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Functional Connectome Analysis of Dopamine Neuron
Glutamatergic Connections in Forebrain Regions
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In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make gluta-
matergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across
the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation
of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow
fluorescent protein (ChR2-EYFP) and used DAT IREScre mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons
almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP
fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and
cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative prin-
cipal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron
terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc,
OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic
connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA
dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine
neuron excitatory functional connectome.
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Introduction
Dopamine neurons in the ventral tegmental area (VTA) project
widely to forebrain targets (Swanson, 1982; Björklund and Dun-

nett, 2007; Yetnikoff et al., 2014), where they regulate aspects of
motivation, learning, habit formation, and social behavior (Zwe-
ifel et al., 2009; Wang et al., 2011; Salamone and Correa, 2012;
Gunaydin et al., 2014) and are involved in neuropsychiatric
disorders including addiction, depression, and schizophrenia
(Lüscher and Malenka, 2011; Kuepper et al., 2012; Everitt and
Robbins, 2013). Some VTA dopamine neurons express vesicular
glutamate transporter 2 (VGLUT2) and corelease glutamate
(Sulzer et al., 1998; Chuhma et al., 2004; Dal Bo et al., 2004;
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Significance Statement

Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major
neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate
cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine
neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that
only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of
dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of
the dynamic range of dopamine neuron signals.
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Hnasko et al., 2010; Stuber et al., 2010; Tecuapetla et al., 2010;
Taylor et al., 2014; Trudeau et al., 2014) or GABA (Tritsch et al.,
2012). Although in situ hybridization studies in the rat have
shown that 30 –50% of VTA dopamine neurons identified by
tyrosine hydroxylase (TH) immunoreactivity express VGLUT2
mRNA (Kawano et al., 2006; Yamaguchi et al., 2011; Morales and
Root, 2014), fewer TH-VGLUT2-colocalized cells have been re-
ported in the mouse (Yamaguchi et al., 2015). However, �50% of
VTA dopamine neurons have been shown to express VGLUT2
using a conditional mCherry reporter virus in VGLUT2 IREScre

mice (Taylor et al., 2014), suggesting that similar numbers of
dopamine neurons in the rat and mouse are capable of glutamate
cotransmission. In contrast to the VTA, almost no substantia
nigra (SN) dopamine neurons express VGLUT2 (Kawano et al.,
2006; Mendez et al., 2008; Bérubé-Carrière et al., 2009; Yamagu-
chi et al., 2011; Yamaguchi et al., 2015). Consistent with the ex-
pression of VGLUT2 in VTA but not SN dopamine neurons,
optogenetic activation of dopamine neuron terminals in the
ventral striatum (vStr) [i.e., the nucleus accumbens (NAc) and
olfactory tubercle (OT)] elicits excitatory responses, whereas ac-
tivation of dopamine neuron terminals in the dorsal striatum
(dStr; i.e., caudate–putamen) elicits very weak or no responses
(Stuber et al., 2010; Tecuapetla et al., 2010; Tritsch et al., 2012;
Ishikawa et al., 2013; Adrover et al., 2014; Chuhma et al., 2014;
Wieland et al., 2014).

VTA dopamine neurons project widely to forebrain regions
(Swanson, 1982; Taylor et al., 2014; Yetnikoff et al., 2014), but
their glutamatergic synaptic connections beyond striatal sites
have not been described. Although glutamatergic markers have
been identified in dopaminergic forebrain projections (Yamagu-
chi et al., 2011; Gorelova et al., 2012; Busse and Smith, 2013;
Taylor et al., 2014), it is not clear whether these projections make
glutamatergic connections uniformly. We therefore used optoge-
netics to determine the incidence and strength of dopamine neu-
ron glutamatergic connections in forebrain projection targets of
the VTA. We used DAT IREScre mice to restrict expression of
ChR2-EYFP to DA neurons. ChR2-EYFP was robustly exported
to dopamine neuron axons independent of transmitter or
cotransmitter status (Tsai et al., 2009; Cohen et al., 2012;
Chuhma et al., 2014; Lammel et al., 2015). Guided by axonal
fluorescence, we systematically recorded dopamine neuron
glutamatergic inputs to putative principal neurons in forebrain
projection areas to determine the VTA dopamine neuron gluta-
matergic functional connectome.

Materials and Methods
Animals. We used heterozygous DAT-internal ribosome entry site
(IRES)-cre recombinase (DAT IREScre) mice on a C57BL6J background
(Bäckman et al., 2006) (jaxmice.jax.org/strain/006660.html). All
studies were conducted in accordance with the guidelines of the Na-
tional Institute of Health’s Guide for the Care and Use of Laboratory
Animals under protocols approved by the Institutional Animal Care
and Use Committees of Columbia University and New York State
Psychiatric Institute.

Viral expression of ChR2 in dopamine neurons. We used a serotype 5,
replication-incompetent, adeno-associated virus (AAV) to drive cre-
dependent expression of ChR2-EYFP (Atasoy et al., 2008; Tsai et al.,
2009). The ChR2-EYFP construct with double-floxed inverted open
reading frame (DIO) (EF1�-DIO-hChR2(H134R)-EYFP) was packaged
in an AAV vector (Gene Therapy Vector Core Facility, University of
North Carolina). Mice between 25 and 40 d old were anesthetized with
ketamine (90 mg/kg) � xylazine (7 mg/kg) and 1 �l of virus (titer 1.5 �
10 12 genome copies/ml) was injected bilaterally into the VTA (AP �3.3
mm, DV �4.3 mm, L � 0.5 mm relative to bregma). The virus was

injected through glass pipettes (PCR micropipettes; Drummond) pulled
to a tip diameter of 20 – 40 �m with timed solenoid-controlled pulses of
compressed air. Pipettes were left in place for 3 min after the injection to
reduce back flux along the injection track.

Brain tissue preparation and immunohistochemistry. We used a total of
12 mice for morphological studies. At 3–5 weeks after injection, mice
(males and females, 59 –70 d of age) were anesthetized and then rapidly
perfused intracardially with 1 ml of warm phosphate buffer (30°C, 0.1 M,
pH 7.4) containing 10,000 IU heparin/L, followed by 5 ml of cold phos-
phate buffer and then by 5 ml of 4% paraformaldehyde in phosphate
buffer. Brains were removed and postfixed for 1 or 2 d at 4°C. Brains were
cryoprotected in 30% sucrose and then cut on a freezing microtome at 40
�m or cut without cryoprotection on a vibrating microtome at 50 �m.
Coronal slices were collected into a cryoprotectant solution (30% glyc-
erol, 30% ethylene glycol in 0.1 M Tris HCl [pH 7.4]) and kept at �20°C
until processing.

Immunofluorescence methods were used to reveal immunoreactivity
(ir) for ChR2-EYFP and TH; immunoperoxidase methods were used to
reveal ChR2-EYFP-ir and NeuN-ir elements, as described previously
(Bubser et al., 2000; Chuhma et al., 2014). Briefly, for immunofluores-
cence studies, sections were blocked with normal donkey serum and then
incubated overnight with a rabbit polyclonal directed against green flu-
orescence protein (GFP), which recognizes EYFP (1:2000; Millipore
AB3080) and mouse monoclonal anti-TH (1:1600; Immunostar 22941
or 1:5000; Millipore MAB318) antibodies. The next day, sections were
washed and incubated for 2 h with anti-rabbit Alexa Fluor 488 (1:200;
Invitrogen A-21206) and either anti-mouse Cy3 or Alexa Fluor 594
secondary antibodies (1:200; Invitrogen M30010 and A-21203, re-
spectively). Sections were mounted on slides and coverslipped using
Prolong Gold mounting medium (Invitrogen) and kept at 4°C before
imaging.

For immunoperoxidase studies, sections were first incubated over-
night in the rabbit polyclonal anti-GFP antibody (1:2000; Millipore
AB3080) and, after washing, placed in biotinylated anti-rabbit IgG. Sec-
tions were then incubated in streptavidin-conjugated peroxidase and
developed with cobalt chloride/nickel ammonium sulfate-intensified
peroxidase to yield blue-black ChR2-EYFP � elements. To visualize
NeuN-ir neurons, sections were washed, incubated in methanolic perox-
ide, washed, and incubated overnight in mouse monoclonal anti-NeuN
antibody (1:1000; Millipore MAB377). Sections were then incubated in
biotinylated anti-mouse IgG, washed, incubated in streptavidin-
conjugated peroxidase, and developed in peroxidase without heavy metal
intensification to yield brown NeuN � nuclei.

Confocal image analysis. Confocal imaging was done using either a
Fluoview FV1000 (Olympus) or A1 (Nikon) confocal scanning micro-
scope. Fluorescence images used to quantify ChR2-EYFP/TH colocaliza-
tion in the medial and lateral portions of the VTA and SN were acquired
systematically along the AP axis at �3.16 mm, �3.28 mm, �3.52 mm,
�3.80 mm, �3.88 mm, and �4.04 mm posterior to bregma. In each
location, confocal photomicrograph stacks (60� oil objective; optical
zoom 1.4�, and z-step increment 0.42 �m; 800 � 800 pixels image
frames with a pixel size of 0.189 �m 2) were taken through the entire
tissue section (40 – 60 images). After acquisition, confocal stacks were
adjusted linearly for contrast and brightness using ImageJ version 64
(Abramoff et al., 2004). Counting of colocalized cells was done using the
ImageJ version 64 cell-counter plug-in. All cells with a visible nucleus
were counted within the counting frame through the entire thickness of
the section. Numbers of ChR2-EYFP �/TH � cells in the VTA and SN
were expressed as percentage of TH � cells counted at each stereotaxic
location. Differences along the anterior–posterior and medial–lateral
axes were analyzed using the nonparametric Friedman’s test, with signif-
icance set at 0.05.

To determine the density of ChR2-EYFP � axons in forebrain regions,
we acquired 2 confocal stacks of 10 images (20� objective; optical zoom
1.4�, and a z-step increment of 0.50 �m; 1024 �1024 pixels image
frames with pixel size 0.196 �m 2) for each forebrain area in approxi-
mately the same location where in vitro recordings were made indepen-
dently of fluorescence brightness. In addition, we took a picture of an
area without ChR2-EYFP fluorescence to normalize all images to the
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same background level. To access the density of ChR2-EYFP � axons, the
z-projected, background-normalized, 8-bit images were made binary
and the number of foreground pixels were counted using the histogram
function in ImageJ version 64. The density of ChR2-EYFP � axons in
forebrain areas was expressed as the number of suprathreshold pixels in
the 1024 �1024 pixel image frame. Differences in axonal density between
forebrain regions were analyzed using one-way ANOVA and Scheffe post
hoc test. Pixel densities are expressed as the mean � SEM. All statistical
analyses were done using SPSS 22 (IBM).

Slice patch-clamp recording. We used 12 male and 17 female mice
(54 – 83 d old, 21–56 d after AAV injections) for patch-clamp recordings.
Animals were anesthetized with ketamine � xylazine. Brains were re-
moved into ice-cold high-glucose artificial CSF (aCSF) saturated with
carbogen (95% O2 � 5% CO2). The composition of the high-glucose
aCSF contained the following (in mM): 75 NaCl, 2.5 KCl, 26 NaHCO3,
1.25 NaH2PO4, 0.7 CaCl2, 2 MgCl2, and 100 glucose adjusted to pH 7.4.
Coronal slices (300 �m) were cut on a vibrating microtome (VT1200S;
Leica) and recordings were done in five different coronal sections con-
taining the striatum, the amygdala, the hippocampal formation, or the
anterior cortices.

Slices were preincubated in high-glucose aCSF saturated with carbo-
gen for 1 h at room temperature for recovery and then transferred to the
recording chamber (submerged, 500 �l volume) on the stage of an Olym-
pus BX61WI fluorescence microscope with a 60� water-immersion lens.
The recording chamber was continuously perfused (1.5 ml/min) with
standard aCSF containing the following (in mM): 125 NaCl, 2.5 KCl, 25
NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 25 glucose, pH 7.4,
saturated with carbogen. Recordings were done at 31–33°C (TC 344B
temperature controller; Warner Instruments). Glutamatergic responses
were isolated by the addition of a mixture of antagonists to the perfusate:
10 �M SR95531 (gabazine, GABAA antagonist; Ascent Scientific), 3 �M

CGP55345 (GABAB antagonist; Tocris Bioscience), 10 �M SCH23390
(D1 antagonist; Tocris Bioscience), 10 �M (�)-sulpiride (D2 antagonist;
Tocris Bioscience), and 1 �M scopolamine (muscarinic antagonist; Toc-
ris Bioscience). Patch pipettes (4 – 8 M�) were fabricated with a P80/PC
puller (Sutter Instruments) from standard borosilicate glass capillaries
with filament (World Precision Instruments). The standard intracellular
solution contained the following (in mM): 140 Cs �-gluconate, 10
HEPES, 0.1 CaCl2, 2 MgCl2, 1 EGTA, 2 ATP-Na2, and 0.1 GTP-Na2, pH
7.3. The Na �-channel blocker lidocaine N-ethyl bromide (QX-314, 5
mM; Sigma-Aldrich) was added to the intracellular solution to block
active currents. Voltage-clamp recordings were performed with an Axo-
patch 200B (Molecular Devices). Holding potential was �75 mV. Given
the small amplitude of EPSCs in some brain regions, series resistance
(18 – 40 M�) was not compensated to minimize background noise. Liq-
uid junction potentials (�15 mV) were adjusted online. Data acquisition
commenced 5 min after achieving whole-cell mode to allow for diffusion
of intracellular solution in recorded cells. Data were acquired and ana-
lyzed using Axograph X (Axograph Scientific) running on a PowerMac
G4 (Apple). Data were filtered at 5 kHz with a 4-pole Bessel filter and
digitized (ITC-18 Interface; ALA Scientific Instruments) at 200 �s
intervals.

All recordings were done in projection regions with ChR2-EYFP �

axons, except in the CA1 region of the hippocampus, where ChR2-
EYFP � axons were extremely rare. Neurons chosen for recording were
identified based on cell body location, size, and shape (with the Cs �-
based pipette solution including QX-314, neuronal firing patterns
were not recorded). Synaptic responses were evoked by short flashes
(5 ms at 0.1 Hz) of a high-power blue LED (470 nm; Thorlabs). Glu-
tamatergic responses were confirmed by perfusion of 40 �M 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX; Tocris Bioscience) for at least one
cell in each region.

The peak amplitudes of EPSCs were measured in a 50 ms postphoto-
stimulation time window from the average of 10 consecutive traces. The
detection threshold for determination of connections was set to the mean
plus 2 SDs of the baseline (including spontaneous EPSCs) amplitude in
the 100 ms time window preceding the photostimulation. When the peak
amplitude of postphotostimulation EPSCs exceeded the detection
threshold, the cell was counted as having received a dopamine neuron

glutamatergic connection. Unless otherwise noted, data are reported as
mean � SEM.

Results
ChR2-EYFP virus injected into the VTA specifically
transduced VTA dopamine neurons
We visualized dopamine neurons and their projections by injec-
tion of AAV-DIO-ChR2-EYFP into the VTA of DAT IREScre mice
(n � 12). At 3–5 weeks after injection, we examined the distribu-
tion of ChR2-EYFP� cells in the ventral midbrain using immu-
nofluorescence (n � 4 mice) and immunoperoxidase staining
(n � 4 mice) (Fig. 1) and measured axonal projection density
(n � 4 mice). All mice received bilateral viral injections in the
VTA; in most cases, ChR2-EYFP� cells extended from the VTA
through the medial half of SN on both sides (Fig. 1A, top); in two
mice, the virus did not spread to the SN bilaterally, but even in
those cases, ChR2-EYFP� cells were seen in the VTA bilaterally
(Fig. 1A, bottom). We found that ChR2-EYFP� cells overlapped
completely with TH� cells (Fig. 1B). Although some TH� neu-
rons did not express ChR2-EYFP, 1516/1517 ChR2-EYFP� cells
expressed TH (Fig. 1C), with the sole ChR2-EYFP�/TH� cell
dorsal to the medial VTA. Therefore, within the ventral midbrain
dopamine cell groups, all ChR2-EYFP� cells were TH� dopamine
neurons, arguing against the contribution of VTA glutamate-only
neurons (Hnasko et al., 2012).

To determine the efficacy of ChR2-EYFP expression in dopa-
mine neurons, we counted cells in the medial and lateral portions
of the VTA and the SNc (Fig. 2A). The overall transduction effi-
cacy, measured as the percentage of TH� cells that were ChR2-
EYFP�, was 82 � 3% in the VTA (1180/1450 TH� cells counted)
and 63 � 6% in the SNc (336/539 TH� cells counted). Along the
anterior–posterior axis, transduction efficacy did not change sig-
nificantly in either the VTA or the SNc (Fig. 2B1; Friedman’s test;
VTA: � 2 � 11.00, not significant (NS); SNc: � 2 � 1.00, NS).
Transduced cells were found up to 740 �m from the injection site
and included dopamine neurons in the rostral linear nucleus and
the central linear nucleus, making up the medial VTA (Phillip-
son, 1979; Fig. 1C2,C3). Along the medial–lateral axis, transduc-
tion efficacy decreased significantly (� 2 � 10.2, p � 0.017; Fig.
2B2), with the lateral SNc showing the lowest values. Because
ventral midbrain dopamine neurons expressing VGLUT2 are
found mainly in the medial VTA (Kawano et al., 2006; Yamagu-
chi et al., 2011; Taylor et al., 2014; Yamaguchi et al., 2015), our
viral injections targeted most ventral midbrain dopamine neu-
rons expressing VGLUT2, and thus those with excitatory actions.

Recording in forebrain dopaminergic projection regions
The expression of ChR2-EYFP in dopamine neurons enabled
wide-field photostimulation of their terminals impinging on re-
corded neurons. We selected the major projection areas of ventral
midbrain dopamine neurons based on previous anatomical stud-
ies (Swanson, 1982; Björklund and Dunnett, 2007; Yetnikoff et
al., 2014) and recorded glutamatergic EPSCs from 10 putative
principal neurons in regions with ChR2-EYFP� axons. We phar-
macologically isolated AMPA/kainate EPSCs with a mixture of
GABAA, GABAB, D1, D2 dopamine, and muscarinic receptor
antagonists and cells were clamped at �75 mV to maintain the
Mg 2� blockade of NMDA receptor channels and prevent their
activation. In all regions, CNQX completely blocked EPSCs, con-
firming that measured EPSCs were AMPA/kainate-receptor me-
diated and that any NMDA-receptor-mediated component was
negligible. Dopamine neuron glutamatergic connections were
deemed significant when EPSC peak amplitude exceeded a detec-
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tion threshold set to the preceding mean baseline amplitude plus
2 SDs. For each region with connections, we report the detection
threshold, the incidence of connections, and the strength of the
connections, calculated as the mean EPSC amplitude for all cells

with a connection. For regions without connections, we report
the detection threshold and the peak amplitude after photo-
stimulation, calculated as the mean of the maximum amplitude
in the 50 ms after photostimulation.
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ChR2-EYFP (black) expression in the ventral midbrain with neurons visualized with NeuN (brown). With bilateral injections, ChR2-EYFP spread to both VTA and the SN in most cases (top), whereas
in a minority, ChR2-EYFP spread bilaterally to the VTA but only unilaterally to the SN (bottom). B, Confocal mosaic z-projected images of the ventral midbrain showing ChR2-EYFP (green, left) and
TH immunoreactivity (magenta, right). Merged image (center) shows complete overlap. C, High-power z-projected images confirming ChR2-EYFP expression in TH � neurons in the VTA (C1), rostral
linear nucleus (RLi; C2), central linear nucleus (CLi; C3), and SNc (C4 ). The blue arrowhead in C1 indicates the sole ChR2-EYFP �/TH � cell found in this study. Thin blue arrows indicate
ChR2-EYFP �/TH � cells and thick blue arrows indicate ChR2-EYFP �/TH � cells.
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Dopamine neuron glutamatergic connections in the striatum
ChR2-EYFP-labeled axons were the densest in the striatum and
coexpressed TH-ir, defining their dopaminergic nature (Fig. 3A).
ChR2-EYFP�/TH� axonal processes were rarely seen, confirm-
ing high transduction efficacy and indicating that ChR2-EYFP
was expressed throughout the axonal tree of transduced neurons
(Fig. 3A, insets). The medial dStr consistently showed higher
levels of ChR2-EYFP expression than the lateral dStr (data not
shown), reflecting the lower transduction in the lateral SN (Fig.
2B2). For this reason, all dStr axonal density and recording mea-
sures were made in the medial dStr (Fig. 3A4). The density of
ChR2-YFP fibers was measured as the average number of pixels
in a 1048 � 1048 pixel frame. The numbers of ChR2-EYFP�

axonal pixels were as follows: 272,242 � 54,412 for the OT; 262,
484 � 35,361 for the NAc shell; 242,173 � 42,962 for the NAc
core; and 235,928 � 15,910 for the medial dStr. Within recording
areas, the distribution of terminals was relatively homogeneous.
There were no significant differences among subdomains (one-
way ANOVA; F(3,10) � 0.23; NS).

In the striatum, we recorded photostimulated responses from
putative spiny projection neurons (SPNs) in the vStr, including

the OT, the NAc medial shell and core, and in the medial dStr
(Fig. 3B,C). The resulting EPSCs were completely blocked by
CNQX (40 �M; red traces in Fig. 3B), confirming glutamatergic
mediation. In the NAc shell and the OT, dopamine neurons made
glutamatergic connections to SPNs with similar incidence and
strength (NAc shell: detection threshold: 3.56 � 0.36 pA; inci-
dence of connections: 10/10 cells; connection strength: 15.09 �
1.96 pA; OT: detection threshold: 4.12 � 0.94 pA; incidence of
connections: 10/10 cells; connection strength: 9.97 � 3.11 pA;
Fig. 3B,C). In the NAc core, the number of connected cells de-
creased, whereas the average strength was similar to that recorded
in the OT (detection threshold: 3.52 � 0.42 pA; incidence of
connections: 8/10 cells; connection strength: 10.19 � 2.64 pA;
Fig. 3B,C). No connections were seen in the dStr (detection
threshold: 2.46 � 0.38 pA; peak amplitude postphotostimula-
tion: 2.02 � 0.24 pA). Therefore, the distribution of dopamine
neuron glutamatergic connections in the striatum was more
prominent in the ventromedial regions and weaker in more dor-
solateral regions, consistent with the medial distribution of
VGLUT2 in ventral midbrain dopamine neurons.
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Dopamine neuron glutamatergic connections in the amygdala
Charting of ChR2-EYFP� dopamine neuron axons in the
amygdala (Fig. 4A,B) revealed that the axons were densely and
homogeneously distributed in the basolateral amygdala (BLA).
In the central nucleus (CeA), ChR2-EYFP� dopamine neuron
axons appeared most dense in the medial subnucleus, where the
density of axons approximated that of the BLA (Fig. 4B). Overall,
the number of ChR2-EYFP pixels did not differ between the BLA
and the medial CeA: 86,844 � 24,545 pixels in the BLA and
80,427 � 19,664 pixels in the CeA (one-way ANOVA; F(1,6) �
0.06; NS). Double immunofluorescence showed that ChR2-
EYFP� axons coexpressed TH (Fig. 4C) and were intermingled
with singly labeled TH� or ChR2-EYFP� axons. Because TH also
labels noradrenergic axons in the amygdala (Freedman and Cas-
sell, 1994), the efficacy of ChR2-EYFP expression in dopamine
neuron axons is likely an underestimate. In addition to the CeA
and BLA, dense ChR2-EYFP� dopamine neuron axons were seen
in the amygdalostriatal transition zone.

We recorded from the smaller neurons in the CeA, which are
putative GABAergic projection neurons, and large neurons in the
rostral magnocellular portion of the BLA, which are putative glu-
tamatergic projection neurons. Photostimulation of dopaminer-
gic terminals only elicited significant EPSCs in the CeA (detection
threshold: 5.18 � 0.44 pA; incidence of connections: 4/10 cells;
connection strength: 7.17 � 1.24 pA), but not in the BLA
(detection threshold: 2.26 � 0.56 pA; peak amplitude after

photostimulation: 2.07 � 0.58 pA) (Fig. 4D,E). Therefore, al-
though dopamine neurons project to both amygdala nuclei, they
only made glutamatergic connections in the CeA.

Dopamine neuron glutamatergic connections in the
hippocampal formation
In the hippocampal formation (Fig. 5A), dense aggregations of
ChR2-EYFP� axons were seen in the lateral entorhinal cortex
(ERC), in a distribution similar to previously reported dopamine
islands (Fallon et al., 1978; Bentivoglio and Morellis, 2005). In the
gray matter matrix of the ERC surrounding the dopamine is-
lands, the density of ChR2-EYFP� axons was markedly lower
than in the axon clusters in the islands (ERC island pixels:
52,593 � 10,843; ERC matrix pixels: 19,321 � 2853; Fig. 5B1,B2).
Very sparse ChR2-EYFP� axons were seen in the hippocampus,
with only a few ChR2-EYFP� axons in the dentate gyrus (DG),
ventral subiculum (VS) and CA1 (Fig. 5B3). In accordance with
these observations, measured ChR2-EYFP pixel density in the
CA1 was very low (1752 � 298). The differences in axon density
between subregions of the hippocampal formation were signifi-
cant (F(2,7) � 31.1; p 	 0.001), with post hoc tests revealing higher
densities in ERC island compared with ERC matrix (p � 0.006)
and CA1 (p � 0.0003). There was a trend toward a difference in
density between ERC matrix and CA1 (p � 0.081). In the CA1,
ChR2-EYFP�/TH� axons were rare; Figure 5C (top) shows one
of the few axons found in the stratum oriens division of CA1. We

Figure 4. ChR2-EYFP expression in dopamine neuron axons and photostimulated glutamatergic responses in the amygdala. A, Schematic showing the amygdala brain slice used for immuno-
staining and in vitro EPSC recordings; sites of image acquisition and recording are outlined in green. B, Two-color immunoperoxidase staining of ChR2-EYFP � axons (black) and the neuronal marker
NeuN (brown). The region of interest containing the amygdala (B1) is expanded on the right (B2). Charting of ChR2-EYFP � axons in the area shown in B2 reveals similar densities of dopamine
neuron axons in BLA and CeA (B3). C, Confocal immunofluorescence images of ChR2-EYFP � and TH � axons in the BLA and CeA. The three columns of images show ChR2-EYFP � axons (green), the
merge of ChR2-EYFP � (green) with TH � (magenta) to reveal ChR2-EYFP �/TH � (white) axons and expanded images of the regions of interest (yellow rectangle, middle column). Thick blue arrows
indicate ChR2-EYFP �/TH � axons; thin blue arrows indicate ChR2-EYFP �/TH � axons; arrowheads indicate ChR2-EYFP �/TH � axons. D, Recordings were made from principal neurons in the BLA
and CeA. EPSCs shown are the average of 10 consecutive traces. Traces with significant light-evoked responses are shown in blue; those without responses are shown in black. Blue bars above traces
indicate photostimulation (5 ms pulses, at 0.1 Hz). CNQX (40 �M) completely blocked light-evoked EPSCs (red trace). E, Summary of the amplitudes of recorded light-evoked EPSCs in the two
amygdala nuclei. The graph shows the average amplitudes in cells with EPSCs (connection; white bars) and without (no connection; black bars). The number of cells recorded is shown in parentheses.
No BLA cells showed light-evoked EPSCs. AST, Amygdalo-striatal transition area.
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saw ChR2-EYFP�/TH� axons in CA1, which could be either
axons of dopamine neurons that do not express DAT (the promoter
used to drive ChR2-EYFP expression) or noradrenergic axons. The
aggregation of ChR2-EYFP� axons in the ERC were TH� (Fig. 5C,
bottom). Therefore, in the hippocampal formation, dopamine neu-
rons predominantly project to the ERC, in agreement with previous
anatomical studies in the rat (Swanson, 1982).

Within the hippocampal formation, recordings were made
from pyramidal neurons in slices encompassing CA1 and ERC. In
contrast to bright ChR2-EYFP fluorescence seen in the ERC,
ChR2-EYFP fluorescence in the hippocampus was very dim and
fluorescent axons extremely rare. Consistent with this, we found
no significant EPSCs in CA1 pyramidal cells (detection threshold:
3.11 � 0.70 pA; peak amplitude after photostimulation: 1.96 �
0.84 pA; Fig. 5D,E). In ERC, we observed strong glutamatergic
connections in islands (detection threshold: 4.09 � 0.50 pA; in-
cidence of connections: 9/10 cells; connection strength: 35.19 �
21.88 pA), but not in the surrounding matrix (detection thresh-
old: 1.64 � 0.34 pA; peak amplitude postphotostimulation:
1.76 � 0.60 pA; Fig. 5D,E). The dopamine neuron glutamatergic
connections in ERC islands were the strongest we found but also

the most variable, ranging from 4 to 192 pA. This variability was
not due to polysynaptic recruitment of other glutamatergic neu-
rons because connections showed short and relatively fixed laten-
cies ranging from 4.3 to 8.9 ms (measured from the onset of
illumination). Examining the strongest ERC connection, which
would be the most likely to include a polysynaptic contribution,
the individual EPSCs nonetheless reliably and tightly superim-
posed on the averaged response (Fig. 5F1). Superposition of a
scaled-up weaker EPSC on a stronger EPSC revealed further that
responses were monophasic with matching time course (Fig.
5F2). Therefore, in the hippocampal formation, dopamine neu-
rons make monosynaptic glutamatergic connections to pyrami-
dal neurons in ERC islands.

Dopamine neuron glutamatergic connections in the
anterior cortices
There was a sparse ChR2-EYFP � innervation in anterior cor-
tical areas (Fig. 6A–D). In the prefrontal cortex (PFC) most
ChR2-EYFP � axons were in layers V and VI, whereas in the
cingulate cortex (CIN), most ChR2-EYFP � axons were in lay-
ers II-III (Fig. 6 B, D), consistent with the laminar distribution
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recorded light-evoked EPSCs in the hippocampal subregions shows the average amplitudes in cells with EPSCs (connection; white bars) and without (no connection; black bars). The number of cells
recorded is shown in parentheses. Only ERC island cells showed light-evoked EPSCs. F1, Individual EPSCs for the strongest ERC connection (10 traces are shown) reliably and tightly superimposed on
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of the dopaminergic innervation of the rat cortex (Descarries
et al., 1987; Berger et al., 1991). The quantification of ChR2-
EYFP pixels revealed a similar trend. In the PCF, we counted
7666 � 3308 pixels in layers II–III, with double the number of
pixels in layers V–VI (15,385 � 4867). In the CIN, we counted
23,198 � 12,588 pixels in layers II–III and approximately half
the number in layers V–VI (10,992 � 3284 pixels). However,
differences in the density across layers were not statistically
significant (one-way ANOVA; F(3,10) � 1.514; NS). High-
power photomicrographs revealed a low density of ChR2-
EYFP �/TH � axons intermingled with singly labeled TH � and
ChR2-EYFP � axons (Fig. 6E).

Recording from pyramidal neurons in the anterior cortices
revealed a significant synaptic response in only 1 of 10 recorded
layer II-III CIN pyramidal cell (detection threshold: 3.48 � 0.68
pA; incidence of connections: 1/10 cells; connection strength: 5.0
pA; Fig. 6F,G). No connections were seen in other cortical areas
(CIN layers V–VI: detection threshold: 2.44 � 0.55 pA; peak
amplitude after photostimulation: 1.76 � 0.54 pA; PFC layers
II–III: detection threshold: 2.30 � 0.52 pA; peak amplitude after
photostimulation: 1.66 � 0.39 pA; PFC layers V–VI: detection
threshold: 2.22 � 0.83 pA; peak amplitude after photostimula-

tion: 2.21 � 0.35 pA). Therefore, dopamine neuron glutamater-
gic connections in the anterior cortices are very weak.

Regional comparison of dopamine neuron glutamatergic
connections and the density of ChR2-EYFP � axons
We systematically compared the incidence and strength glutama-
tergic connections across forebrain regions (Fig. 7A). We found
the highest incidence of connections (10/10 cells) in the NAc and
OT, followed by the dopamine islands of the ERC (9/10 cells),
then the NAc core (8/10), the CeA (4/10), and the CIN (1/10).
The strongest glutamatergic connections were found in the ERC
(35.19 � 21.88 pA), followed by the NAc shell (15.09 � 1.96 pA)
and core (10.19 � 2.64 pA), OT (9.97 � 3.11 pA), CeA (7.17 �
1.24 pA), and the CIN (5.0 pA). Although the overall strength of
the responses varied, other synaptic parameters did not differ
significantly across regions. Average EPSC latency was �6 ms
(Fig. 7B1; OT: 6.40 � 0.96 ms; NAc shell: 5.54 � 0.36 ms; NAc
core: 5.38 � 0.89 ms; CeA: 5.35 � 1.68 ms; ERC: 6.00 � 0.63; and
CIN: 6.47). Latencies did not differ significantly between regions
(one-way ANOVA; F(4,35) � 0.349; NS). EPSC rising phases were
monophasic, with rise times of �3 ms (Fig. 7B2; OT: 3.21 � 0.46
ms; NAc shell: 3.09 � 0.21 ms; NAc core: 2.75 � 0.37 ms; CeA:

Figure 6. ChR2-EYFP expression in dopamine axons and glutamatergic responses in the anterior cortices. A, Schematic showing the coronal brain slice through the PFC used for immunostaining
and in vitro EPSC recordings; sites of image acquisition and recording in layers II–III and V–VI are outlined in green. B, Two-color immunoperoxidase staining reveals ChR2-EYFP � axons (black) and
the neuronal marker NeuN (brown). The region of interest traversing the cortical thickness (B1) is shown to the right (B2) with charting of ChR2-EYFP � axons. C, Schematic showing the coronal
brain slice through the CIN; sites of image acquisition and recording in layers II–III and V–VI are outlined in green. D, Two-color immunoperoxidase staining reveals ChR2-EYFP � axons (black) and
the neuronal marker NeuN (brown). The region of interest encompassing the CIN regions (D1) is shown to the right (D2) with charting of ChR2-EYFP � axons. The charting in the PFC and CIN reveals
relatively higher fiber density in the deeper and superficial layers respectively, although such differences were not statistically significant. E, Confocal immunofluorescence images of ChR2-EYFP �

and TH � axons in the two cortical regions. The three columns of images show ChR2-EYFP � axons (green), the merge of ChR2-EYFP � (green) with TH � (magenta) to reveal ChR2-EYFP �/TH �

(white) axons, and expanded images of the regions of interest (yellow rectangle, middle column). Thick blue arrows indicate ChR2-EYFP �/TH � axons; thin blue arrows indicate ChR2-EYFP �/TH �

axons; arrowheads indicate ChR2-EYFP �/TH � axons. In the both the PFC and CIN, ChR2-EYFP �/TH � axons were sparse. F, Recordings were made from principal neurons in the PFC and CIN in
layers II–III and layers V–VI. EPSCs shown are the average of 10 consecutive traces. The trace in blue shows a significant light-evoked response; those in black show no responses. Blue bars above
traces indicate photostimulation (5 ms pulses, at 0.1 Hz). Only one cell in layers II–III of the CIN showed a significant EPSC (blue trace); all other cells showed no light-evoked EPSCs (black traces). G,
Summary of the amplitudes of recorded light-evoked EPSCs in the PFC and CIN shows the average amplitudes in cells with EPSCs (connection; white bars) and without (no connection; black bars).
The number of cells recorded is shown in parentheses. Only one cell showed an excitatory connection.
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3.28 � 1.00 ms; ERC: 2.72 � 0.43 ms; and CIN:1.83). Rising times
did not differ significantly between regions (one-way ANOVA;
F(4,35) � 0.379; NS).These EPSC parameters matched with previ-
ous reports (Tecuapetla et al., 2010; Adrover et al., 2014; Chuhma
et al., 2014; Wieland et al., 2014) and are consistent with mono-
synaptic connectivity.

We examined the relationship between the density of dopa-
mine neuron ChR2-EYFP� axons and connectivity (Fig. 8A).
The striatum showed the highest density of ChR2-EYFP� axons,
followed by moderate density in the amygdala and ERC islands of
the hippocampal formation and the lowest density in the ERC
matrix, CA1, and PFC and CIN. The expression of ChR2-EYFP�

axons in forebrain areas per se did not pre-
dict the presence of glutamatergic con-
nections. This was evident in the striatum,
where ChR2-EYFP� axons were dense in
all subregions, but no glutamatergic con-
nections were seen in the dStr. A striking
discordance was also found in the
amygdala nuclei, where both BLA and
CeA showed similar ChR-EYFP� axonal
densities, but glutamatergic synaptic con-
nectivity was only found in the CeA.
Comparing axonal density using a two-
way ANOVA, with region (striatal com-
plex, amygdala, hippocampal formation,
and anterior cortices) and connectivity
(with or without excitatory connections)
as between-subject factors, revealed a sig-
nificant main effect of region (F(3,39) �
60.7; p 	 0.001), but not of connectivity
(F(1,39) � 0.56; NS), nor was there a signif-
icant interaction (F(2,39) � 1.18; NS).

We then focused on regions with glu-
tamatergic connections and investigated
how the regional density of ChR2-EYFP�

axons correlated with the incidence and
strength of glutamatergic connections
(Fig. 8B). We compared these measures in
all regions with connections and then af-
ter excluding ERC island connections be-
cause the ERC island connections were
more than twice as strong as the other
connections and their strength varied

widely. We found that there was a strong positive correlation
between density of ChR2-EYFP� axons and the incidence of con-
nections (Pearson’s r � 0.74; Fig. 8B1) that approached but did
not reach statistical significance (regression analysis: F(1,5) �
4.837; p � 0.09). Excluding the ERC connections, there was an
almost perfect positive correlation between the density of ChR2-
EYFP� axons and incidence of connections (r � 0.99; F(1,4) �
120.54; p � 0.02). A similar effect was found for the correlation
between axonal density and connection strength, with no corre-
lation including all connected regions (r � �0.18; F(1,5) � 0.139;
NS; Fig. 8B2). Excluding the ERC connections, there was a signif-
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icant positive correlation (r � 0.85) that was significant (F(1,4) �
10.558; p � 0.048). Therefore, the density of the dopaminergic
projections predicted the incidence and strength of glutamatergic
connections in all connected forebrain regions except ERC is-
lands, suggesting that ERC island connections are different from
the other dopamine neuron glutamatergic connections.

Discussion
We visualized dopamine neuron axons in the forebrain and ana-
lyzed the incidence and strength of their glutamatergic connec-
tions to putative principal neurons (Fig. 9). Dopamine neurons
make widespread glutamatergic connections in the forebrain. We
found previously undescribed connections in the CeN, CIN, and
ERC. Dopamine neurons made the strongest glutamatergic con-
nections to pyramidal neurons in ERC islands, stronger than pre-
dicted by the density of ChR2-EYFP� axons, suggesting that their
connectivity is distinctly different from connectivity in other pro-
jections. This is the first systematic analysis of dopamine neuron
glutamatergic connections to forebrain target areas and the first
phase in the determination of the dopamine neuron functional
connectome.

ChR2-EYFP transduction of dopamine neurons
Under the control of the DAT promoter, most dopamine neu-
rons were transduced with ChR2-EYFP. Because DAT expression
is lower in the medial ventral midbrain (Li et al., 2013) and in
PFC-projecting dopamine neurons (Sesack et al., 1998; Lammel

et al., 2008), this could have resulted in an underestimate of glu-
tamatergic connections in that region. However, viral injections
made in the VTA had similar transduction efficacy in medial and
lateral VTA, so the weaker DAT promoter activity in medial VTA
dopamine neurons was apparently still sufficient to drive ChR2-
EYFP expression in medial VTA dopamine neurons projecting to
the PFC.

In extrastriatal projection areas, some ChR2-EYFP� axons
were TH�. Such axons might be dopamine neuron axons that are
glutamatergic and not dopaminergic, consistent with segregation
of release sites (Hattori et al., 1991; Sulzer et al., 1998; Zhang et al.,
2015). However, ChR2-EYFP�/TH� axons were also seen in the
BLA, where we found no glutamatergic connections; it is possible
that these axons simply express TH at levels below the immuno-
histochemical detection threshold or are GABAergic (Tritsch et
al., 2012). ChR2-EYFP�/TH� axons seen in the PFC, hippocam-
pus, and amygdala likely arise from nontargeted dopamine neu-
rons or noradrenergic neurons.

Dopamine neuron glutamatergic connections in the striatum
All SPNs in the NAc shell and OT without exception receive
dopamine neuron glutamatergic input, highlighting these two
regions as the striatal glutamate cotransmission hotspots. Ana-
tomical studies in the rodent NAc, however, find few or no release
sites with colocalized TH and VGLUT2 (Bérubé-Carrière et al.,
2009; Moss et al., 2011) that would mediate corelease. Because
individual glutamatergic synaptic varicosities can elicit synaptic
responses of �10 pA (in the hippocampus; Auger and Marty,
2000), only one release site would be required to mediate a func-
tional excitatory connection; moreover, such connections would
be daunting to find given that individual dopamine neurons in-
nervate �4% of the striatal volume and may connect to �75,000
postsynaptic neurons (Matsuda et al., 2009). The difficulty in
finding anatomic evidence for corelease could also be due to
segregation of dopamine and glutamate release sites (Zhang et al.,
2015).

Moving dorsolaterally from the NAc shell to the core, gluta-
matergic inputs declined slightly and then were absent in the
medial dStr, consistent with the medial-to-lateral topography of
VGLUT2 expression in mouse ventral midbrain DA neurons
(Yamaguchi et al., 2015). Because some DA neuron inputs to
medial dStr arise from the VTA (Björklund and Dunnett, 2007),
these data suggest that VTA DA neurons projecting to the dStr do
not mediate glutamate cotransmission. Tritsch et al. (2012)
found small glutamatergic connections to dStr SPNs, which we
and others have not observed (Stuber et al., 2010; Chuhma et al.,
2014); this may be due to more lateral viral injections, recording
in more lateral dStr, or the use of younger mice (as dopamine
neuron VGLUT2 expression undergoes developmental down-
regulation; Bérubé-Carrière et al., 2009).

Dopamine neuron glutamatergic connections beyond
the striatum
In the amygdala, we found glutamatergic connections in CeA but
not the BLA despite comparable densities of ChR2-EYFP� ax-
ons, indicating that the differences in connectivity were not due
to differential innervation of the nuclei. Taylor et al. (2014) re-
cently reported that nearly all dopamine neurons innervating the
CeA coexpress VGLUT2. Our findings are consistent with this
observation and further reveal that glutamatergic connections to
the amygdala specifically target CeA and not BLA neurons.
Ultrastructural studies report a higher incidence of TH �

asymmetric—presumably glutamatergic—synapses in the CeA
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Figure 9. Dopamine neuron glutamatergic functional connectome in the forebrain. In the
ventral midbrain, the large green circle represents dopamine neurons expressing ChR2-EYFP;
the inner green ellipse (DA/GLU) represents the subpopulation of dopamine neurons that ex-
presses ChR2-EYFP and coreleases glutamate. Within projection target areas, subregions con-
tain putative principal neurons, diagrammed as circles. Shades of green surrounding the circles
indicate the density of ChR-EYFP � axons (scale on the bottom left); ChR2-EYFP density values
are expressed as the percentage of the average density in the NAc shell (100%). Connections to
the different projection areas are shown as black arrows, with relative strengths indicated by
the thickness of the arrows and the incidence of connections indicated by gray shading of the
circles (100% white to 0% black). In the circles, the percentage of connections found is above
and average strength of the connections below (numbers are the same as in Fig. 7A). DA,
Dopamine; GLU, glutamate.
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than BLA (Asan, 1997). This suggests that single CeA dopamine
neuron terminals corelease glutamate and dopamine, unlike in
the NAc shell, where symmetrical (dopaminergic) and asymmet-
rical (glutamatergic) synapses appear to be segregated in dopa-
mine neuron axons (Zhang et al., 2015).

We found the strongest glutamatergic connections in dopa-
mine islands in ERC layers II/III (Hevner and Wong-Riley, 1992),
which receive a dense dopamine innervation (Hökfelt et al., 1974;
Fallon et al., 1978). Consistent with this, VTA (but not SN) do-
pamine neurons that express VGLUT2 innervate the ERC (Swan-
son, 1982). In contrast, ChR2-EYFP�/TH� axons were sparse in
the ERC matrix, where no glutamatergic connections were
found. ERC island connections stood out as being far stronger
than predicted by dopamine neuron fiber density, indicating that
DA neuron connectivity in ERC islands differs from other regions
and likely involves multiple innervation of defined target
neurons.

In the hippocampus, ChR2-EYFP�/TH� axons were sparse
in the presubiculum and subiculum and extremely rare in CA1,
where no glutamatergic connections were found. Although initial
reports indicated the presence of a dopamine innervation in the
hippocampus (Scatton et al., 1980; Gasbarri et al., 1994), these
studies used large deposits of retrograde tracers that extended
beyond the DG and pyramidal cell layers and would have been
subject to uptake by fibers of passage. Verney et al. (1985) ob-
served hippocampal dopamine fibers, revealed by accumulation
of radiolabeled dopamine, but noted that these were mainly pres-
ent in the presubiculum and subiculum, with only rare fibers in
the pyramidal cell layers, mirroring our observations. Our ana-
tomical data do not support the presence of a significant VTA-
derived dopamine innervation of the hippocampus. Indeed,
most dopamine release in the hippocampus appears to arise from
noradrenergic axons (Smith and Greene, 2012).

Midbrain dopamine neurons innervate several cortical re-
gions, including the PFC and CIN, but we found only one gluta-
matergic connection. Mesocortical glutamatergic connections
appear to arise from glutamate-only VTA neurons (Yamaguchi et
al., 2011; Gorelova et al., 2012). However, some VGLUT2 expres-
sion in PFC dopamine axons has been reported in retrograde
tracing studies (Gorelova et al., 2012) and �25% of dopamine
neurons projecting to the PFC coexpress VGLUT2 (Yamaguchi et
al., 2011; Taylor et al., 2014). The relatively high incidence of
VGLUT2 coexpression in mesocortical dopamine neurons con-
trasts with the paucity of glutamatergic connections to pyramidal
neurons that we found, consistent with dopamine neurons mak-
ing glutamatergic connections to interneurons (Sesack et al.,
1995).

Functional implications
Dopamine neurons make excitatory glutamatergic connections
to neurons in forebrain regions that vary widely in strength, add-
ing new complexity to dopamine neuron actions. In the NAc shell
and OT, dopamine neuron glutamate connections can drive
SPNs to fire if the cells are already modestly depolarized (Tecu-
apetla et al., 2010), suggesting that dopamine neuron EPSCs
would only drive firing coincident with other glutamatergic in-
puts. In contrast, we and others have reported that dopamine
neuron connections to cholinergic interneurons are nearly an
order of magnitude stronger and do drive the cells to fire
(Chuhma et al., 2014; Wieland et al., 2014), making it more likely
that dopamine neurons exert fast control of vStr activity via cho-
linergic interneurons. Functionally, these temporally precise
glutamatergic connections have the necessary physiological sig-

nature to convey information about dopamine-dependent sa-
lience signals to the vStr and to facilitate associative learning
(Zweifel et al., 2009). The CeA glutamatergic connections are
weaker than those found in NAc SPNs. Weaker connections
might identify release sites where glutamate cotransport potenti-
ates dopamine release through vesicular synergy by increasing the
packing of dopamine into vesicles (El Mestikawy et al., 2011;
Hnasko and Edwards, 2012). Because the dopaminergic projec-
tions to the CeA and BLA are of similar densities and glutamate
cotransmission is only seen in the CeA, vesicular synergy would
specifically potentiate dopaminergic transmission in the CeA,
and not in the BLA, and this might regulate the dopaminergic
modulation of CeA-dependent fear responses (Paré et al., 2004).
Remarkably, dopamine neurons make the strongest glutamater-
gic connections in ERC islands. Lateral ERC cells are involved in
processing the salience of environmental nonspatial information
(Knierim et al., 2014); dopamine neuron glutamatergic connec-
tions could signal salient events and gate ERC inputs to the hip-
pocampus. Because dopamine neuron axons are so sparse in the
hippocampus, memory functions attributed to the hippocampus-
VTA loop (Lisman and Grace, 2005) may involve dopamine
neuron glutamatergic connections to the ERC. This functional
connectome analysis is the first systematic analysis of dopamine
neuron glutamatergic connections to forebrain regions. Map-
ping these connections— extending to nonprincipal postsynap-
tic neurons and other transmitters—will be crucial for improving
our understanding of the behavioral functions of dopamine neu-
rons, including how they are differentially involved in neuropsy-
chiatric disorders and how they may be differentially targeted
pharmacologically for therapeutic benefit.
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