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Stimulus Statistics Shape Oscillations in Nonlinear
Recurrent Neural Networks
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Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in
neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency
and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported
input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved
what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and
experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from
either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show
how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any
changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral
fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power
expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect
the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting

spectral transitions observed across cortical networks and spanning multiple frequency bands.
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Introduction

Oscillations are an information-rich mechanism of neural signal-
ing (Engel et al., 2001; Varela et al., 2001; van Atteveldt et al.,
2014). Rhythmic neural activity involves intermittent syn-
chronous patterns between distant yet simultaneously acti-
vated regions (Wang, 2010) and have been suggested to shape
communication timing between neural populations (Fries, 2005)
and to be centrally involved in the binding of sensory represen-
tations (Engel and Singer, 2001; Engel et al., 2001). However,
cortical networks exhibiting synchronous dynamics cannot be
considered in isolation; neural populations are continually sub-
jected to myriad (stochastic) influences. Afferent fluctuating

Received Aug. 28, 2014; revised Dec. 26, 2014; accepted Jan. 3, 2015.

Author contributions: J.L., A.H., J.-F.K., KW., and M.M.M. designed research; J.L., A.H., J.-F.K., KW., and M.M.M.
performed research; J.L., A H., J.-F.K., KW., and M.M.M. contributed unpublished reagents/analytic tools; J.L., A H.,
J-FK., KW, and M.M.M. analyzed data; J.L., A.H., J.-F.K., K.W., and M.M.M. wrote the paper.

This work has been supported by the Natural Sciences and Engineering Research Council of Canada (to J.L.), the
Swiss National Science Foundation (Grant 320030-149982 to M.M.M. as well as the National Centre of Competence
in Research project “SYNAPSY, The Synaptic Bases of Mental Disease” [project 51AU40-125759]), the Swiss Brain
League (2014 Research Prize to M.M.M.), and the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013)/ERC Grant agreement 257253 to A.H.).

The authors declare no competing financial interests.

Correspondence should be addressed to Dr. Jérémie Lefebvre, 53 rue Sainte-Marie, Gatineau, Québec, Canada,
J8Y2A6. E-mail: jeremie.lefebvre@hotmail.com.

DOI:10.1523/JNEUR0SCI.3609-14.2015
Copyright © 2015 the authors ~ 0270-6474/15/352895-09%15.00/0

stimuli impact the dynamics of neural networks both by recruit-
ing individual neurons, and also by shaping collective synchro-
nous activity of neuronal populations.

The nonstationarity of power spectra in the brain has been
robustly observed across neurophysiologic measures both in-
tracranially (Schroeder and Lakatos, 2009; Whittingstall and
Logothetis, 2009; Ray and Maunsell, 2010; Musall et al., 2014)
and noninvasively at the scalp surface (Van Zaen et al., 2010,
2013; Thut et al., 2012). The nature and features of the input
shape the peak frequency and power of ongoing cyclic activity
among neurons in a nontrivial and time-dependent way, operat-
ing on multiple frequency bands (Cohen, 2014). Fluctuating co-
herently with stimulation dynamics, the frequency of ongoing
neural oscillations typically increases alongside input intensity
(Whittington et al., 1995; Ermentrout and Kopell, 1998). Yet, the
mechanisms responsible for this phenomenon are currently
poorly understood.

Changes in the peak frequency displayed by synchronous neu-
ral ensembles are typically ascribed to alterations in circuit fea-
tures, such as network structure or synaptic timescales. However,
the occurrence of such changes over timescales as short as 100 ms
suggests that other input-dependent mechanisms may underlie
rapid fluctuations in power spectra, rather than neuromodula-
tory and/or plastic changes in circuitry. Mechanisms involved in
the generation and shaping of gamma-type activity have been
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Figure1.  Drivennonlinear network model. 4, Thisillustration shows a sparse and randomly connected network dynamically driven by another upstream population, itself responding to changes
ininput. The stimulation profile /(z), which consists of stochastic trains of action potentials, impacts the mean activity of the driven network consisting of N recurrently connected units. B, The matrix
W(c) defines the connectivity of the driven network (dashed box). Connection probability is ¢ = 0.8, and matrix elements w;; = 0 are encoded in red, but otherwise displayed in gray shading.
Interactions are locally (r << 5) excitatory but distally inhibitory (r > 5): for proximal units iand jsuch that |i — j| << rindicates that the connections are positive, and negative otherwise. These
positive- and negative-valued connection strengths are uniformly sampled from the interval [0, 1] or [—1, 0], respectively. C, Even in the absence of stimulation (/ = 0, red trace) spontaneous
synchronous activity emerges in the network as the result of the chosen network connectivity. The activity of a single unit in the network is displayed. Whenever an input drives the network (/> 0,
gray trace), the dynamics becomes perturbed. D, Power spectrum of the nondriven state in which no input drives the network (/ = 0). Stable oscillations in the alpha band (10 Hz) are expressed by
the network. E, When spiking inputs stimulate the neurons (/ > 0), frequency and power of ongoing rhythms fluctuate in time; the power spectrum is thus not stationary. The model is detailed in

the Material and Methods section. Parametersare N = 100, e = 50Hz, = 30ms, 3 = 100/mV, g, = 0.1mVs,f, = 100Hz,r = 4,and w(c) = —0.35. Unless otherwise noted, these parameters

remain fixed throughout the study.

well characterized (Whittington et al., 1995; Wang and Buzsaki,
1996; Ray and Maunsell, 2010) and are considered a signature of
highly local synaptic processing (Jadi and Sejnowski, 2014).
However, these mechanisms are likely distinct from those sup-
porting modulations of slower oscillations (Lakatos et al., 2008;
Schroeder and Lakatos, 2009; Burgess, 2012). Alpha activity is
believed to rely on larger scale processes (Hindriks et al., 2014)
supported by delayed network interactions (Cabral et al., 2014)
operating over longer timescales (Haegens et al., 2014). Here, we
specifically investigate how such delay-induced alpha activity is
modulated by changes in stimulation dynamics and demonstrate
how peak frequency and power reflect the activation state of the
neurons on a larger spatial scale. To do this, we investigated
mathematically the spectral response of a simple, yet nonlinear
neural population model subjected to stochastic spike-like in-
puts. Using mean-field analysis, our results reveal a dependence
of the system’s effective nonlinearity on stimulus statistics. Spe-
cifically, they were shaped by changes in inputs while all other
parameters were kept constant, such that alpha-type oscillatory
activity was fully regulated by the dynamics of the stimulus.
Time-dependent fluctuations in peak frequency and power can
therefore result from a fully generic property of synchronous
nonlinear networks, while echoing the dynamics and statistics of
underlying inputs.

Materials and Methods
Model description

To analyze the spectral response of synchronous networks to inputs, we
deliberately chose a simple, yet nonlinear, sparse and random system to

enforce the generality of the results. Using this model, described in detail
below, we developed a mean-field representation of the dynamics to
determine the effect of stimulus statistics on the activity pattern of the
modeled neurons. We then performed a thorough stochastic stability
analysis while the system remained close to oscillatory instabilities.
Throughout, we studied the effect of changes in input statistics, and no
other parameter was varied.

In what follows, we deliberately consider a simplified network of syn-
chronous neural units subjected to delayed and nonlinear reciprocal in-
teractions and stimulated by another, upstream population via
independent trains of modeled action potentials. The associated repre-
sentation of our model is aimed to provide a description of brain dynam-
ics at the mesoscopic (centimeter) scale (Freeman, 1975; Wright and
Liley, 1995; Jirsa and Haken, 1997), in which slower rhythmic activity
modulates faster, more local oscillations (Osipova et al., 2008). A sche-
matic illustration is shown in Figure 1. The quantity u;() withi = 1,...,N
represents the mean somatic membrane activity of the ith subunit in the
network, and obeys the nonautonomous set of dimensionless evolution
equations:

du(t)
at == —ut) + gWOf [u(t — 1] + 10), (1)

where @ = 50 ms defines the mean synaptic rate of the neuronal popu-
lation, I(t) is a vector of stochastic inputs of dimension N, and the vector
f of dimension N denotes the nonlinear response functions of the neu-
rons. The synaptic efficacies of the neurons are identical and given by g

= g,N~! where again N is the number of units in the network. Without
constraining generality the nonlinear response function displays the
sigmoid-like shape f[u]; = f[1 + exp(—pu;)]"', where B = 100is the
steepness, or gain, of the neural responses. The quantity f,, here set to 100
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Hz, is the maximum firing rate of the neurons. For simplicity, network
interactions are conditioned by a unique and constant propagation delay
7 = 30 ms, which approximates well the distribution of interaction la-
tencies in sparse and random networks (Roxin et al., 2005). This approx-
imation is, however, not mandatory, and 7 can be thought to
represent the maximal (i.e., longest) interaction latency. Units in the
network are also subjected to independent time-varying stimuli.
Spiking activity of individual units in the network follows a nonho-
mogeneous Poisson process, i.e., X;(t)—=>Poisson(f(u;(t))).

The network’s synaptic connectivity matrix W(c) is depicted in Figure
1B. Its structure is assumed to be sparse and random with connection
probability ¢ = 0.8. Random synaptic weights, sampled from a density
pw(W), are assumed to be locally excitatory and distally inhibitory: syn-
aptic weights[W]; = w;;forwhich|i — j| < r, given some radius r, are
made positive valued (within the interval [0,1]), while all others are
negative (within the interval [—1, 0]). Synaptic weights are uniformly
distributed over their respective intervals, i.e., py(w;) = 1.Inaddition,
anamount (1 — ¢) N™' of synaptic weights is randomly picked and set to
zero to represent sparseness. The connectivity scheme used here is in line
with previous work outlining the importance of inhibitory processes in
the generation of oscillatory cortical activity patterns at the mesoscopic
scale (Wilson and Cowan, 1972; Amari, 1977), most notably with respect
to alpha synchrony (Lopes da Silva et al., 1976; Mazaheri and Jensen,
2008, 2010; Lorincz et al., 2009) and slow-wave activity (Melzer et al.,
2012).

Given our aim to assess oscillatory synchrony in the network, we were
careful not to choose connectivity structures that would lead to localized
states of persistent activity or propagating activity waves that are known
to exist in systems such as Equation 1 (Roxin et al., 2005). We instead
focus our attention on regimes for which the activity remains homoge-
neous (i.e., spatially uniform), which is ensured by the present connec-
tivity scheme. We note that Equation 1 corresponds to a discretized
neural field equation, for which the connectivity kernels would have been
corrected for sparseness and randomness. In the absence of stimulation,
i.e, I = 0, and for strong and wide enough inhibition (i.e., g is large
enough while ris taken to be sufficiently small), the network in Equation
1 engages spontaneously in a stable alpha activity, oscillating with a fre-
quency of ~10 Hz, despite the random and sparse nature of the connec-
tions. The frequency of the oscillations is primarily determined by the
mean delay 7, in a way we will detail below. Oscillatory dynamics of the
network is shown in Figure 1C.

Mean-field dynamics

The use of mean-field representations is a well established approach used
to characterize the dynamics of large neural ensembles and is thus well
suited to assess the impact of stimulation at scales that are relevant to
population-level recordings in which spectral fluctuations might be ob-
served, such as EEG (Deco et al., 2008). In the following, we develop a
representation of driven network dynamics from the perspective of an
ensemble average < u(f) > = u(t) seen as a scalar readout measure of
network collective activity when the population is large. Previous theo-
retical studies have shown that the ensemble average #(t) is a reasonable
model for the EEG (Robinson et al., 2001; Nunez and Srinivasan, 2006).
The mean-field formulation further holds on presumed adiabatic dy-
namics, in which the system evolves in a mean-driven regime where the
external fluctuations have smaller amplitudes compared with the auton-
omous dynamics of the system (i.e., the oscillations). The input timescale
is also considered to be small compared with the synaptic rate o and
interaction delay 7. The stochastic stimuli are also assumed to be suffi-
ciently small and further to exhibit stationary statistics. Given that these
conditions hold, the activity of individual units in Equation 1 can be
expressed as small deviations v of dimension N from the ensemble aver-
age i, i.e.,

u(t) =u®) - 1+ v, (2)

where we introduce the unit vector 1. Since ;| << |ii], we assume that the
small deviations are subjected to the mean-corrected stimulus and obey
the Langevin equation:
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d
o« ()= — v I — - 1, 3)

where u = < I> stands for the ensemble average of the stimulus. Re-
placing Equation 2 into Equation 1 yields the following:

ol % [u(r) - 1]= —u(t) - 1+ gW(Oflut—7 - 1 +v(t—7)]

+up-l. (4
Here, w = < I> is the ensemble average of the stimulus. Deviations
[v]; = v obeying the dynamics in Equation 3 above are identically

distributed with probability density p,(v) with zero mean and moments
denoted <" >.

Taking the ensemble average of Equation 4 yields a mean-field de-
scription of the dynamics of #(f) when N goes to infinity. Given that
g~ O(N — 1), we may use the independence and ergodicity of the local
perturbations v to obtain an expression of the corrected nonlinear neural
response function (Shiino, 1987):

<gW(o) fli + 1+ v()]> = g[[wfli + vlp,(w)p,(v)dwdy
= gow(c) Flu(n)],
which can further be written as follows:

<y">

g(@) flE (0] = &w(e) X, — = g flaol - (5)

with the probability densities p,(v) and p,(w) and where <v'>
= Jv”p‘,(v)dv. The term w(c) represents the mean effective connectivity
and F is the stimulus-corrected response function of the neurons.

The above rather technical derivations provide a clear message: the
shape of the nonlinear response function of the neurons is altered by the
inputs. As seen in Equation 5, the system response function now fully
depends on the input statistics, and exhibits stimulus-dependent correc-
tions to all nonlinear orders via the moments < v" >. Consequently, the
external input alters the system’s effective topology and dynamics.

Stimulus-corrected response function. In the network, inputs to the neu-
rons take the form of stochastic trains of actions potentials. We thus
defined neural inputs as independent Poisson shot-noise signals of rate A
and amplitude S,

I() = S 28(t = 1),
{ef}
where the pulses 6(.) are Dirac delta functions with random arrival times
# obeying a Poisson distribution. We assume that I,(f) displays stationary
statistics, i.e., both amplitude S and rate A are constant in time. We also
assume that the fixed rate A is large enough such that p,(v) displays a
stationary Gaussian profile. In contrast to other stochastic signals,
such as Gaussian white noise, for instance, the mean and variance are
not independent. It suffices to characterize the influence of the mean

u=<1I>= SA on the dynamics, for which the variance of the linear

1

1
process in Equation 3 becomes o, = ESZ A= ES[.L (Gardiner, 2009).

Using these expressions and inserting Equation 5 into Equation 4, the
input-corrected mean-field dynamics simply reads

orl%z?(t) = —u(t) + gw(c) Flu(t — 7)] + SA. (6)

For high values of the gain S, the response function f behaves like a step
function centered at zero, i.e., flu) = H(u)where H is the Heaviside step
function such that H(u) = 1 for u = 0 and zero otherwise. In such
conditions, the corrected response function F in Equation 6 above sim-
plifies to the following (to second-order):

Flu(t)] = ermH[ﬁ(t) +v]p,(v)dv = % erf[ \7%] + %, (7)
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Network response function is shaped by stimuli. According to Equation 7, the variance o> modulates the nonlinear structure of the system, and reshapes the effective neural response

function of the neurons. 4, Upon stimulation, network dynamics is linearized: F(u) becomes more linear than its nondriven counterpart f(u). As o increases, the response function becomes
smoother. The sigmoidal shape is preserved but the sharpness is decreased. One might note that the effective impact on the system is equivalent to a smooth variance-dependent decrease in the
activation gain 3. B, The nonlinear gain F" is also greatly affected by the variance-induced corrections. Displaying an inverted Gaussian profile centered at u = 0, increases in the variance o
decreases both the absolute magnitude and sharpness of the susceptibility curve: the susceptibility diffuses. The heat map encodes for amplitudes, properly scaled to the left of A and B. Bottom,
Examples of the successive linearization and diffusion effects as the stimulus intensity increases (from black to gray).

1 1
where erf [] is the error functionand o7 = < v* > = ESZ A= ESM isthe

variance of the linear zero-mean process in Equation 3 with Poisson
inputs. Once more, comparing Equation 6 and Equation 1 elucidates the
influence exerted by the inputs on the recurrent architecture of the sys-
tem. Figure 2B shows the nonlinear gain, which is proportional to the
system’s response to external inputs. In sum, increasing the input vari-
ance renders the response function more flat and the stimulus response
smaller.

Network stability
Based on the derived mean-field dynamics, the steady-state activity in
Equation 6 is given by the following:

i, = g,wF[1,] + SA. (8)

The equilibrium #, results from the interplay between the mean excit-
atory force delivered by the input, and the feedback it triggers in the
network. As seen in Fig. 3A, the equilibrium activity changes nonmono-
tonically as the Poisson stimulus intensity is increased. The stimulation
train inhibits the network for moderate intensities, and then excites it as
the intensity increases revealing how the input regulates mean network
activity. Stimuli also alter the stability network dynamics. To see this, a
linearization of Equation 6 about the equilibrium state given in Equation
8 yields the following:

@ S ay = —ato) + Rat - o), ®)

with the characteristic equation

a A+ 1 =R[u, otle (10)

for the nonlinear susceptibility R[i#,, o2] = g,w F[i,], where F[i,] is
the nonlinear gain shown in Figure 2B. The variable A = a + iw is the
complex eigenvalue, where w defines the frequency of the oscillations
and a is the damping rate. Figure 3B shows that the susceptibility varies
significantly whenever the input fluctuates and its amplitude |R| first
increases and then decreases as the stimulus intensity increases. This
peculiar nonlinear mapping of the network response is determinant, as it
indicates that the stimulus influences bidirectionally the efficacy of net-
work interactions: changes in intensity can both increase or decrease the
susceptibility.

This influence of stimuli on susceptibility also provides a mechanism
underlying input-induced suppression of oscillatory activity, in which
incoming inputs fully destabilize ongoing network oscillations, such as
during event-related desynchronization observed in EEG. Indeed, using
Equation 10, one can also determine the stimulus amplitude and/or rate
at which stability of synchronous network states is lost. This occurs
whenever the following equation

aliw + 1 = R[i,,02]e "

is satisfied for a particular set of stimulation parameters. A specific ex-
ample of this can be seen in Figure 4B, where the stimulus causes a
complete suppression of ongoing cyclic activity. Stimuli statistics in this
simulation were chosen purposely such that they exceeded the stability
threshold of endogenous network oscillations.
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withy = 2 ar + 1(o}? — (1 + a7)?)),
AR = (R — R,)/R.. Equation 11 provides the
desired mapping between input parameters
and peak frequency and relates observed oscil-
latory activity with underlying stimulation
dynamics. Fig. 4, Cand D, displays the normal-

)
ized frequency . and the normalized ampli-

tude of the oscillations subjected to p,
respectively. The normalized frequency follows
the trend of the susceptibility R, cf. Fig. 3B,
whereas the amplitude saturates for large input
stimuli.

In summary, the synergistic interaction be-
tween input dynamics and network nonlinear
structure (which takes place via changes in the
neural response function and in the suscepti-
bility R) generically shapes the peak frequency
by distorting the stability equation and pro-
voking the observed change in oscillation

Figure 3.

Impact of stimulus intensity on network equilibrium and oscillations. 4, Stimuli shift the position of the steady state

frequency. Fluctuations in input mean and
variance are echoed on-line by concomitant
changes in susceptibility, causing the network
peak frequency and amplitude to waver. The

of the network, around which oscillatory activity evolves. As the intensity . = SA of the inputs increases, the equilibrium is
displaced. The excitation delivered by the stimulus causes a smooth amplification of mean equilibrium activity, whose rise is
tempered by the inhibitory feedback, especially when ris small. Smooth shift from subthreshold to suprathreshold regimes can be
observed. The value of the equilibrium s given by Equation 8. B, As the equilibrium is displaced, the stimulus also changes the way
the response function maps the dynamics. The magnitude of the susceptibility R[ #,, o] s first amplified by 1, which implies
that the network enters aregime of high nonlinearity and high variance. As . increases even more, the susceptibility slowly decays
back toits original value. The gray line portrays the susceptibility computed numerically based on the full model, shown along the
theoretical susceptibility derived from the mean-field equation (black line). The highlighted regions in gray specify the range of
values of . on which we focus our attention in the remainder of the analysis. €, Normalized peak frequency (defined as the ratio of
the driven (cw) over the nondriven, or baseline (w, = 10 Hz) oscillation frequency) as a function of the stimulus mean . As
predicted by the stability analysis in Equation 11 and according to the profile of R plotted in B, the network frequency is bidirec-
tionally modulated by the input. A drop, followed by an increase, characterizes the modulation performed by the pulse-train
stimuli on ongoing synchronous activity. The mean-field formulation (bold black line) captures the frequency shift of the original
system (gray line). D, The amplitude of the oscillations increases with ., butin a purely monotonic fashion. Saturation is observed
as the sigmoidal nonlinearity freaches plateaued value. Once again, the mean-field dynamics reproduces well the response of the
network. To vary w, the stimulus intensity S was varied, while its frequency was maintained at A = 30.

effect is also bidirectional: as plotted in Figure
3C, the spike trains delivered to the networks
first slow down ongoing cyclic activity, and
the normalized frequency displays a value
smaller than 1. The trend changes, however, as
= SAincreases and the peak frequency of
the network starts to increase: stimuli now ac-
celerate the dynamics. Together, these analyses
show how spectral features can be modulated
by stimuli without any change in circuitry.

Results

To understand the contribution of input
statistics on time-dependent fluctuations
in power and peak frequency, we investi-
gated the influence of irregular spiking in-

Driven oscillations. Having established a mean-field representation of
Equation 1 and exposed input-induced corrections to the system’s non-
linear response function and stability equation, we now needed to expose
the mapping between oscillation frequency, amplitude, and input statis-
tics. Transition to synchrony in the network occurs in Equation 6 when-
ever Equation 10 above is satisfied for a = 0 and w # 0, in which case the
system undergoes a so-called supercritical Andronov—Hopf bifurcation,
transitioning from steady activity about #(#) = 0 to global cyclic activity,
or the other way around. The implicit dependence of the susceptibility R
on input statistics, as seen in Figure 3B, implies that extrinsic fluctuations
impact the oscillatory properties of the network. In more detail, an oscil-
latory instability (Andronov—Hopf bifurcation) emerges in the mean-
field system for eigenvalues A = i w, and

w, 1
o —tan(w,T,), o = R, cos(w,T.)
for critical values R.and delay ..

Aware of the effect of the inputs on the susceptibility R, perturbation
analysis around the oscillatory bifurcation allows us to observe the influ-
ence of input statistics on the resulting peak frequency. Assuming that
the system’s baseline frequency is close to the critical frequency of the
bifurcation, i.e., w, = w,, effects of the stimuli can be seen as perturba-
tions around the baseline, i.e., nondriven state. The peak frequency reads
as follows:

w = w,(1 — yAR) (11)

puts on the ongoing cyclic activity of a

neural population using a combination of

dynamical systems analysis and numerical
simulations. Inputs to the network take the form of trains of
spikes with time-variable amplitudes and rate, representing sig-
nals sent to the network by other neuronal populations located
upstream, relaying changes in physical stimuli or alterations in
cognitive state (Fig. 1A). As seen in Figure 4A, brief and strong
stimuli generate stereotyped, transient responses predominantly
in the alpha band. Ongoing oscillations remain stable after the
stimulus and express identical peak frequency and power. How-
ever, when such pulses are prolonged as pictured in Figure 4B,
suppression of activity can be observed. Yet, after stimulus offset,
spectral features of the system are recovered. These more tran-
sient responses are to be contrasted with those generated by
weaker, dynamically varying stimuli in which spectral modula-
tion caused by inputs can be observed (Fig. 4C,D). Indeed, as seen
in Figure 4C, changes in the stimulation intensity generate epochs
of acceleration and deceleration, i.e., ongoing oscillations re-
spond either by increasing or decreasing their frequency as the
stimulus varies. Throughout, the amplitude of network oscilla-
tions fluctuates along with input intensity. This becomes even
more transparent in Figure 4D, where the stimulus amplitude
follows a sine wave. There, one can clearly observe the nonlinear
mapping of stimulus response in the spectral domain. Yet, aside
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Figure4.  Dynamicspectral responses in the model network. Responses of the network mean activity to time-dependent inputs with various envelopes. Inputs are stochastic, and constituted of

Poisson pulse trains of time-varying intensity S(¢). The time evolution of the input amplitude 5(t) is plotted (top), along the oscillatory response of the network mean activity (middle) and the
associated single-trial behavior in the time-frequency domain (bottom). Coherent oscillatory activity emerges spontaneously in the network, at a baseline (nondriven) frequency of w, = 10Hz,
and is perturbed by afferent stimuli. A, Network response to a brief high amplitude burst of spikes. Amplified power at the baseline frequency can be observed at stimulus onset and for 50 ms
duration. After stimulation, the amplitudes of oscillations return to their prestimulus values. The trial-averaged response is plotted in dark gray, where the stimulus was chosen to drive the system
atrandom phases of ongoing oscillations. A single-trial response is also plotted in light gray. B, Response of the network to a prolonged pulse of 600 ms duration, where oscillations are destabilized
and the network effectively desynchronized. The power of ongoing oscillatory activity is fully suppressed during stimulus onset, and the network synchronizes again once the input vanishes. C, As
the mean input amplitude is decreased but varied continuously in time, synchronous oscillations can be seen to be accelerated and/or slowed down around the baseline frequency. Note how both
the amplitude and frequency of the oscillations increase (decrease, respectively) when stimuli amplitude is high (low, respectively). D, When the intensity S(¢) is set to follow a sine wave, the
nonlinear frequency mapping follows, especially for higher harmonics of the network frequency. The trend follows the nonmonotonic mean-field prediction in Figure 3, Cand D. While the amplitude
of the Poisson spike-train stimuli was varied within the interval [0.0, 0.5], the rate was kept constant to A = 50.In A and B, the input amplitude was set to a fixed value of 0.5, and was varying in

Cand D. Other parameters are identical as in Figure 1.

from the stimuli, no parameter was varied and this effect is purely
input driven.

To understand the mechanism responsible for this effect, we
developed and investigated a mean-field representation of the
dynamics (see Materials and Methods), focusing on stimulation
signals with stationary statistics, i.e., with nonfluctuating ampli-
tude and rate. The stochastic analysis revealed that inputs support
a gain control mechanism in which susceptibility is enhanced
with respect to baseline in a nonmonotonic fashion. Based on our
mathematical framework, it was possible to show that the non-
linearity of the network response, going from decelerated to ac-
celerated synchrony, follows the stochastic dependence of the
susceptibility: the frequency is proportional to |R| (cf. Fig. 3C; Eq.
11). The amplitude (and thus power) of network oscillations was
also found to be tightly linked to the stimulus intensity, yet in a
monotonic fashion. Figure 5 exposes the effect of the external
stochastic input on the system’s oscillation frequency in more
detail. Increasing the amplitude of stimulation trains at weak
intensities slows down ongoing activity by reducing the network
oscillatory frequency (w) with respect to the nondriven state,
oscillating at baseline frequency (w,). The opposite occurs at
larger intensities when the network peak frequency is shifted to
higher values with respect to the nondriven state while increasing
the stimulus intensity: the effect is thus bidirectional.

The analysis further exposed a nonlinear mapping between
the stimulus intensity w = SA, and the network oscillation fre-
quency and its amplitude, pictured in Figure 6. The magnitude of
the frequency modulation is substantial: it allows fluctuations
of about 20% around w, induced by stimulus amplitude fluc-
tuations of one order of magnitude. Strong input-induced de-
celerations were notably found to occur in a specific region of

parameter space only, where stimulation rate is very high (100—
500 Hz) but displayed amplitude is weak. We note that through-
out, model parameters were kept constant and only the input was
allowed to vary, showing the stimulus-driven nature of the effect.

Discussion
Oscillatory activity is a key component of brain dynamics and has
been the focus of an increasing number of neuroscientific inves-
tigations. For example, neuronal oscillations have been consid-
ered a possible mechanism through which internal states exercise
top-down influences on stimulus processing to impact percep-
tion (Engel et al., 2001; Varela et al., 2001). In particular, the
synchronization of oscillatory components seems to be relevant
for many cognitive processes (Fell and Axmacher, 2011) and may
operate across multiple scales of brain circuitry (Singer and Gray,
1995; Engel and Singer, 2001). In light of such, it is critical to
understand how these oscillations are shaped by the inputs they
receive and how this impacts information processing and commu-
nication across systems (Buzsaki and Wang, 2012). Time-dependent
transitions in oscillatory activity are reliably observed across a wide
range of frequencies in neurophysiologic measures (Lakatos et al.,
2008; Schroeder and Lakatos, 2009; Ray and Maunsell, 2010; Thut et
al.,2012; Van Zaen etal., 2013) and across a variety of computational
models (Cohen, 2014). In particular, fluctuations in gamma peak
frequency have been well characterized (Whittington et al., 1995;
Wang and Buzsdki, 1996; Jadi and Sejnowski, 2014) while lower
frequencies, which likely rely on different cellular mechanisms and
operate over longer timescales, were also found to be significantly
volatile (Haegens et al., 2014).

The robustness of these observations, along the short time-
scales on which they occur, suggest that peak frequency and
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Bidirectional modulation of synchronous oscillations. The Poisson stimuli driving the network influence synchronous activity by modulating the oscillation frequency of the network in

a nonmonotonic way. Full network activity is depicted for various stimulation intensities, and compared with the nonstimulated case. 4, For . = 0.15, the oscillation frequency is decreased
throughout the network. A 10-fold increase in stimulus intensity (.. = 1.5) accelerates network oscillations, which are now faster than the nondriven case. Amplitudes, in contrast, monotonically
increase with stimulus strength. B, Sample local activity (at unit i =N/2) as the stimulus intensity w is smoothly changed from 0 to 0.5. One can appreciate the nonmonotonic aspect of the

transitions. In each simulation, the initial conditions of the network are identical. The color encodes for the amplitudes.
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Network peak frequency and amplitude with respect to stimulistatistics. A, Normalized peak frequency, defined as the ratio of the network oscillation frequency with and without inputs

(w/w,) as afunction of the input rate A and amplitude S. If the input has a low amplitude but a high frequency, deceleration of network oscillations can be observed. In contrast, strong stimulation
accelerates network synchronous oscillations. The modulation ranges from 0.8 to 1.2 for the range of parameters explored here (which means that the response frequency can vary here from 8 to
12 Hz solely due to the action of inputs), implying that frequency shifts spanning 20% of the baseline frequency can be observed. B, Normalized amplitude of network oscillations (A/A,) as a function
ofinput parameters. Here, the effect is monotonic: input intensity and/or rate amplify network oscillation amplitude (i.e., power). Together, these results show that fluctuating, dynamicinputs, with
time-varying rates and amplitudes as shown here, should be viewed as trajectories in the (S, A) plane, and where frequency and power expressed by the systems fluctuates concomitantly. Note that
for all points for which § = 0 or A = 0, the normalized frequency and amplitude are equal to 1.

power fluctuations may rely on a generic input-response feature
of recurrent neural networks. The frequency and power/ampli-
tude of coherent synchronous oscillations is commonly thought
to reflect the underlying structural properties of neural networks
and the features of its neural constituents. A direct consequence
of this view is that the power spectrum of brain signals is often-
times erroneously assumed to be time stationary. Our results add
to a growing body of evidence showing that this is not the case,
even in simplistic networks, and further add that the jittering of
frequency and power must be regarded as a dynamic signature of
fluctuating activation patterns. Using a fully nonlinear and sto-
chastic approach, our analyses suggest that the spectral fluctua-
tions observed in recurrent neural networks are caused by a

synergetic interaction between inputs and the system’s nonlin-
earity; an interaction that shapes the system’s response function
and resulting oscillatory behavior. While our study has primarily
focused on the impact of afferent spiking inputs (by looking at
Poisson shot noise), our conclusions would apply to a broader
range of stochastic signals (e.g., Gaussian white noise) as well as
those emanating from other, nonafferent sources. The range of
frequencies expressed by our network, here located in the alpha
band, can also be modified by adjusting the system’s parameters,
such that our findings would apply to other frequencies as well.
We further add that despite the fact that our analysis was focused
on input-induced spectral modulation, our model was nonethe-
less capable of expressing responses similar to those commonly
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observed with electroencephalography, such as event-related po-
tentials (Fig. 4A) and event-related desynchronization (Fig. 4B).

Delay-induced synchrony is a candidate mechanism for the
generation of oscillatory resting-state activity in the brain (Deco
etal., 2011; Nakagawa et al., 2014), which is clearly distinct from
the more local mechanism believed to be responsible for gamma
activity. Operating at larger spatial scales for which synaptic con-
duction time lags become substantial (Cabral et al., 2014), our
analysis shows that delay-induced synchrony can sustain the ex-
perimentally observed spectral variability of the alpha peak fre-
quency, and thus that the power spectrum of neuroelectric
signals can be seen as nonstationary across a wide range of fre-
quency bands. As such, our work adds to a growing body of
experimental and theoretical studies reporting complex, nonlin-
ear interactions between endogenous oscillatory activity across
multiple frequency bands and external stimulation patterns that
build on and substantially extend various mechanisms such as
resonance (Spiegler et al., 2011; Thut et al., 2012), plasticity
(Friind et al., 2009), or input-induced changes in the neurons’
response functions (Doiron et al., 2001).

Cohen (2014) has recently put forward the concept of “fre-
quency sliding” to describe dynamic changes in the peak fre-
quency of modeled and empirical neural responses. The present
complementary results go a step further by detailing a generic
mechanism potentially responsible for these fluctuations and
their reliability, providing a framework in which the spectral fea-
tures of cortical networks can be directly linked to input statistics
in a rigorous quantitative manner. In this vein are recent ad-
vances in adaptive frequency tracking, which have likewise pro-
vided empirical support to the proposition that stimuli can
produce robust changes in the frequency of the responses of neu-
ral activity across a wide range of frequencies (cf. Van Zaen et al.,
2013, their Fig. 8), which in turn vary as a function of whether or
not stimuli induced the perception of an illusory contour. The
directionality (increase/decrease) likewise varied as across fre-
quency bands, which suggests that inputs might recruit differ-
entially distinct recurrent structures. Such results provide
additional empirical demonstration of the general principles re-
vealed by the present computational model. Collectively, these
show that network parameters alone cannot provide a full ac-
count for the observed pattern of neural responses; stimulus sta-
tistics and features are of equal relevance.

Response profiles of the modeled network followed a pattern
consistent with divisive normalization (Carandini and Heeger,
2012), which is expected given the inclusion of diffuse, spatially
wide inhibition in our model. Importantly, our results also sug-
gest that mechanisms of divisive normalization are directly linked
to those mechanisms engendering bidirectional frequency mod-
ulation. Such a link has also rightfully been outlined in both
computational (Jadi and Sejnowski, 2014) and empirical (van
Atteveldt et al., 2014) studies. Accordingly, our results show that
normalization can be enhanced or suppressed, on-line, according
to stimulus statistics and dynamics. This is also in accordance
with the recent propositions of Cohen (2014) that frequency slid-
ing may constitute a type of gain control mechanism wherein
slower frequencies promote a lower threshold for firing while
faster frequencies do the opposite.

We note that the present findings are distinct from resonance
and entrainment phenomena in which rhythmic inputs either
amplify (Ali et al., 2013) or override ongoing oscillatory activity
effectively replacing the peak of the power spectrum (Thut et al.,
2012). These mechanisms rely on the input itself having a rhyth-
mic structure. Instead, our findings show how an unstructured
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stochastic input can bidirectionally modulate the power spec-
trum of ongoing oscillatory activity. Thus, in an era where neu-
rostimulation becomes increasingly popular to support a wide
variety of clinical interventions (Paulus, 2011; Baertschi, 2014;
Cabrera et al., 2014; Gevensleben et al., 2014; Glannon, 2014;
Schlaepfer and Bewernick, 2014), our results promote, in con-
trast, the idea that persistent yet weak stimulation of cortical
networks can significantly amplify the power displayed at specific
frequencies most likely engaged in the processing of sensory in-
formation, a mechanism that could constitute an alternative
and/or complementary strategy to noninvasively tune ongoing
cyclic brain dynamics.

Conclusion

We show that the peak frequency and power displayed by neural
populations evolving in coherent synchrony are context-
dependent and nonstationary quantities that fluctuate according
to the statistics of the inputs. This effect is due to a synergetic
interaction between the system’s intrinsic nonlinearity and input
variability. As such, oscillatory properties of recurrently con-
nected neural populations cannot be regarded as static, and the
peak frequency must be seen as echoing the dynamics of the drive
received by the neurons. The existence of these frequency transi-
tions further suggests that classical neural spectral bands (e.g.,
theta, delta, alpha, beta, gamma, etc.) are mutually bound, where
power can naturally transit from one band to another due to the
action of exogenous and endogenous drive. New developments
in adaptive frequency tracking are allowing for more accurate
quantification of oscillatory activity and its dynamic modulation
(Uldry etal., 2009; Van Zaen et al., 2010, 2013). Notably, spectral
dynamics could be used alongside other methods to probe ongo-
ing activity of cortical networks and trace event-related activation
patterns in real time. Furthermore, our findings provide an im-
portant insight for future developments in quantitative analyses
and simulations of oscillatory dynamics, including modeling of
their alteration and breakdown to emulate disease states.
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