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Developmental Tightening of Cerebellar Cortical Synaptic
Influx-Release Coupling
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Tight coupling between Ca*>* channels and the sensor for vesicular transmitter release at the presynaptic active zone (AZ) is crucial for
high-fidelity synaptic transmission. It has been hypothesized that a switch from aloosely coupled to a tightly coupled transmission mode
is a common step in the maturation of CNS synapses. However, this hypothesis has never been tested at cortical synapses. We addressed
this hypothesis at a representative small cortical synapse: the synapse connecting mouse cerebellar cortical parallel fibers to Purkinje
neurons. We found that the slow Ca>" chelator EGTA affected release significantly stronger at immature than at mature synapses, while
the fast chelator BAPTA was similarly effective in both groups. Analysis of paired-pulse ratios and quantification of release probability
(p,) with multiple-probability fluctuation analysis revealed increased facilitation at immature synapses accompanied by reduced p,.
Ca,2.1 Ca*" channel immunoreactivity, assessed by quantitative high-resolution immuno-electron microscopy, was scattered over
immature boutons but confined to putative AZs at mature boutons. Presynaptic Ca>" signals were quantified with two-photon micros-
copy and found to be similar between maturation stages. Models adjusted to fit EGTA dose-response curves as well as differential effects
of the Ca>* channel blocker Cd*>* indicate looser and less homogenous coupling at immature terminals compared with mature ones.
These results demonstrate functionally relevant developmental tightening of influx-release coupling at a single AZ cortical synapse and

corroborate developmental tightening of coupling as a prevalent phenomenon in the mammalian brain.
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Introduction

Synaptic transmission has a supralinear dependency on the intra-
cellular Ca®* concentration ([Ca**]; Dodge and Rahamimoff,
1967), making the coupling distance between voltage-gated Ca**
channels (Ca,s) and release sensor a critical determinant of tim-
ing and probability of transmitter release (Neher, 1998b; Wadel
et al., 2007; Bucurenciu et al., 2008; Neher and Sakaba, 2008;
Eggermann et al., 2012; Kim et al., 2013; Stidhof, 2013). Despite
its functional importance, little is known about the regulation
of coupling (Eggermann et al., 2012). For the glutamatergic calyx
of Held synapse in the brainstem a developmental regulation of
coupling has been suggested, switching an immature loose cou-
pling to a more mature tight coupling (Fedchyshyn and Wang,
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2005; Wang et al., 2008; Ledo and von Gersdorff, 2009). However,
direct evidence from other synapses, in particular small cortical
synapses, for such regulation is lacking (Eggermann et al., 2012).
Moreover, recent reports of tight coupling at the GABAergic syn-
apse connecting neighboring Purkinje neurons (PNs) in the im-
mature cerebellar cortex (Bornschein et al., 2013) and of loose
coupling at the glutamatergic synapse connecting mossy fibers
(MFs) to CA3 pyramidal neurons in mature hippocampus
(Vyleta and Jonas, 2014) may indicate differential, synapse-
specific development of coupling. However, the developmental
profile of coupling has not been assessed at PN-to-PN or at MF-
to-CA3 synapses. The PN-to-PN synapse is developmentally
transient (Orduz and Llano, 2007; Watt et al., 2009) and may
have reached a tight coupling operation mode already early dur-
ing postnatal development. The finding of loose coupling (~75
nm) at mature MF-to-CA3 synapses does not rule out that im-
mature synapses operate at an even larger coupling distance.
Thus, the question if developmental tightening of coupling is
indeed a critical step in cortical synapse maturation is unresolved.

To address this question, we focused on the most frequent
synapse in the cerebellar cortex, the parallel fiber (PF)-to-PN
synapse. This synapse is remarkably different from the large calyx
or MF type synapses, harboring typically a single active zone (AZ)
only (Xu-Friedman et al., 2001). It operates in tight coupling
mode in mature mice (~24 nm; Schmidt et al., 2013), but it is
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unknown if coupling changes developmentally. The defining fea-
ture distinguishing loose from tight coupling is that the fast ex-
ogenous Ca*" chelator BAPTA exerts similar effects on release in
both coupling regimes, while the slow but similarly affine chela-
tor EGTA is far more effective at loosely coupled than at tightly
coupled synapses (Adler et al., 1991; Ohana and Sakmann, 1998;
Neher, 1998a; Hefft and Jonas, 2005; Bucurenciu et al., 2008;
Eggermann et al., 2012; Schmidt et al., 2013; Vyleta and Jonas,
2014).

Here we report that EGTA was much more effective in inter-
fering with release at young PF synapses than at adult ones, while
the fast chelator BAPTA was similarly effective in both age
groups. These data suggest that the Ca** influx-release coupling
undergoes substantial tightening during postnatal PF matura-
tion. Consistently, Ca,2.1 immunoreactivity became confined to
the AZ during development, while presynaptic Ca*™ signals were
not different between age groups. During development, p, in-
creased and paired-pulse ratio (PPR) decreased, which is remark-
ably opposite to functional developmental alterations reported
for the calyx of Held and neocortical synapse (Feldmeyer and
Radnikow, 2009).

Materials and Methods

Slice preparation and electrophysiology

C57BL/6 mice of either sex (P8—P10 or P21-P24) were decapitated under
deep isoflurane (Curamed) inhalation anesthesia; the cerebellar vermis re-
gion was excised rapidly and placed in cooled (0—4°C) artificial cerebro-
spinal fluid (ACSF) containing the following (in mm): 125 NaCl, 2.5 KCl,
1.25 NaH,PO,, 25.6 NaHCO,,1 MgCl,, 2 CaCl,, and 20 glucose, equili-
brated with 95% O, and 5% CO,, pH 7.3-7.4. Parasagittal slices (150 wm
thick) were prepared with an HM 650 V vibratome (Microm) and slices were
stored at 35°C for 30 min. Subsequently, they were transferred to a recording
chamber continuously perfused at 3 ml/min by ACSF supplemented with 10
M gabazine (SR-95531). Recordings were performed at 33 = 2°C. Unless
stated otherwise, chemicals were from Sigma-Aldrich.

Patch pipettes were prepared from borosilicate glass (Hilgenberg) with
aPC-10 puller (Narishige) and had final resistances of ~5 M) for whole-
cell recordings from PNs and ~8MX() for recordings form granule cells
(GCs). The pipette solution contained the following (in mm): 150
K-gluconate, 10 NaCl, 3 Mg-ATP, 0.3 Na-GTP, 0.05 EGTA, and 10
HEPES, dissolved in purified water. The pH was adjusted to 7.3 with
KOH.

Whole-cell patch-clamp recordings were performed under optical
control (BX51WI; Olympus), using an EPC10 amplifier and Patchmaster
2.69 software (HEKA). EPSCs were recorded from PNs at a holding
potential (V} .;4) of =80 mV (corrected for the liquid junction potential),
filtered at 5 kHz, and sampled at 10 kHz. Series resistance (R,) and hold-
ing current (I;,,,4) were monitored continuously. Experiments were re-
jected if R, (typically in the range of 10-25 M{); 50% compensation)
exceeded 30 M() or if I, 4 fell below —400 pA. Extracellular PF stimu-
lation (150 us bipolar pulse) was performed with ACSF-filled theta glass
pipettes using an ISO-Stim 01 DPI (NPI Electronics).

EPSCs were evoked every 10 s for 50 min by extracellular stimulation
of PF tracts (Fig. 1). For chelator-acetoxymethyl-ester (AM) experiments
stimulus strength was adjusted to yield initial EPSC amplitudes of ~400
pA. The faster decay kinetics of somatically recorded EPSCs in young
PNs (Fig. 1 B,C) is most probably a result of better space-clamp condi-
tions arising from smaller dendritic trees of immature PNs (Roth and
Hiusser, 2001). The time courses of chelator effects on EPSC amplitudes
(Fig. 1B-D) were analyzed by binning EPSC amplitudes within 2 min
intervals of recording time to average amplitude.

We used the established approach of reducing transmitter release with
the Ca?* chelators EGTA [Kp, 70 nm, k,, 107 M~ ' s 7! (Nigerl et al,,
2000) or Ky, 180 nm, k,,, 2.7*10° M ' s ! (Naraghi, 1997)] and BAPTA
[Kp 220 nM, k,,,, 4710 Spmls ! (Naraghi and Neher, 1997) or K, 176 nm,
k,,4.5°108M ~'s ! (Naraghi, 1997)]. PF synapses were loaded with the
exogenous chelators by bath application of their membrane-permeant
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AM variants (Atluri and Regehr, 1996; Matsui and Jahr, 2003; Hefft and
Jonas, 2005). Following 10 min of baseline recordings in normal ACSF,
the bath solution was exchanged for ACSF containing either 0.1% DMSO
and 0.01% Pluronic (control solution) or EGTA-AM in DMSO/Pluronic
or BAPTA-AM in DMSO/Pluronic for 30 min (incubation period) and
thereafter replaced by normal ACSF again for another 10 min (test pe-
riod). After the 30 min incubation time, the intracellular chelator con-
centration will substantially exceed the bath concentration due to
continuous intracellular accumulation (Tsien, 1981; Atluri and Regehr,
1998). Final BAPTA-AM solubility was limited to ~10 um (Invitrogen)
at near physiological temperature. Attempts to prepare higher concen-
trated solutions resulted in precipitations, identified as small crystals by
microscopic inspection. Use of higher concentrations of DMSO (0.5%)
and Pluronic (0.05%) did not result in increased solubility, and use of
BAPTA-AM solutions with precipitations did not lead to further EPSC
amplitude reductions than observed with 10 um BAPTA-AM.

Estimating quantal synaptic parameters

Quantal synaptic parameters were determined from EPSCs recorded at
different [Ca>™], (1-8 mm, =30 repetitions per concentration) witha 5s
or 10 s interval between successive stimulations (Schmidt et al., 2013). In
young animals 2 mum tetraethylammonium (TEA) was added to the bath
in some experiments to maximize action potential (AP)-evoked Ca*™
influx and transmitter release. To reduce possible effects of postsynaptic
receptor saturation (Foster et al., 2005), the ACSF routinely contained 2
mwM of the low-affinity AMPA receptor antagonist y-pD-glutamylglycine
(y-DGG; Abcam).

For multiple-probability fluctuation analysis (MPFA), which assumes
general applicability of binominal statistics and corrects for nonuniform
quantal size (Quastel, 1997; Silver et al., 1998; Clements and Silver, 2000;
Scheuss et al., 2002; Silver, 2003; Saviane and Silver, 2006), variances (o2)
were plotted against mean EPSC amplitudes (I) and fitted by a parabola
of the form:

2

0'2=Iq—ﬁ(1 + CV3) + qICV3, (1)

with g being the quantal size, N a binominal parameter indicating the
number of release sites or releasable vesicles, and CV; and CV/; the coef-
ficients of intrasite and intersite quantal variability, assumed to be 0.3
(Clements and Silver, 2000). It was previously shown that variation of the
CV values over a broad range has only minor effects on the estimate of p,
at PF synapses (Valera et al., 2012; Schmidt et al., 2013). MPFA data were
analyzed with custom-written routines in Igor Pro 6 (WaveMetrics) and
are shown as variance versus mean with the variance of the variance as
error bars.

SDS-digested freeze-fracture replica immunolabeling and
quantitative analysis

SDS-digested freeze-fracture replica immunolabeling. Immunolabeling of
freeze-fractured replicas was performed as described previously (Kulik et
al., 2006). Six wild-type mice were used (n = 4, P8; n = 2, P21). Care and
handling of the animals before and during experimental procedures fol-
lowed European Union regulations and were approved by the animal
care and use committees of the authors’ institutions. Animals were anes-
thetized by isoflurane (Forene; AbbVie) and their brains were quickly
removed and incubated overnight at 4°C in a fixative containing 2%
paraformaldehyde and 15% picric acid in 0.1 M phosphate buffer, pH 7.4.
Using a vibratome (VT1000S; Leica), sections of cerebella were cut trans-
versally at a thickness of 110 wm. Slices were cryoprotected in a solution
containing 30% glycerol and then frozen by a high-pressure freezing
device (HPM 1001 Leica). Frozen samples were fractured in a double-
replica table at —130°C and replicated by rotating carbon deposition (5
nm thick), stationary platinum (2 nm), and rotating carbon (18 nm) ina
freeze-fracture replica system (BAF 060; BAL-TEC). Replicas were then
incubated in a digestion buffer containing 2.5% SDS and 20% sucrose in
15 mm Tris-HCI, pH 8.3, at 80°C for 18 h. Replicas were washed in 50 mm
TBS containing 0.05% BSA (Roth) and 0.1% Tween 20 (Tw20; Roth) and
then incubated in a blocking solution containing 5% BSA and 0.1%
Tw20 diluted in 50 mm TBS for 1 h. Subsequently, replicas were incu-
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bated in one of the following mixtures of primary antibodies: (1) Ca 2.1
[guinea pig (Gp); 5.5 wg/ml] and RIM1/2 [Rabbit (Rb); 1 ug/ml; Synap-
tic System], (2) Ca,2.1 (Gp) and VGIuT1 (Rb; 3 ug/ml), and (3) Ca,2.1
(Gp) and VGIuT2 (Rb; 0.9 ug/ml) made up in 50 mm TBS containing 1%
BSA and 0.1% Tw20 overnight (O/N) at room temperature. After several
washes, replicas were reacted with a mixture of gold-coupled 10 nm goat
anti-guinea pig IgG and 15 nm goat anti-rabbit IgG secondary antibodies
(1:30; BioCell Research Laboratories) made up in 50 mm TBS containing
5% BSA O/N at 15°C. The labeled replicas were examined using a trans-
mission electron microscope (Philips CM100) and VGluT1-positive
(P21) or VGluT2-positive (P8) varicosities were photographed at a mag-
nification of 8900 X. Putative presynaptic active zones were assessed by a
high density of intramembrane particles on the protoplasmic face of the
examined profiles and/or by a clear invagination of the membrane area.

Quantitative analysis. Based on the location of the Ca 2.1 channels in
relation to putative synaptic membranes, double-labeled PF varicosities
(Ca,2.1-VGluT2, n = 182 or Ca,2.1-VGluT1, n = 242) were grouped
into synaptic (within the AZ), extrasynaptic (outside AZ), and synaptic—
extrasynaptic categories. Statistics is based on two animals in each age
group.

Fluorescence imaging

Ca”" imaging experiments of PF boutons were performed as described
previously (Schmidt et al., 2013). GCs were filled for 20 min with EGTA-
free, Fluo-5F, and Alexa 594-containing (200 and 50 M, respectively;
Invitrogen) pipette solution via somatic whole-cell patch pipettes. Exper-
iments were performed between 20 and 40 min whole-cell time. Presyn-
aptic fluorescence transients were elicited by somatically induced APs
(50-120 pA, 1 ms current injection; bridge mode, V..., =70 to =80 mV,
Iiola < 50 pA) and recorded in line scans with a custom-built two-
photon microscope based on a FluoView 300 scanner (Olympus); a 60X/
0.9 NA objective; a mode-locked Ti:sapphire laser (Tsunami; Newport-
Spectra Physics, set to a center wavelength of 810 nm); and a Pockels cell
(350—80 KDP™; Conoptics). Each bouton was recorded three times.
The fluorescence signals were filtered (HC647/75; Semrock HC525/50,
720-SP, AHF), detected by two external PMT modules (H7422-40,
Hamamatsu; PMT-02M/PMM-03, NPI Electronics; monitoring epiflu-
orescence and transfluorescence, respectively), and digitized with the
FluoView system. The Ca®*-dependent green fluorescence was normal-
ized to the Ca’"-insensitive red fluorescence and expressed as
background-corrected AG/R (Sabatini et al., 2002).

Loading of slices with calcein-AM (Invitrogen) dissolved in ACSF,
0.1% DMSO, and 0.01% Pluronic was performed as described above for
chelator-AM compounds, except that during the 30 min incubation no
continuous perfusion was performed. Instead the bathing solution was
directly gassed. Following incubation, calcein-containing bath solution
was exchanged for normal ACSF and fluorescence z-stacks were taken
with the above-described instruments from two regions of interest per
slice with 2 wm steps.

Analytical model

Effects of exogenous Ca?™ chelators on release ratio (R) were simulated
(Mathematica 9.0; Wolfram Research) using steady-state solutions to the
linearized reaction-diffusion equations for (1) vesicles coupled to a single
influx site (Model 1), (2) vesicles embedded in a cluster of channels
(Model 2), or (3) two vesicle pools coupled at different distances to influx
sites (Model 3; Neher, 1998a):

exp(—d/Ag)\" /{exp(—dIrc)\"
R= (G ()

(Model 1, single-channel model), (2)

(%dd/)\g) + 27):8 (exp(—ni/Ay) — CXP(—fz//\B))> /

—d/\ 2A¢ '
(%JC) + 7C (exp(—=n1/A¢) — exp(—f’z/)\c))>

(Model 2, cluster model), (3)
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exp(—di/Ap)\" /(exp(=di/Ac)\"
R= a( dl ) /( dl )

fa- a)<exp(—d:lzm3)>” /(exp(—f/%))”

(Model 3, two-pool model), (4)

_ DCa
A= \ppo (5)

A = DCa (Caresr + KD)
5= \BP.+k,, *+ B - K

(6)

where d (all models) is the coupling distance between a vesicle and its
closest channel, r,, is the spacing between channels (Model 2) and r, the
radius of the channel cluster (Model 2). D, is the diffusion coefficient of
Ca?* of 223 um?/s (Allbritton et al., 1992) and A is the diffusion length
constant for control (A) or with exogenous buffer added (Ag). BP- =k,
B, is the buffer product in the absence of added chelator, assuming that
calretinin (CR) is the dominating endogenous buffer (Schmidt et al.,
2013) with an apparentk,,, = (ko1 konr) /> 0£2.36 10" M ™' s ™' (Faas et
al., 2007), concentration B of 84 uM, and a buffer capacitance (k) of 60
(Brenowitz and Regehr, 2007). K, is the dissociation constant of added
EGTA or BAPTA (see above). In Model 3 the parameters a and (1 — a)
represent the fractions of vesicles coupled with d; or d, to channels,
respectively. The equations are based on several standard assumptions,
including constant concentrations of free buffers due to rapid diffusion
(Neher, 1998a). The parameter # captures the power-law dependency of
release on Ca>" and was set to four (Dodge and Rahamimoff, 1967).

The models have previously proven valuable in describing buffer ef-
fects on transmitter release and for estimating coupling distances (Neher,
1998b; Bucurenciu et al., 2008; Schmidt et al., 2013). They require esti-
mates of intracellular Ca?* chelator concentrations that were derived as
follows: the coupling distance in adults is homogenous and well de-
scribed by models with a coupling distance of 24 nm (Schmidt et al.,
2013), a situation reflected by Model 1. The parameter d was set to 24 nm
and the adult EGTA dose-response curve was fitted by Model 1 with the
extracellular EGTA concentration as an independent variable multiplied
by a loading factor (LF; representing the loading efficacy of extracellu-
larly applied AM esters) as fit parameter (Fig. 7C). The fit estimate for this
LFwas 15 0r 42 for k,, pora = 107M ~'s 7, K para = 70 nm (Négerl et
al.,, 2000) or k,,para = 2.7°10° M~ 's 7', Kp para 180 nv (Naraghi,
1997), respectively. Subsequently, EGTA-induced release reductions re-
corded from young synapses were plotted against the estimated intracel-
lular EGTA concentration, assuming that loading is similar to the adult,
an assumption that appears justified in light of the experiments with
calcein-AM (Fig. 2). Subsequently these data were fitted with Models 1-3
with d and r values as fitting parameters. A free fit of Model 2 or Model 3
(Fig. 7) yielded good descriptions of the data but required values for r, or
d,, respectively, that were larger than the physical size of the AZ (Fig. 5),
indicating that at young synapses channels outside the AZ contributed to
release. Constraining r, or d, in Model 2 or Model 3, respectively, to 250
nm (compare Figs. 5, Fig. 8, calretinin, constrained models) still
yielded better descriptions of the data than the homogenous coupling
model, with Model 3 giving the best fit. Fit parameters are given in
Figures 7 and 8.

The steady-state buffer capacity [k = (Kppgra [EGTA]/(Ca +
Kp pgra)®] (Neher and Augustine, 1992) of added EGTA was estimated
for Ca?™ concentrations (Ca) at rest and at the peak of an AP (45 and 200
nwm, respectively; Schmidt et al., 2013). The total intracellular EGTA con-
centrations ([EGTA]) were estimated as the product of LF and
EGTA-AM concentration.

We tested variations of the unconstrained and constrained models
(Fig. 8) by including a buffer with k,, of 510® M "' s ! and k of 30 and
reducing the CR concentration correspondingly to keep total k at 60
(“calretinin + unknown buffer”; Brenowitz and Regehr, 2007; Schmidt
etal.,2013) or by replacing CR by a single endogenous buffer species with
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Figure1. (a’* chelatoreffects suggest developmental tightening of coupling. A, Recording scheme: EPSCs were evoked in whole-cell patch-clamped PNs by extracellular stimulation of PF tracts

inacute slices. B, Examples of recordings from PF-PN connections in young slices (2 min binning). Following baseline recordings (10 min), slices were incubated for 30 min (bars) in 10 pum EGTA-AM
(blue), 10 pum BAPTA-AM (red), or ACSF supplemented only with DMSO/Pluronic (control, black). Incubation was followed by a 10 min washout. Insets, Average EPSCs during baseline and washout.
C, Asin Bbut for adult connections. D, Average data (mean == SEM) recorded from young and adult connections. Data were normalized to the average EPSC amplitude during baseline. £, Summary
of chelator-AM-induced EPSC reductions. EPSC amplitudes from D were averaged over the 10 min washout period and normalized to the average control amplitude (n asin D).

k,, of 1°10® M ' s 7', free concentration By, of 2 mm and k of 40
(“unidentified buffer”; Sabatini and Regehr, 1998). These variations
yielded higher estimates of intracellular EGTA (LF of 17.8 or 71.8, respec-
tively) but otherwise qualitatively similar results with respect to the con-
clusion about coupling distances and inhomogeneity in young synapses.

Statistics

Unless stated otherwise, data are presented as box-and-whisker plots
with outliers. Boxes show median and interquartile ranges (IQRs). Whis-
kers show the 90 and 10% percentiles. Normally distributed data were
compared with the ¢ test (two groups) or an ANOVA (more than two
groups). Non-normally distributed data were compared with the Wilc-
oxon—-Mann—Whitney rank sum test (two groups) or an ANOVA on
ranks (more than two groups). If datasets consisted of preapplication and
postapplication data from the same cells the paired ¢ test, signed rank
sum test, or ANOVA repeated-measures were used. “p =< 0.05, “"p =
0.01, or “**p = 0.001, respectively. Statistics were performed with Sigma
Plot 11.0 (Dundas Software).

Results

Exogenous chelators differentially affect release at young and
adult synapses

If coupling changes from loose to tight during PF-PN synapse
maturation, one would expect BAPTA and EGTA to affect release
from young boutons to the same extent, whereas release from
more mature boutons should be affected predominantly by

(e} (00}
o o
o o
| |

400

200+

Fluorescence (ADU)

Slice depth (um)

Figure2.  Comparable AM-based loading in young and adult tissue. Background-corrected
fluorescence intensities (ADU, arbitrary digital units) versus depth from slice surface in the
molecular layer from young and adult mice (gray and black, respectively; mean and 95% con-
fidence intervals, n = 6 each, p = 1.0). Slices were incubated for 30 min with the fluorescent
dye calcein-AM (10 pum). Fluorescence measurements were performed 10 min after washout of
the dye.
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BAPTA and substantially less by EGTA.
Indeed we observed that at young (P8-—
P10) connections a 30 min application of
10 uM membrane-permeant EGTA-AM \

Young
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B
*%
—

(45)  (29)

or BAPTA-AM was similarly effective in
significantly reducing the amplitudes of
EPSCs (by 32 = 5%, mean = SEM and
40 * 7%, respectively, p = 0.3 for EGTA
vs BAPTA; p = 0.002 or <0.001 for EGTA
or BAPTA vs control, respectively; Fig. 1). v
In contrast, at more mature synaptic con-
nections (P21-P24, “adult”), 10 um
EGTA-AM had no effect on EPSC ampli-
tudes compared with control (p = 0.9)
while BAPTA-AM caused a significant
amplitude reduction (by 33 * 4%; p =
0.001) similar to that seen in young
connections.

Comparing AM-based loading in young
and adult tissue assumes that the loading
efficacy is comparable at both age groups.
We analyzed the time courses of chelator
effects in both age groups by fitting expo-
nential functions to the EPSC amplitudes.
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that chelator concentrations reached sat-
urating levels in equal times in both age
groups. To further address this point
slices were loaded with the dye calcein-
AM. This dye only becomes fluorescent
upon intracellular cleavage of its ester
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group making it an ideal indicator for
AM-based accumulation in the cytosol
(Chiu and Haynes, 1977). Fluorescence
intensities sampled in the molecular layer
were indistinguishable for young and
adult slices in all imaging depths (0 to 60
um; n = 6 each; p = 1.0; Fig. 2). These
findings indicate that AM-based loading
and de-esterification were indeed compa-
rable for P§—P10 and P21-P24 slices, both
with respect to the loading time course
and the final intrasynaptic chelator con-
centration. Consequently, the observed
differential effects of EGTA and BAPTA
on EPSC amplitudes are in line with tight
coupling in adult boutons (Schmidt et al., 2013) and suggest a
significantly looser coupling in young boutons.

Figure 3.

Developmental tightening of coupling is associated with
altered short-term plasticity and release probability
Functionally a larger channel to sensor distance predicts a re-
duced p, at immature as compared with mature synapses. The
EPSC PPR (PPR = EPSC2/EPSC1) comprises information about
p,since, provided quantal size (q) remains unaltered, PPRis given
by p,»/p, if vesicle replenishment is complete between pulses or
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Short-term plasticity and vesicle replenishment in young and adult PF synapses. A, Examples of PPF in young and
adult synapses [averages (black) of five repeats (gray)]. The arrowhead denotes the time point of stimulation. B, Box-and-whisker
plot summarizing the PPR data. Median and IQR, outliers are denoted by points. The number of cells is denoted in parentheses. C,
Cumulative EPSC amplitudes during a 100 Hz train of synaptic activation. Example recording from a young mouse. Data were
normalized to the amplitude of the first EPSC. The solid line represents a linear it to the steady-state phase (200 —500 ms; slope =
0.1, y-intercept = 10) of the cumulative current. D, Same as in € but in a recording from an adult mouse (slope = 0.08,
y-intercept = 5). E, Bar graph of slope values in young (n = 9, gray) and adult (n = 11, black) mice. F, Bar graph summarizing
PPRs in recordings from young and adult mice before (control) and after application of 100 um EGTA-AM (" * *p << 0.001). Solid
and dashed lines indicate median and mean values, respectively.

otherwise by p,./p,; (1 — p,; + F p,,) if fraction F is replenished
(Valera et al., 2012). The PPR at young connections (2.2 (1.9—
2.6)) was found to be indeed significantly larger than in adults
(1.9 (1.8=2.0); p = 0.003; Fig. 3 A, B). The slopes of linear fits to
the steady-state phases of cumulative EPSC amplitude plots from
100 Hz trains of synaptic activations (4 mm [Ca**],) were used to
estimate replenishment rates. The extrapolated y-axis intercept of
these fits is an index of the initial size of the ready-releasable pool
(RRP) of vesicles (Schneggenburger et al., 1999). Following nor-
malization to the amplitude of the first EPSC, these y-axis
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intercepts contain information related to the size of the RRP
also in compound stimulations (Valera et al., 2012). We found
that the slopes of the fits were not different between maturation
stages [slope,qu = 0.09 * 0.003 ms ™' (n = 11), slopeoung =
0.09 * 0.009 ms ' (n = 9); p = 0.54; Fig. 3C-E], while their
extrapolated y-intercept values were smaller for mature than for
immature synapses (y-intercept,q,; = 4.7 £ 0.5, y-interceptyoun,
=9.9 £ 1.1, p = 0.004). The estimates of slopes and y-intercepts
are in line with previous estimates at PF synapses (Valera et al.,
2012). The slope estimates indicate that altered replenishment is
not responsible for increased PPR at young connections. The
y-intercepts at young synapses well match with the approxi-
mately eight docked vesicles found at single AZs of young PF
synapses (Xu-Friedman et al, 2001). At mature synapse the
y-intercept value is consistent with the binominal parameter N of
~3 reported for adult PF synapses (Schmidt et al., 2013). These
findings indicate that the size of the RRP declines during devel-
opment, which is different from the maturation of the calyx of
Held, where the 100 Hz train y-axis intercept increases develop-
mentally (Taschenberger and von Gersdorff, 2000).

Incubation with EGTA-AM significantly reduced the PPR at
adult (from 1.9 = 0.05 to 1.2 = 0.04, preapplication and postap-
plication recordings; p < 0.001) but not at young synapses (2.2 =
0.29 to 2.1 = 0.22; p = 0.9; Fig. 3F). This suggests that the
mechanisms of PPF and/or the Ca*>* channel topologies driv-
ing facilitation differ between young and adult PF boutons (cf.
below). It indicates that due to tighter coupling in the adult only
the facilitation of EPSC2 was affected, whereas in the young
EGTA affected both EPSCs.

MPFA (Clements and Silver, 2000) of EPSC amplitudes re-
corded at different extracellular Ca** concentrations ([Ca*],)
in the presence of the rapidly dissociating antagonist y-DGG was
used to directly estimate quantal release parameters (Fig. 4). In
both age groups g was similar (adult, 1.7 (1.1-2.0) pA, n = 5;
young, 2.4 (1.4—4.9) pA, n = 8; p = 0.17). For adult synapses p,
was 0.21 * 0.03 in 2 mMm [Ca**], (Fig. 4C), consistent with pre-
vious estimates at mature PF terminals (Sims and Hartell, 2005;
Valera et al., 2012; Schmidt et al., 2013). At young synapses, in-
creasing [Ca®"], or the additional use of TEA (Bornschein et al.,
2013) was not sufficient to raise p, above 0.5, i.e., to permit the
parabolic MPFA fit (Fig. 4D). This indicates that p, at young
synapses is lower than at adult ones (Clements and Silver, 2000),
which is consistent with the increased PPR at young synapses. In
accordance with this, at PF synapses of young rats p, has been
estimated previously to be smaller than the above estimates for
adult synapses (Foster et al., 2005). Thus, age-dependent tighten-
ing of coupling is functionally associated with a decrease in short-
term facilitation and an increase in p,.

Developmental focusing of Ca,2.1 immunoreactivity to the
active zone

Release from PF boutons is triggered with highest efficacy by
Ca,2.1 (P/Q) Ca** channels (Mintz et al., 1995; Myoga and Re-
gehr, 2011), which are concentrated at PF varicosities (Kulik et
al., 2004). We investigated the distribution of immunoparticles
labeling Ca,2.1 at young and adult PF boutons identified by
VGIuT2 (P8) or VGIuT1 (P21) staining (Miyazaki et al., 2003),
respectively, using SDS-digested freeze-fracture replica labeling
(FRL) immunoelectron microscopy. AZs were identified by the
clusters of intramembrane particles, which show immunoreac-
tivity for the presynaptic AZ proteins RIM 1/2 (Fig. 5A,B). This
high-resolution immunolabeling analysis revealed that in young
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Figure4. Developmental changes in release probability. 4, Fluctuation of EPSC amplitudes
recorded at the indicated [Ca® "], from an adult PN during PF stimulation. B, Variance-mean
plot of the EPSCs in A fitted by a parabola, yielding the quantal parameters g and p,. , Summary
of p, in the adult (n = 5). The line indicates the mean value. D, As in B but in a young animal.
Data fit to a straight line due to very low p, (Foster et al., 2005).

tissue Ca,2.1 immunoreactivity was frequently scattered over the
entire varicosity (Fig. 5C-E). On the contrary, in adult tissue it
was essentially restricted to putative AZs (Fig. 5F-H ). This sug-
gests that a developmental redistribution of Ca,2.1 immunoreac-
tivity occurred between P8 and P21. Such focusing of Ca,2.1
channels to the AZ is consistent with a tight channel-sensor asso-
ciation at mature synapses (Bucurenciu et al., 2008).

Presynaptic Ca>* signaling is not altered developmentally

Interpreting our results directly as being caused by differences in
coupling requires that differences in global presynaptic Ca** sig-
nals between maturation stages do not significantly contribute to
the differential chelator sensitivity. This would need to be the case
despite differences in Ca,2.1 localization. To probe this, we per-
formed two-photon Ca®" imaging on young and adult PF bou-
tons (Fig. 6 A, B), using the low-affinity Ca?*t dye Fluo-5F and the
red, Ca*"-insensitive dye Alexa 594. Ca*" signals (expressed as
AG/R; Sabatini etal., 2002) induced by single, somatically evoked
APs had an amplitude 0f 0.079 (0.07-0.1) AG/R in adult boutons
and decayed with a time constant of 114 (90-160) ms. Values
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Figure 5.  Developmental focusing of Ca,2.1 immunoreactivity to the AZ of parallel fiber boutons. A, B, Electron micrographs
showing the colocalization of Ca,2.1 (10 nm gold particles) and the presynaptic AZ proteins RIM1/2 (15 nm particles) in the
presynaptic plasma membrane of parallel fiber boutons (PB) from young (P8, A) and adult (P21, B) mice, as assessed by the
SDS-FRL. Ca,2.1 labeling was observed mostly at the presynaptic membrane specialization, i.e., at putative AZs (A, B) and, in
the case of young animals, also outside the AZ (4, arrows). -G, Immunolabeling for Ca,2.1 (10 nm particles) and VGIuT1 (adult)
or VGIuT2 (young; 15 nm particles) on the protoplasmic face of young (C~£) and adult (F, G) PB. Clusters (C) or isolated (D)
immunoparticles for Ca, 2.1 were observed at putative AZs (dashed lines) butalso outside (E, arrows) of AZs in young mice, whereas
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from young boutons were not different
from these values (0.074 (0.05—0.09)
AG/R,p=0.14;108 (84-140) ms, p = 0.4;
Fig. 6C,D), indicating that differences in
[Ca®*], were indeed not responsible for
the unequal chelator effects. Further-
more, presynaptic Ca>" signals were not
facilitated in young or in adult boutons
(Fig. 6E), which for the adult boutons
agrees with previous reports of high reli-
ability and linear summation of AP-
mediated Ca’>" signals in PF boutons
(Brenowitz and Regehr, 2007; Schmidt et
al., 2013). These results indicate that al-
tered p, and PPF at young synapses do not
result from differences in Ca®" signaling
or from buffer saturation (Rozov et al.,
2001) but from looser coupling.

Quantitative estimates of coupling
topographies from EGTA
dose-response curves

We analyzed effects of different EGTA-AM
concentrations at young and adult con-
nections (1-500 uMm) following the above-
described procedure (Fig. 1). The average
7 of AM-based loading was similar for all
concentrations between young and adult
slices (Tyoung = 96 = 2.2 min; 7,4, =
10.9 = 2.9 min; p = 0.29).

The resulting dose-response relation-
ships revealed a significantly higher sus-
ceptibility of release from young than
from adult synapses for all EGTA concen-
trations (p < 0.001). The dose-response
curve in adults was exponential, while the
curve was biexponential in the young (Fig.
7A), indicating that coupling in young
synapses is both less tight and less homog-
enous than in adult ones (Meinrenken et
al., 2002). Consistently, the CVs of EPSCs
were significantly higher in recordings
from young than from adult connections
(0.2 (0.18-0.25) and 0.1 (0.09-0.13), re-
spectively, p < 0.001; Fig. 7B; Meinrenken
et al., 2002). This contrasts results from
small excitatory synapses in the cerebral
neocortex, where the EPSC CV (and PPR)
increased during early postnatal develop-
ment (Feldmeyer and Radnikow, 2009),
which may indicate that these synapses

<«

in adult boutons (F, G) virtually all Ca,2.1 channels were de-
tected at AZs and particles were only rarely seen extrasynapti-
cally (arrow in G). H, Fractions of VGIuT-positive young (gray,
n = 182, 2 animals) and adult (black, n = 242, 2 animals)
boutons showing Ca,2.1 immunoreactivity exclusively inside
(synaptic AZ; p = 0.003), outside (extrasynaptic; p = 0.004),
orinside and outside (both; p = 0.002) of putative AZs. Note
that the AZ fraction substantially increased with synapse mat-
uration. Scale bars: A-G, 200 nm.
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Presynaptic Ca* signals were not altered during development. 4, Two-photon image of a young GC loaded via a somatic patch pipette (dashed lines) containing 200 wm Fluo-5F and

50 um Alexa 594. Inset, Somatically evoked AP. B, Top, PF bouton outlined in A from which single AP-mediated fluorescence signals were recorded in the line scan mode. Bottom, AG/Rsignals from
three individual recordings (gray) from the bouton and their average (black). €, AG/R signals averaged across individual young (n = 21) and adult (n = 28) boutons (gray) and their grand averages
(black). D, Amplitudes (AG/R) and decay constants () of Ca 2+ signals in young and adult boutons. E, PPR of AG/R signals (20 Hz). Top, Averages of individual boutons (gray) and grand averages
(black). The decay of the first transient was extrapolated and the second amplitude was measured to the decay of the first. Bottom, Amplitudes of the first and the second Ca** signal normalized

to the first amplitude.

develop a mature AZ configuration differing from that of PF
synapses.

To further probe the hypothesis that functionally relevant
Ca’* channel-to-vesicle distances in young PF terminals are
more heterogeneous than in adult terminals, we analyzed the
effects of subsaturating concentrations of the slowly dissociating
Ca*™" channel blocker Cd** (k ¢~ 335~ '; Chow, 1991) on PPR
in both age windows (Fig. 7C—E). Due to its slow dissociation
from Ca?" channels, Cd** blocks individual channels in an “all-
or-none” manner during an AP, leading to reduced EPSC ampli-
tudes (Scimemi and Diamond, 2012). Following the arguments and
evidence provided by Scimemi and Diamond (2012) for glutamater-
gic hippocampal synapses, the PPR should be differentially affected,
depending on whether release is triggered by a single channel or by a
group of distributed channels. In the former case (“one channel-
one vesicle”) PPR should remain unchanged compared with con-
trol conditions because a vesicle that does not sense Ca>" during
the first AP will not be released or facilitated. In the latter scenario
(“several channels—one vesicle”) the PPR could increase due to

the reduced p, during the first AP. Thus, one might predict PPR
to increase in the presence of Cd** at young synapses but to
remain unaltered at adult ones. Application of Cd*" reduced
EPSC amplitudes in a concentration-dependent manner in both
age groups, with stronger effects at young synapses (Fig. 7D).
Remarkably, the PPR increased in the presence of Cd** at young
synapses (p = 0.03), while it remained unaltered in the adult
(p = 0.91; Fig. 7C,E). These results are consistent with a scenario
in which in mature terminals vesicles are tightly coupled to a
single Ca®* channel and in immature terminals to a group of
channels with heterogeneity in the coupling distances.
BAPTA-AM solubility was limited to ~10 uM (see Materials
and Methods), preventing acquisition of effects induced by high
BAPTA concentrations. However, for 1 um BAPTA-AM the re-
duction of EPSC amplitudes was similar for young and adult
animals (by 19 = 5 and 13 = 8%, respectively; p = 0.6), and in
young animals 1 um EGTA and BAPTA had similar effects (p =
0.7; Fig. 7A). This agrees perfectly with the results obtained with
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10 uMm of the chelators and further substantiates the notion of
looser coupling at young boutons. Furthermore, it indicates that
Ca’* sensor affinities are similar between age groups and do not
contribute to the differential chelator effects (cf. Discussion).

To derive quantitative estimates about the ontogenetic
changes in coupling, we fitted analytical models (Neher, 1998a)
to the EGTA dose-response data (Fig. 7F-I; models with varia-
tions, e.g., in the properties of endogenous buffers are shown in
Fig. 8). Intracellular EGTA concentrations were estimated by first
fitting the adult data with a fixed homogenous coupling distance
(d) of 24 nm (Schmidt et al., 2013) and an AM-LF as variable
(Model 1). Subsequently, data from young synapses were plotted
against the estimated intracellular EGTA concentrations (=
[EGTA-AM] * LF) and fitted with d as a variable, resulting in d of
60 nm in the young (Model 1; LF = 15 or 42, depending on the
Ca** binding kinetics and affinity used for EGTA in the model;
Fig. 7; see Materials and Methods). The fit was not ideal presum-
ably because of inhomogeneous coupling in young boutons
(Meinrenken etal., 2002). A channel-cluster or a two-vesicle pool
model (Models 2 and 3, respectively) gave better descriptions of
the data, indicating that a fraction of vesicles (~0.4—0.6) was
already close to channels (~23-35 nm) while other sensor-
channel distances were still large (~176-1300 nm). The use of
different published Ca?" binding kinetics and affinities for
EGTA (Naraghi, 1997; Négerl et al., 2000) resulted in different
estimates for the LF and the fraction a of tightly coupling vesicles
in Model 3 (slower kinetics and smaller affinity resulted in larger
LF and larger a). Importantly, however, identical estimates for
the coupling distance in young terminals were obtained for each
simulation (Figs. 7, 8). This indicates that a slower binding kinet-
ics of an exogenous buffer can be compensated for by an increase
in its concentration, even in a tightly coupling Ca*" influx-
release regime (Ishiyama et al., 2014). Consistent with this no-
tion, at adult synapses, e.g., 10 um BAPTA-AM and 100 um
EGTA-AM reduced EPSC amplitudes to approximately the same

<«

Figure 7.  Chelator-AM dose—response curves quantify looser coupling at young PF termi-
nals. A, EGTA-AM (circles) dose—response curves (mean == SEM) of young (gray) and adult
(black) connections. Data points were calculated from EPSCs recorded during the 10 min wash-
out period following 30 min of chelator-AM application (compare Fig. 1). Lines represent expo-
nential (black) or biexponential (gray) fits. Inset, Expanded curves with BAPTA-AM data
(squares) included. B, CV of EPSCamplitudes in adult (black, n = 42) and young (gray, n = 40).
C, Example EPSCs (average of 10 traces each) recorded from a young (top) or adult (bottom) PN
during PF paired-pulse stimulation (50 ms ISI) showing the effect of the indicated concentra-
tions of extracellularly applied Cd >* (different shades of gray; 0 = control, black; traces were
offset in time to each other for clarity) on the PPR. EPSCs are normalized to the first amplitude.
The dashed line indicates the amplitude of the second EPSC recorded under control conditions.
Note that the PR increased in the presence of (d>* in the young cell but remained unaltered
in the adult one. D, E, Bar graphs summarizing the effect of Cd>™ on the amplitude of the first
EPSC (D) and the PPR (E) in young (gray; n = 6; EPSCs: ™ p << 0.001; PPR: “p = 0.013 or
0.041) and adult (black; n = 4; EPSCs: “p = 0.04, ***p << 0.001; PPR: p = 0.91). Values
(mean == SE) were normalized to control values (dashed lines). EPSCs were completely blocked
by 20 um Cd** in the young, preventing the calculation of PPR for this concentration. F, Data
from the adult from A fitted (black) by Model 1 with d set to 24 nm and an EGTA-AM LF as
variable. The bottom x-axis has a dual scale according to estimates of intracellular EGTA con-
centrations obtained with different LFs of 15 or 42 that result from different published values for
Kon,ggra@nd K eqra (see Materials and Methods). G, Data from young animals in A were plotted
against estimated intracellular EGTA concentration (cf. text and F) and fitted (gray) by Model 1
with d as a variable. The fit gave an estimate for d of 60 nm. With the two different EGTA-
dependent LFs the fit curves completely overlapped with identical estimates of d. H, Data from
the young as in G fitted with a channel-cluster model (Model 2;d = 23 nm, r, = 176 nm, 1, =
1.3 um). 1, Asin G but for a two-vesicle pool model (Model 3; d; = 35nm,d, = 570nm,a =
0.48 or 0.61 for LF = 15 or 42, respectively).
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extent (Fig. 7A). This is reflected by the dependency of A on the
product of k,,, and buffer concentration (Neher, 1998a). Thus,
regardless of model details, a larger coupling distance was
predicted for at least a fraction of release-relevant vesicles at
young synapses that may even include channels outside the AZ
(Fig. 5H).

Discussion

Our results demonstrate developmental tightening of Ca*"
influx-release coupling at a typical cortical synapse. Tightening of
coupling converted the immature PF synapse into a reliable ma-
ture synapse with significantly increased p,.

The release rate of synaptic vesicles is governed by the size and
kinetics of the Ca*" signal, the intrinsic Ca** sensitivity of the
release sensor, and the distance between synaptic vesicles and
Ca,s. Direct measurement of local, release-driving Ca*" signals
has not yet been accomplished in brain slices. We quantified
amplitudes and time courses of global presynaptic Ca*" signals
in immature and mature PF boutons, serving as a reference of the
local Ca™. An inherent problem of imaging experiments under
whole-cell conditions is the washout of endogenous Ca** buf-
fers. However, buffer washout in our experiments is unlikely to
have been complete. First, the major endogenous buffer CR is
slowly mobile in GCs and partly immobilized (Arendt et al.,
2013). Second, under similar imaging conditions, significant dif-
ferences in PF Ca*" signals between wild-type and CR-deficient
mice were detected (Schmidt et al., 2013). Since we used a low-
affinity indicator dye in the present study the Ca** imaging ex-
periments would have revealed substantial differences in the
volume-averaged Ca®*. Since no such differences were evident
this indicates that it is essentially the distribution of Ca** chan-
nels that was different between age groups and not the size of the
total Ca** influx. In addition, the endogenous buffer capacity (k)
of GCs in an age window similar to that analyzed here is moder-
ate, being only ~60 on average (Brenowitz and Regehr, 2007). k
added by EGTA during our experiments, on the other hand, was
in the range of 150 to >70,000, which will have effectively leveled
out smaller differences in the expression of endogenous Ca*"
buffers. Thus, it is unlikely that differences in amplitude and/or
kinetics of Ca®™ signals are the major source of the differential
chelator effects observed between young and adult terminals.

Alterations in the intrinsic Ca>* sensitivity of the release sen-
sor could have contributed to the observed effects if its on-rate
and/or affinity would have increased during development. Con-
trary to this scenario, however, at the calyx of Held, the only
synapse at which this issue has been addressed in a developmental
context, it was found that vesicles in young synapses were even
more sensitive to inflowing Ca®" (Wang et al., 2008; Kochubey et
al., 2009), which in itself would make EGTA less effective in in-
terfering with release. However, at the calyx (Fedchyshyn and
Wang, 2005; Ledo and von Gersdorff, 2009), as in our experi-
ments, the effectiveness of EGTA was enhanced in younger ani-
mals, favoring the classical interpretation that the differential
EGTA effects are predominantly attributable to alterations in the
physical coupling between channels and the release sensor (Adler
et al., 1991; Augustine et al., 1991; Ohana and Sakmann, 1998;
Hefft and Jonas, 2005; Bucurenciu et al., 2008; Schmidt et al.,
2013; Vyleta and Jonas, 2014). Moreover, we found that BAPTA
exerted almost identical effects on release from young and adult
PF terminals. This latter result can hardly be reconciled with any
substantial differences in sensor affinity between young and adult
PF synapses. Thus, the differential chelator effects at differentially
aged synapses will have resulted from differences in the physical
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Figure 8.  Model variants show looser coupling in young animals. Fits of Models 1-3 to the EGTA dose—response data (Fig. 7) from young connections. The model conditions were varied as
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distance between channels and sensor and not from differences in
the Ca*™ sensitivity of the release apparatus.

Several lines of evidence support our conclusion of coupling
tightening and postnatal reorganization of the PF AZ. First, we
found that Ca, 2.1 immunoreactivity became restricted to the AZ
during development. Second, the developmental shift from biex-
ponential to exponential EGTA dose-response dependence of
EPSC reductions accompanied by a reduction in EPSC CV argues
for more inhomogeneous vesicle to Ca, distances in young ter-
minals (Meinrenken et al., 2002). Third, PPR was reduced by
EGTA at adult PF synapses but unaffected at young ones, indi-
cating that at adult synapses Ca, cooperativity is lower than at
young ones such that individual channels drive both the release
and a more distant facilitation process (Atluri and Regehr, 1996;
Neher and Sakaba, 2008). Consistently, application of Cd** in-
creased PPR at young but not at adult PF synapses, indicating that
Ca, cooperativity in the control of vesicles is indeed lower at adult
than at young synapses (Scimemi and Diamond, 2012). Finally,
while a homogenous coupling model could describe the EGTA
dose-response data at mature synapses, at young synapses
models with distributed vesicle to Ca, distances gave better
descriptions.

Different proteins at the AZ were implicated in the localiza-
tion of Ca,s to the AZ and in the regulation of channel to vesicle
distances (Eggermann et al., 2012; Stidhof, 2012). Septin5 has
been suggested to operate as a developmentally downregulated
“spacer” between vesicles and Ca,s in the calyx (Yang et al., 2010),
i.e., its removal is permissive to tight coupling. Coupling dis-
tances of 20-30 nm, on the other hand, are consistent with the
idea of additional mediator proteins of coupling (Eggermann et
al,, 2012).

The two t-SNARESs, syntaxin and SNAP-25, were indicated to
bind to the synprint site of different Ca,s (Catterall, 1999), which
would physically link vesicles and Ca,s. However, the t-SNAREs
are also present in loose coupling and other mediators will be
required in addition. Deletion of RIM1 and 2 resulted in reduced
number of release-relevant Ca,s and a reduction in the RRP size
accompanied by decreased, decelerated, and desynchronized
transmitter release, indicating that the coupling between the re-
maining Ca,s and vesicles also was impaired (Han et al., 2011;
Kaeser et al., 2011). At PF synapses loss of the RIM 1« resulted in
reduced p, and increased PPR (Kintscher et al., 2013). This phe-
notype resembles the young PF synapse, making RIM1« an in-
teresting candidate as a developmental regulator of coupling.
However, deletion of RIM proteins, including RIM1« at PF syn-
apses, resulted in reduced presynaptic Ca®" signals, whereas in
our experiments Ca’" signals were not different between age
groups.

At the Drosophila neuromuscular junction Bruchpilot is a
prime candidate for a mediator of coupling since in Bruchpilot
mutants the synaptic efficacy is reduced, accompanied by in-
creased PPR and sensitivity to EGTA-AM (Kittel et al., 2006),
which is reminiscent of our findings. Yet, Bruchpilot is not evo-
lutionarily conserved and contains domains that appear to me-
diate mammalian ELKS- and Bassoon-like functions in a single
protein (Wagh et al., 2006; Stidhof, 2012). Deletion of ELKS2, the
AZ ELKS, had only a moderate effect on excitatory synaptic func-
tion (Kaeser et al., 2009). Bassoon, on the other hand, has been
suggested to be involved in both the tethering of vesicles at the AZ
(Hallermann et al., 2010) and the localization of Ca,2.1 to the AZ
(Davydova et al., 2014), albeit without affecting p, (Hallermann
et al., 2010). It appears that the combined action of several AZ
proteins is required for mediating tight coupling.
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Functionally, postnatal tightening of coupling at PF synapses
was associated with an increase in synaptic reliability, reflected by
a reduced EPSC CV and increased p,, and accompanied by a
reduction in PPR. On the contrary, postnatal maturation of dif-
ferent small excitatory synapses in the cerebral cortex is accom-
panied by markedly different functional alterations. At these
synapses, the CVs and PPRs of EPSCs increase rather than de-
crease with maturation (for review, see Feldmeyer and Radnikow,
2009). Whether these opposite developmental changes are asso-
ciated with altered coupling is to our knowledge not known (Eg-
germann et al., 2012).

At the calyx of Held the presynaptic AP and Ca*" influx be-
come briefer with maturation, resulting in decreased p, and in-
creased PPR (Taschenberger and von Gersdorff, 2000; Iwasaki
and Takahashi, 2001). In addition, vesicles become less sensitive
to Ca*" (see above). Despite this, synaptic fidelity increases de-
velopmentally, which is achieved by an increase in the RRP
(Taschenberger and von Gersdorff, 2000; Iwasaki and Takahashi,
2001) and by tightening of coupling with maturation (Fedchyshyn
and Wang, 2005; Wang et al., 2008; Ledo and von Gersdorft, 2009).
Also CA3-to-CA1 connections show a developmental increase in
PPR (Feldmeyer and Radnikow, 2009). Yet, the AZ of mature
CA3-CAl synapses also harbors tightly coupled vesicles (Sci-
memi and Diamond, 2012). Thus, since EPSC amplitudes result
from a complex interplay between exocytosis and availability of
releasable vesicles (Neher and Sakaba, 2008), opposing plastic
alterations can develop while coupling tightens.

Information entering the cerebellar cortex via a single MF is
distributed onto several hundred GCs at the input layer (Dean et
al., 2010). Precisely timed transmission will be required for
proper integration of this information at the PN output stage,
first at MF-GC connections (Chadderton et al., 2004; Rancz et al.,
2007) and subsequently at PF-PN synapses. The developmental
switch in coupling we describe here will enhance the temporal
precision of MF-driven spiking patterns that are considered cen-
tral for motor coordination and learning. In concert with results
from the calyx of Held (Fedchyshyn and Wang, 2005; Wang et al.,
2008; Ledo and von Gersdorff, 2009), our data suggest that devel-
opmental tightening of coupling is a defining feature of broad-
bandwidth CNS synapses.
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