type 1 versus type 2 excitability has
only begun to be explored. One study (Moca et al., 2014) using
all-to-all coupled suprathreshold resonators embedded in PING
circuits found improvement in the maintenance of a constant
period in the presence of heterogeneity in extrinsic drive com-
pared with networks with integrator interneurons. A second
study of PING networks with heterogeneous drive to the pyrami-
dal cells (Börgers and Walker, 2013) also found a more stable
oscillation frequency and a more abrupt transition to suppres-
sion of the pyramidal cells as the external drive to the inhibitory
interneurons was increased for resonator versus integrator in-
terneurons. A third recent PING study (Baroni et al., 2014), like
ours, emphasized the critical role of postinhibitory rebound and
inhibitory, but not shunting, inhibition in increasing participa-
tion and synchrony in networks with resonator interneurons
compared with integrators.

Type 1 versus type 2 networks
There are two different ways (White et al., 1998) in which global
synchrony is lost in an inhibitory network of type 1 oscillatory
neurons with mild heterogeneity in frequency: phase dispersion
and suppression of the slower neurons in the population by the
faster ones. The robust cycle-skipping phenomenon described
herein (Fig. 4) is not observed. Accompanying theoretical analy-
ses (Chow et al., 1998) explained these results using a self-
inhibited neuron as a reduced model of synchrony in inhibitory
networks; relaxation back to rest was assumed to be exponential.
These analyses need to be extended to include the damped oscil-
latory dynamics characteristic of resonators (Fig. 1). Moreover,
the prevailing wisdom is that the population activity in networks
of coupled oscillators does not change qualitatively in the pres-
ence of heterogeneity (Brunel and Wang, 2003). We show that
the network oscillation can indeed change qualitatively, given
type 2 dynamics and moderate noise. Specifically, the firing of
individual neurons remains tightly locked to the population os-
cillation, but the neurons, on average, fire on fewer cycles as
heterogeneity is increased. Moreover, we have shown the results
are qualitatively similar in the subthreshold and suprathreshold
regimes, also known as mean versus fluctuation-driven regimes.

Model prediction
One important way to distinguish a stochastic population oscil-
lation from the resonator network oscillation described here is
suggested by Figure 10. We predict that single unit firing rate
should vary inversely with vector strength of locking to the pop-
ulation at a constant frequency for a stochastic population oscil-
lator, whereas a positive correlation between these quantities for
individual type 2 neurons within a resonator network should
characterize the oscillation mechanism presented herein.

Conclusions
We present an elegant strategy for maintaining synchrony in the
face of the myriad forms of biological inhomogeneity. The selec-
tive skipping of cycles in which the firing of a given neuron is not
well aligned with the population allows the level of participation
to adjust to the level of heterogeneity and noise. The most prom-
inent drawback is the requirement for hyperpolarizing rather
than shunting inhibition. This drawback may be mitigated if the
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membrane potential of PV� interneurons is more depolarized in
vivo than in vitro, given that a consistently small, but hyperpolar-
izing, driving force for ionotropic GABAergic synapses has been
observed for interneurons in CA3 stratum lucidum in vitro across
development (Banke and McBain, 2006). Moreover, the well
documented existence of type 2 inhibitory interneurons suggests
that the remarkable robustness of inhibitory networks of resona-
tors may contribute to some of the many variants of gamma
oscillations.
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