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Reinforcement learning (RL) theory posits that learning is driven by discrepancies between the predicted and actual outcomes of actions (prediction
errors [PEs]). In social environments, learning is often guided by similar RL mechanisms. For example, teachers monitor the actions of students and
provide feedback to them. This feedback evokes PEs in students that guide their learning. We report the first study that investigates the neural mecha-
nisms that underpin RL signals in the brain of a teacher. Neurons in the anterior cingulate cortex (ACC) signal PEs when learning from the outcomes of
one’s own actions but also signal information when outcomes are received by others. Does a teacher’s ACC signal PEs when monitoring a student’s
learning? Using fMRI, we studied brain activity in human subjects (teachers) as they taught a confederate (student) action–outcome associations by
providingpositiveornegativefeedback.Weexaminedactivitytime-lockedtothestudents’responses,whenteachersinferstudentpredictionsandknow
actual outcomes. We fitted a RL-based computational model to the behavior of the student to characterize their learning, and examined whether a
teacher’sACCsignalswhenastudent’spredictionsarewrong.Inlinewithourhypothesis,activityintheteacher’sACCcovariedwiththePEvaluesin the
model. Additionally, activity in the teacher’s insula and ventromedial prefrontal cortex covaried with the predicted value according to the student. Our
findings highlight that the ACC signals PEs vicariously for others’ erroneous predictions, when monitoring and instructing their learning. These results
suggest that RL mechanisms, processed vicariously, may underpin and facilitate teaching behaviors.
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Introduction
In reinforcement learning (RL) theory, learning is driven by predic-
tion errors (PEs) (Sutton and Barto, 1998), which occur when the
outcome of an action is discrepant from that which is predicted. A
wealth of research has found neurons that signal PEs when the out-
comes of one’s own actions are unexpected (Rushworth et al., 2009).
However, learning rarely occurs in a social vacuum. Often the learn-
ing of “students” is guided by feedback provided by a “teacher.” Such
instructed learning is thought to be fundamental for the transmis-
sion of abstract, complex information between humans (Hoppitt et
al., 2008). However, to date, there is no understanding of the neural
or computational mechanisms that underpin teaching behaviors
(Stanley and Adolphs, 2013; Gariépy et al., 2014; Ruff and Fehr,

2014). Does the brain of a teacher process the learning of a student
under the computational principles of RL theory?

The anterior cingulate cortex (ACC) is well known for its role
in social behavior (Singer et al., 2004; Ruff and Fehr, 2014). Le-
sions to the ACC disrupt the processing of social stimuli (Had-
land et al., 2003; Rudebeck et al., 2006), neurons in the ACC are
sensitive to rewarding stimuli that others will receive (Chang et
al., 2013), and neuroimaging studies have shown that the ACC
processes predictions about the value of others’ actions (Behrens
et al., 2008; Jones et al., 2011; Zhu et al., 2012; Apps et al., 2013b;
Boorman et al., 2013; Apps and Ramnani, 2014). In contrast,
theories of ACC function suggest that it processes PEs relating to
the outcomes of one’s own decisions, in a manner that conforms
to RL principles (Amiez et al., 2005; Alexander and Brown, 2011;
Hayden et al., 2011; Kennerley et al., 2011; Silvetti et al., 2014).

How can these viewpoints be reconciled? It has been claimed
that the ACC gyrus (ACCg) processes social information, but the
computational principles that it instantiates parallel those of the
adjacent ACC regions (Apps et al., 2013a). That is, the ACCg
processes PEs about others’ actions. However, no previous study
has examined whether PEs are processed in the ACCg when mon-
itoring, understanding, and guiding the learning of others.

Using fMRI, for the first time, we examine whether activity in
the brain of a teacher can be characterized by the computational
principles of RL theory when monitoring and guiding the trial-
and-error learning of a student. We examined activity in subjects
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(“teacher”) whose role was to teach action– outcome contingen-
cies to a confederate (“student”) by monitoring their responses
and providing positive and negative feedback. Teachers had pre-
learnt the correct associations and therefore knew the actual
value of each action. In addition, they could also model and sim-
ulate the students’ prediction of each outcome. Thus, the teachers
could process a PE at the time of students’ actions. We fitted a
RL-based computational model to student’s behavior and tested
the hypothesis that activity in the ACCg of teachers would covary
with PEs from the model at the time of students’ actions.

Materials and Methods
Subjects. Sixteen healthy right-handed participants were screened for
neurological, psychiatric, and psychological disorders (ages 18 –32 years;
10 female). One subject failed to complete the whole scanning session
and was excluded from the analyses. Each subject was paired with one of
three confederate participants, who they believed were a naive partici-
pant. All participants gave written informed consent. The studies were
approved by the Royal Holloway, University of London Psychology De-
partment Ethics Committee and conformed to the regulations set out in
the CUBIC MRI Rules of Operation. The subjects were not paid for their
participation but were given the incentive of receiving a picture of their
brain for taking part. The subjects were informed that the other partici-
pant performing the task with them (the confederate) was being paid £5
for their participation because they were not being scanned, but that this
payment was unrelated to task performance.

Task design. Subjects performed a task in which they acted as a
“teacher” providing a “student” (confederate) with positive or negative
feedback. The student learned the associations between a set of 10 arbi-
trary instruction cues and one of four responses on a keypad. The teacher
had prelearnt the same associations 1 d before scanning and was there-

fore able to determine whether an action chosen for a particular visual
cue was correct or incorrect. The teacher’s task was to determine whether
the student’s actions were correct or incorrect and then use a keypad of
their own to deliver this feedback to the student.

During the training, the teacher was required to learn the arbitrary
stimulus–response associations between 10 instruction cues (colored
shapes that gave no indication of which response was correct) and one of
four motor responses by trial and error (Fig. 1). That is, there was only
one correct response for each instruction cue ensuring that learning the
correct association for one instruction cue was not informative as to the
correct associations for any other instruction cue. There were 100 trials in
total, with 10 presentations of each instruction cue. The instruction cues
were presented in two blocks: five instruction cues in the first 50 trials and
five in the last 50 trials. The cues were pseudorandomly presented in a
predefined sequence (Fig. 1). A correct response was indicated by the
presence of a picture of a one pound coin at time of the feedback screen
and an incorrect response by a crossed out one pound coin. If the subjects
did not respond within 750 ms of the trigger cue, feedback was displayed
as “missed.”

During the scanning session, the teacher monitored the student’s re-
sponses and provided them with feedback. The student learnt exactly the
same associations as the teacher had learnt during the training session,
with trials presented in the same order. The teachers were also informed
of the identical nature of the trial structure. To maintain experimental
control, we deceived teachers as to the nature of the student. Although
the teachers believed they were performing the task with another genuine
participant, the responses they saw were computer-generated and mod-
eled on the behavior of a participant in the pilot training session. The
students were drawn from one of three confederates. This approach
was necessary to maintain control over the performance of the third
person, such that the behavior of the other person was consistent
across participants.

Figure 1. A, Trial structure. Participants performed trials as a teacher, guiding the associative learning of a student. Each trial began a with a green instruction cue (1 of 10 that the teacher had
learnt the associations for during training), followed by the association cue informing the teacher of the correct response for the stimulus. This was displayed in the corner of the teacher’s screen. The
corresponding corner of the student’s screen outside the scanner was covered, such that this cue was shown only to the teacher inside the scanner. Following this, the teacher saw the student’s
response. They were required to indicate to the student whether this response was correct or incorrect. The teachers indicated their response on a keypad at the time of a screen where a pound coin
(correct) or a crossed out pound coin (incorrect) was presented. Participants had to select the corresponding stimulus to deliver to the student. This stimulus was also presented in the corner of the
screen, ensuring that the student could not see the teacher’s decision at that time. The chosen feedback was delivered to the student at the time of the outcome stimulus. B, Example model data.
Plot of the data of the example output from the R-W model. In this example, the learning rate was set to 1 for clarity.
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During the teaching task, the teachers saw two sets of information that
were not presented to the student. First, on one screen, the teachers were
reminded of the correct association on each trial before the student made
a response (Fig. 1). This eliminated the possibility that trials would be lost
or that the student’s learning would be compromised by poor perfor-
mance of the teacher, as a result of the teacher’s failing to recall the correct
association for each stimulus that they had learned in the previous ses-
sion. It also ensured that participants were able to register the discrep-
ancy between the student’s prediction and the actual value of their action,
which is key to testing our a main hypothesis.

Procedure: training session. Teachers were trained in two phases 1 d
before scanning. In the first phase, the teacher was seated in front of a
monitor, with a response keypad. This first phase of the training was
designed to ensure that all teachers had learnt all the stimulus–response
associations through trial and error. All teachers made at least two con-
secutive correct responses for the last two presentations of each instruc-
tion cue. All teachers had therefore learnt the correct associations for
each stimulus. This enabled them to act effectively as a teacher during the
scanning session.

In the second part of the training session, the teacher was required to
become familiar with their role as a teacher, and therefore, the task that
they would perform in the scanner. During this session, the participant
lay supine within a mock MRI scanner and provided positive and nega-
tive feedback to the experimenter outside the mock scanner. They prac-
ticed this role with the experimenter (see scanning session below) such
that they became familiar with the task they would perform during the
scanning session but were not teaching the student any information
about associations that the student would need to learn in the scanning
session (i.e., they learnt how to teach a student, without teaching the
same student the same stimulus–response associations that would be
later used during scanning). In this part of the training, exactly the same
setup was used as during scanning, but with the experimenter taking the
place of the student and only a reduced number of trials (20) were used.
It is important to note that, given the requirement to maintain control of
responses of the experimenter across subjects, the actions of the experi-
menter, as with the actual student, were actually a set of preprogrammed
computer-controlled responses.

Scanning session. Before the teacher entered the scanner, they were
shown the student sitting in the MRI control room, in front of the mon-
itor with a response keypad. The corner of the student’s screen was cov-
ered, allowing information to be presented to the teacher inside the
scanner that the student was not presented with (see trial structure below
for more details). Crucially, the teacher was made aware that they would
have access to information in the corner of the screen that was not able to
be seen by the student.

By obscuring that corner of only the student’s screen (and not the
teacher’s screen), it was also possible to present the teacher’s trigger cue
and response to them without the student being able to observe this
information. Hence, the teacher was also aware that the only feedback
displayed to the student was that of a pound coin or a pound coin with a
cross through it at the time of the final feedback. If the teacher failed to
accurately indicate whether the response of the student was correct or
incorrect, then the words “no feedback” were presented on the screen to
the teacher and the student. This strategy ensured that teachers believed
that the student was learning from the feedback that they were providing
and ensured that they performed the task accurately. The teacher be-
lieved that the student was responding to the trials in real time, but
indeed the trials were computer-controlled, and the profile of responses
were based on those of a participant during a previous pilot experiment.
This participant was chosen due to a fast learning rate (see behavioral
modeling below) and also as they missed only three trials. These trials
were also shown to the teacher, thus ensuring that the preprogrammed
behavior of the student seemed genuine to the teacher. At the end of the
scanning session, the participants were asked standard debriefing ques-
tions, as used in previous studies (Apps et al., 2012, 2013b; Apps and
Ramnani, 2014), to ensure that they had maintained a full belief in the
deception throughout the experiment. Specifically, we asked four yes/no
questions after subjects had been debriefed: (1) Are you surprised to read
that you were deceived on the task (yes/no)? (2) Did you believe that the

responses that you were observing were those of the other person (yes/
no)? (3) Did you believe the other person was learning the correct re-
sponses from your feedback (yes/no)? (4) Did you believe that the other
person was learning the correct responses for the different shapes for the
first time? (yes/no). A “no” response on question 1 or a “yes” response on
questions 2– 4 would have led to exclusion from the experiment.

Trial structure. The teachers’ trials consisted of an instruction cue (1 of
the 10 that they had learnt associations for during training), immediately
followed by the cue indicating the correct button (which reminded the
teacher only, and not the student, of the correct association for that
instruction cue), a student trigger cue and response (indicating to the
teacher which response the student had made), a teacher trigger cue (to
which the teacher pressed one button on a keypad for a correct student
response and another for an incorrect student response, cued by the
presence of a pound or coin or a crossed out pound coin switching
pseudorandomly from left to right across trials) and then the feedback
(indicating to the student whether the response was correct or incorrect)
(Fig. 1).

Computational modeling: behavioral modeling. The behavior of the stu-
dent was modeled using a simple Rescorla-Wagner (R-W)-based rein-
forcement learning algorithm (Rescorla and Wagner, 1972), which has
been extensively used to examine the behavioral and neural basis of
arbitrary visuomotor associations (Dayan and Balleine, 2002; Schultz,
2006; Brovelli et al., 2008; Dayan and Daw, 2008). This model also bears
considerable similarity to recent, influential models of ACC function
(Alexander and Brown, 2011; Silvetti et al., 2014). As the aim of this study
was to examine brain activity in teachers, we maintained experimental
control by ensuring that all subjects observed the same learning behavior
exhibited by the student. This requirement did not allow us to make
comparisons between different computational models of behavior, as
model comparison cannot be meaningfully applied to a single subject’s
data. However, given the extensive use of the R-W model for associative
learning tasks similar to that used here (Dayan and Daw, 2008), and the
fact that most recent computational models of ACC function that we
know of are underpinned by the same principles as an R-W model (Sil-
vetti et al., 2014), this approach was more than sufficient for meeting the
aims of this study.

The R-W model assumes that the associative value of an action (or
stimulus) changes once new information reveals that the actual outcome
of a decision is different from the predicted outcome (Rescorla and Wag-
ner, 1972). Thus, on each trial, an action has a predicted associative value
that is updated by a PE signal when the outcome reveals that this predic-
tion is erroneous. The evolution of the associative values for each action
are given by the following:

Va�n�1� � Va�n� � �x� (1)

Where:

� � �a � Va�n� (2)

In both Equations 1 and 2, n is the trial number, a � 1 ….k with k
representing the available actions and � is the learning rate. The asymp-
totic value (�) of a correct action is �0 but is a free parameter that is
estimated, and is 0 for an incorrect response. A PE is therefore the stu-
dent’s prediction of its associative value �Va�n�� subtracted from the actual
value of the action (�) known by the teacher. We instructed the students
(and teachers on the first day) that one of the four finger movements
could be correct for each instruction cue stimulus. Importantly, this also
ensured that learning the correct association for one instruction cue was
not informative as to the correct associations for any other instruction
cue. Thus, the associative values of actions for one instruction cue were
not informative as to the value of an action for another instruction cue.
The initial associative strength of each action for each stimulus was set to
�/4, given the equiprobability of each of the four actions being correct.

Model estimation. To model the action selection process of the student,
we transformed the associative values into probabilities using the soft-
max equation. This method is a standard approach used in reinforce-
ment learning theory (Sutton and Barto, 1981). The probability of the
action chosen by a subject is given by the following:
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Pa�n� �
exp��Va�n��

�a
exp��Va�n��

(3)

This equation converts the associative values of the action chosen by a
subject to a probability �Pa�n��. The coefficient � represents the stochas-
ticity (or temperature) of the student’s behavior (i.e., the sensitivity to the
value of each option). A high � (�1) causes all actions to be nearly
equiprobable, with a low � amplifying the differences in associative val-
ues. These two algorithms were used to model action selection by the
student over time. The associative value the student placed on the chosen
action (Va�n�) was then updated in the R-W model, based on the
feedback.

Crucially, in this study, the feedback was provided by a teacher (the
subject being scanned). As the teacher had expert knowledge of all the
associations and was informed of the correct action on each trial, they
knew the asymptotic value (�) of each action chosen by the student. In
this experiment, an aim was to examine whether the teacher modeled the
learning of the student. It was therefore assumed that, to instruct the
student, the teacher would have to calculate the discrepancy between
the student’s prediction of the outcome �Va�n�� and the asymptotic value
(�) of the action chosen by the student. This asymptotic value would be
known only by the teacher while the student would still be learning. Only
when the student has learnt the correct stimulus–response associations
for each cue would there be no discrepancy between the asymptotic value
known by the teacher and the prediction made by the student. The aim of
the teacher was therefore to provide the student with appropriate feed-
back to minimize the discrepancy between their own expert knowledge
and predictions made by the student.

Within the R-W model and the softmax algorithm, there are free pa-
rameters that need to be estimated. To identify the optimal set of free
parameters for the student’s behavior (given the teacher’s feedback), the
learning rate, the stochasticity parameter �, and the asymptotic value �
were varied. The output of the softmax algorithm is a series of probabil-
ities, based on the values of each of these parameters and the actions
chosen by the student. By varying the parameters, the probabilities out-
put by the softmax algorithm differ. To select the parameters that best
fitted the student’s behavioral data (given the teacher’s feedback), a max-
imum likelihood approach was used. By using a maximum likelihood
algorithm, it was possible to maximize the probabilities of the actions
chosen by the student and identify the values of each of the parameters
that produced them. The learning rate � was varied between 0 and 1 in
steps of 0.05, � between 0 and 5 in steps of 0.1, and � between 0 and 5 in
steps of 0.1. The likelihood of the chosen actions was found using the
following:

L � �
n

In Pa�n� (4)

where the likelihood of each set of parameters (L) is determined by the
log of probability of the performed action (Pa�n�) of the student at trial n,
according to the model. If the model perfectly predicts the actions, the
probability of every chosen action would be 1 and L would be 0. As the
probabilities become �1, the log-likelihood L assumes negative values.
The best fitting parameters were then selected using the following:

	� � arg max 	�L� (5)

This identified the set of parameters for which L was closest to 0 (i.e., the
best fitting parameter set), where 	 is the parameter set and L is the
log-likelihood. Importantly, in this study, the student’s data were com-
puter-controlled; thus, every teacher observed the same responses of the
student. Variations in these parameters could therefore only be explained
by changes in the feedback (i.e., if the teacher failed to give the student
feedback on a particular trial). If this happened, then those trials were
removed from the modeling and, likewise, data at the time of the stu-
dent’s response on those trials were removed from the fMRI analysis. The
maximum likelihood approach revealed that, for the behavior of the
student, the best fitting parameters were a � of 1, a learning rate � of 0.95,
and a � value ranging from 2.3 to 2.7, reflecting the apparent differences
in stochasticity of the behavior given the teacher’s feedback (Fig. 1).

Importantly, we used the behavior of a participant from a pilot experi-
ment as the “student” behavior. This student had a high learning rate
(0.95); thus, this ensured that any effects we observed in the ACCg could
not be accounted for by teachers learning the learning rate of the student,
as in Behrens et al. (2008).

Apparatus. Subjects lay supine in an MRI scanner (3T Siemens Trio,
CUBIC, Royal Holloway, University of London) with the fingers of the
right hand positioned on an MRI-compatible response box. Stimuli were
projected onto a screen behind the subject and viewed in a mirror posi-
tioned above the subject’s face. Presentation software (Neurobehavioral
Systems) was used for experimental control (stimulus presentation and
response collection). A custom-built parallel port interface connected to
the Presentation PC received transistor-transistor logic pulse inputs
from the response keypad. It also received transistor-transistor logic
pulses from the MRI scanner at the onset of each volume acquisition,
allowing events in the experiment to become precisely synchronized with
the onset of each scan. The timings of all events in the experiment were
sampled accurately, continuously, and simultaneously (independently of
presentation) at a frequency of 1 kHz using an A/D 1401 unit (Cambridge
Electronic Design). Spike2 software was used to create a temporal record
of these events. Reaction times were calculated off-line, and event timings
were prepared for subsequent GLM analysis of fMRI data (see Event
definition and modeling).

Functional imaging and analysis: data acquisition. Scans were acquired
on a Siemens Trio 3T scanner. T1-weighted structural images were ac-
quired at a resolution of 1 	 1 	 1 mm using an MPRAGE sequence. A
total of 1016 EPI scans were acquired from each participant; 38 slices
were acquired in an ascending manner, at an oblique angle (
30°) to the
AC-PC line to decrease the impact of susceptibility artifact in subgenual
cortex (Deichmann et al., 2003). A voxel size of 3 	 3 	 3 mm (20% slice
gap, 0.6 mm) was used; TR � 3 s, TE � 32, flip angle � 85°. The func-
tional sequence lasted 51 min. Immediately following the functional se-
quence, phase and magnitude maps were collected using a GRE field map
sequence (TE1 � 5.19 ms, TE2 � 7.65 ms).

Image preprocessing. Scans were preprocessed using SPM8 (www.fil.
ion.ucl.ac.uk/spm). The EPI images from each subject were corrected for
distortions caused by susceptibility-induced field inhomogeneities using
the FieldMap toolbox (Andersson et al., 2001). This approach corrects
for both static distortions and changes in these distortions attributable to
head motion (Hutton et al., 2002). The static distortions were calculated
using the phase and magnitude field maps acquired after the EPI se-
quence. The EPI images were then realigned and coregistered to the
subject’s own anatomical image. The structural image was processed
using a unified segmentation procedure combining segmentation, bias
correction, and spatial normalization to the MNI template (Ashburner
and Friston, 2005); the same normalization parameters were then used to
normalize the EPI images. Last, a Gaussian kernel of 8 mm FWHM was
applied to spatially smooth the images to conform to the assumptions of
the GLM implemented in SPM8.

Event definition and modeling (student response). Multiple GLM anal-
yses were performed to investigate activity time-locked to the teacher’s
observation of the student’s response. These were performed to ensure
that activations identified could only be accounted for by the uniquely
explained variance of a parameter in the R-W model. Although each of
the GLMs differed from the others, they shared several common proper-
ties. Each GLM contained regressors modeling the instruction cue, the
student response cue, the teacher trigger cue, and the feedback cue. Re-
gressors were constructed for each of these events by convolving the
event timings with the canonical hemodynamic response function. The
effects of head motion were modeled in the analysis by including the six
parameters of head motion acquired during preprocessing as covariates
of no interest. In addition to these regressors defined for the event types,
each GLM also contained regressors that were first-order parametric
modulations of the student response cue event. These modulators scaled
the amplitude of the hemodynamic response function in line with the �a,
Va, or � parameters from the Rescorla-Wagner algorithm. The values of
these parameters corresponded to the teacher’s valuation (�a, the actual
value of the action), the student’s prediction (Va, the student’s prediction
of the value), and the PE (�, the discrepancy between the student’s pre-
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diction and the actual value), respectively. The PE could of course only be
coded by the teacher at the time of the student’s action, as the student
would not have known the actual value of the action when they are
learning. When a trial was missed by the student or when teachers deliv-
ered erroneous feedback or failed to respond, these parameters were all
assigned a value of 0. Two sets of analyses were conducted in this study to
examine responses at the time of the student’s response:

(1) Nine separate GLMs were created in which the values of one of �,
Va, and � were used as first-order parametric modulators of the student
response cues. These models enabled areas of the brain in which the
BOLD response varied in the manner predicted by one of the parameters
to be identified (see paragraph below). However, because of correlations
between the values of these parameters in the R-W model and correla-
tions due to these parameters being time-locked to the same event on
each trial, additional analyses were required.

To examine activity that covaried with the PE parameter, we created
three GLMs. The first contained only the values of the � parameter as a
parametric modulation of the student response cues. The second con-
tained � as a parametric modulator, with the values of the � parametric
modulator orthogonalized with respect to the values �. The third con-
tained Va as a parametric modulator, with the values of the � parametric
modulator orthogonalized with respect to the values of the Va parameter.
Voxels were only considered if they were significant in an F-contrast in all
three of these GLMs. This approach was then repeated for the � and Va

parameters. Thus, nine GLMs were constructed to examine activity,
which varied with the values from the parameters of the R-W model. It is
important to note that typically one would orthogonalize the parameter
of interest with respect to both of the other parameters, in one GLM.
However, this was not possible in the present study because the PE pa-
rameter is a product of the other two parameters in the R-W model.
Thus, orthogonalizing the PE (�) parameter with respect to both of the
other parameters in this model would have removed most of the variance
that could be explained. The approach we have used provides a statisti-
cally conservative way to ensure that any variance that could be explained
by the PE parameter is not due to its correlations with the student’s
prediction parameter or the actual value (the teacher’s valuation).

(2) To control for other possible responses in the ACC at the time of
the student’s response, we created a GLM that contained alternative con-
trol parameters that varied with other plausible responses that were not
components of the R-W model.

The hypothesis of this study was that the ACC would signal a PE at the
time of another’s action. In the R-W model, these PEs are “signed,” such
that during learning a negative outcome results in a negative PE signal
and a positive outcome results in a positive PE. However, it is notable that
there is empirical data, and models of the ACC that suggest, that neurons
in the ACC signal both signed and unsigned PEs (Matsumoto et al., 2007;
Alexander and Brown, 2011; Kennerley et al., 2011). It was therefore
crucial that we test the possibility that PEs in the ACC reflect not classical
PE signals, as found in dopamine neurons in the midbrain but may reflect
“unsigned” PEs that simply code for the magnitude of a PE and not
whether it is positive or negative. We therefore created an unsigned PE
parameter that covaried with the magnitude of � but was always positive.

Classical error detection accounts of the ACC suggest that the region
has a generalized role in processing errors in information processing
(Carter et al., 1998; Bush et al., 2000; Holroyd et al., 2004; Yeung and
Nieuwenhuis, 2009), including the processing of errors that are elicited
by the actions of others (Somerville et al., 2006; Shane et al., 2008; Yo-
shida et al., 2012). It is therefore possible that the ACC might have ex-
hibited an unsigned and uniform magnitude signal whenever the student
performed an incorrect action. To test this possibility, we created a pa-
rameter that took on a value of 1 whenever the student performed an
incorrect action and 0 when there was no error.

The error detection and unsigned PE parameters were fitted to the
responses of the student and included in a GLM. In this GLM, the pa-
rameters were not orthogonalized with respect to each other, allowing
them to compete to explain variance. This allowed us to determine which
parameter best explained activity in the ACCg at the time of the student’s
response. t tests were then conducted between them to test which param-
eter best explained activity in a given voxel.

Outcome event. In addition to the main analysis, we examined activity
at the time of the outcome event. We used the same strategy as that used
to examine activity at the time of the student’s response, namely, to fit the
parameters from the model to the time of the outcome events.

Examining activity at the time of the teacher’s response. While our design
enabled us to examine activity at the time of the teacher’s response, it was
suboptimal for asking questions about differences in how one’s own
compared with others actions are processed in the brain. Thus, we did
not compare activity between the student and teacher motor events nor
examine covariations with the BOLD response with parameter from the
RW model at the time of the teacher’s response. However, other studies
have used tasks specifically designed to tackle such issues, which have
nicely characterized responses in the brain comparing performing or
observing actions (Ramnani and Miall, 2004; Burke et al., 2010).

Second-level analysis. Random-effects analyses (full-factorial ANOVA)
were applied to determine voxels significantly different at the group level.
SPM {t}-images from all subjects at the first level were entered into
second-level full-factorial design matrices. T-contrasts and F-contrasts
were conducted in each of the GLMs. These contrasts identified voxels in
which activity varied parametrically in the manner predicted by the pa-
rameters in the R-W model. Separate corrections for multiple compari-
son were used for the ACCg and the whole brain. To examine activity
across the whole brain, FDR correction was applied. In contrast, activity
in the ACCg was corrected for by using an 80% probability mask of the
ACCg (see Anatomical localization).

For the second set of analyses examining alternative models of ACC
activity, the T-contrasts between the PE parameter and the control pa-
rameters were examined at a lower threshold. This was necessary because
of the high covariance between each of these parameters. For these con-
trasts, a threshold of p � 0.01, uncorrected for multiple comparisons, was
used.

Individual differences in the brain of a teacher. It was possible that there
may be individual differences in activity at the time of the student’s
response, based on teacher’s own learning history. To test this, we input
the learning rates from the R-W model, which were estimated on the
choices of the teacher in the initial training session, as covariates of in-
terest at the time of student’s response.

Anatomical localization. To test our hypothesis, we used an 80% prob-
ability anatomical masks of the ACCg. To create each mask, subject-
specific masks of the ACCg were constructed in FSL (http://www.fMRIb.
ox.ac.uk/fsl/). Although the cytoarchitectonic boundaries of the ACC
have no corresponding gross anatomical landmarks, we defined the an-
atomical boundaries based on the location of these boundaries in previ-
ous literature investigating cingulate cytoarchitecture (Vogt et al., 1995).
To define the posterior border of the midcingulate cortex, we used a
boundary defined by a plane perpendicular to the AC-PC line that lay 22
mm posterior to the anterior commissure (Vogt et al., 1995). We in-
cluded all voxels that lay within the ACCg extending anterior to this
border, including subgenual cingulate cortex. The final ACCg mask in-
cluded only voxels that were within the ACCg in 80% of our subjects.
Importantly, this mask was of the ACCg only and did not extend into the
adjacent sulcus.

Results
Behavioral results
The teacher’s task was to monitor the student’s responses, deter-
mine whether the response was correct or incorrect, and deliver
this as feedback to the student. The student’s responses, unbe-
known to the teachers, were computer-controlled replays of a real
subject’s responses during a pilot experiment and included trials
in which the student missed three trials (included such that the
student’s responses seemed realistic); thus, teachers were re-
quired to respond on 97 trials. Teachers correctly gave feedback
to the student on 95.2% (SD � 2.9; range: 91%–99%) of trials,
indicating that all teachers understood the correct association for
each stimulus and also understood whether the student’s re-
sponses were correct or incorrect. In addition, responses to a
standardized set of questions revealed that none of the partici-
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pants was aware of the nature of the deception. Thus, participants
believed they were instructing another participants, and they
were highly accurate at doing so.

Imaging results: Student PEs in the brain of the teacher
The main aim of this experiment was to examine activity in the
brain of a teacher when they monitor the responses of a student.
We tested the hypothesis that the ACCg would signal the discrep-
ancy between a student’s prediction and the actual outcome
known by a teacher: a student PE. In line with the hypothesis,
activity was found in the ACCg (Fig. 2), putatively in midcingu-
late area 24a�/24b�, which varied significantly with the PE (�)
parameter of the R-W model (MNI coordinates (x, y, z) 2, 30, 12;
Z � 3.17; p � 0.005 svc). Activity in this area was also better
explained by the signed R-W PE parameter than by an unsigned
PE parameter, or by a parameter in which simple response errors
(see Materials and Methods) were modeled (p � 0.01 uncor-
rected). No other region in the ACC, even at a reduced threshold,
showed a significant covariation with the PE parameter (p � 0.01
uncorrected). No portion of the ACC showed a significant effect
of either the unsigned parameter or the parameter that modeled
every erroneous response of the student, even at a reduced
threshold (p � 0.01). No region of the ACC showed a significant
effect of the student prediction parameter or the actual value
known by the teacher (p � 0.01). No other brain area signifi-
cantly varied with the PE parameter when correcting for multiple
comparisons (p � 0.05 FDR). At a reduced threshold, activity in
an area consistent with the location of the ventral tegmental area
(VTA) and the head of the caudate nucleus covaried with the PE
parameter from the R-W model (p � 0.005 uncorrected).

Simulating the student prediction
At the time of the student’s response, the predicted value accord-
ing to the student could be modeled by the teacher. We examined
whether activity in the brain of the teacher time-locked to the
student’s action covaried with the student’s prediction parameter
(Va(n)). Activity that varied significantly with this parameter was
found in a portion of the ventromedial prefrontal cortex
(VmPFC; �14, 32, �10, Z � 5.06, p � 0.05 FDR, putatively BA

32) and in the right short insular gyrus (48, �4, �2, Z � 4.08
FDR, putatively area Idg; Fig. 3). These were the only regions in
which the unique variance could be accounted for significantly by
the predicted value according to the student.

The teacher’s valuation
At the time of the student’s action, the teacher knew the actual
value of the student’s choice. We examined activity time-locked
to the student’s choice that covaried with the actual value of the
chosen action. Activity that varied statistically with this parame-
ter was found in the superior frontal sulcus bordering BAs 8, 9,
and 9/46 (�20, 32, 46; Z � 5.06, p � 0.05 FDR) and posterior
cingulate cortex (�14, �52, 32; Z � 5.57, p � 0.05 FDR) puta-
tively in BA23. These were the only regions in which the variance
could be uniquely and significantly accounted for by the actual
value of the action known by the teacher.

Individual differences in the brains of teachers
To test whether activity at the time of the student’s response
varied depending on the teacher’s own learning history, we ex-
amined whether activity covaried with the learning rates of the
teachers in the initial training session. No areas of the brain co-
varied significantly when correcting for multiple comparisons.
However, at a reduced threshold (p � 0.001 uncorrected), we
found activity in the three regions, including regions that also
responded to the teacher’s valuation in bilateral superior frontal
sulcus (MNI 26, 0, 42; Z � 4.4; �34, �2, 40; Z � 3.87), and in the
posterior cingulate cortex (MNI �14, �22, 34; Z � 3.59), as well
as in the intraparietal sulcus (MNI �44, �38, 50; Z � 4.05).
However, these results should be interpreted with caution, given
the low sample size for exploring individual differences and that
the results are reported at an uncorrected threshold.

Outcome events
In addition to the main analysis, we also examined activity time-
locked to the outcome event. Activity was not found to covary
with any of the parameters from the model at the time of the
outcome when correcting for multiple comparisons. However,
activity was found to covary with PE parameter from the model in

Figure 2. Student PEs in the brain of a teacher. A, Activity shown in the ACC time-locked to the student’s response in which activity covaried with the PE parameter from the R-W model on the
mean anatomical image. B, Parameter estimates in the peak ACC voxel. Activity in this region correlated only with the PE parameter and not with the student’s prediction or the actual value of the
outcome. Activity in this region also did not significantly covary with the unsigned PE parameter or a parameter that simply coded for student erroneous responses. Error bars indicate SEM. C,
Peristimulus time histogram (PSTH) of activity time-locked to the student’s action in the brain of the teacher. Activity plotted for when the student’s prediction was erroneously positive (light green
triangles) or erroneously negative (dark green circles). The values of the PE were taken from the R-W computational model. Error bars indicate SEM.
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several areas, cerebellar lobule VI (MNI �20, �38, 34, Z � 4.05),
VmPFC (MNI 10, 54, 12, Z � 3.92), the hippocampus (MNI 36,
�12, �20), and the left temporal pole (MNI �56, �10, �24; Z �
3.58), but only at a reduced threshold (p � 0.001 uncorrected).

Discussion
This study investigated activity in the brain of a teacher when
monitoring a student’s responses, as the student learnt from feed-
back provided by the teacher. In line with our hypothesis, activity
in a portion of the ACCg varied with PE values in a RL-based
computational model. Activity in insula cortex and in the
VmPFC varied with the predicted value of the action according to
the student. These results suggest that the ACCg plays a specific
role in signaling information about how erroneous another’s pre-
dictions about their actions are. In addition, we found that areas
that are monosynaptically interconnected with the ACCg also
play important roles in the processing of information about other
people’s learning.

Anatomical evidence supports the notion that the ACCg is
sensitive to information that guides reinforcement learning. The
ACCg receives direct input from dopaminergic neurons in the
VTA (Williams and Goldman-Rakic, 1998). It has been well es-
tablished that the firing properties of dopamine neurons in the
VTA conform to the principles of RL. Specifically, they show an

increased spike frequency to unexpectedly positive outcomes, a
decreased spike frequency to unexpectedly negative outcomes,
and no activity change to predictable outcomes (Schultz and
Dickinson, 2000; Schultz, 2006). As such, the VTA is thought to
signal PEs in a manner that drives one’s own learning of reward-
ing outcomes. Interestingly, we found that the BOLD signal in the
ACCg showed similar response characteristics. However, al-
though it is well known that dopamine neurons signal this infor-
mation for one’s predictions about the outcomes of one’s own
decisions, we have shown that the ACCg processes, such as PE
signals, when they pertain to others’ predictions and the out-
comes of others’ actions as well.

Anatomical evidence also supports the notion that the ACC
processes social information. The portion of the ACCg that was
activated in this study (in the gyral, midcingulate cortex) has
strong connections to the posterior portions of the superior tem-
poral sulcus, the temporal poles (Markowitsch et al., 1985; Seltzer
and Pandya, 1989; Barbas et al., 1999), and the paracingulate
cortex (Pandya et al., 1981; Vogt and Pandya, 1987; Petrides and
Pandya, 2007). These three regions are thought to form a core
circuit that is engaged when processing information about the
mental states of others (Ramnani and Miall, 2004; Frith and Frith,
2006; Hampton et al., 2008). In addition, the ACCg has mono-

Figure 3. Simulating the student prediction. Activity shown in the ventromedial prefrontal cortex (A) and the right short insula gyrus (B) covarying with the predicted value according to the
student, taken from the R-W model. Plots of the parameter estimates from the peak voxel in the VmPFC (C) and the insula (D) for the PE, the student predicted value, and the actual value of the
outcome known by the teacher. Parameter estimates for the predicted value parameter are for the unique variance explained by the regressor once orthogonalized with respect to the actual outcome
parameter. Parameter estimates for the PE parameter and the actual outcome parameter are from regressors that have not been orthogonalized. Error bars indicate SEM. Peristimulus time histogram
(PSTH) plots from the VmPFC (E) and the insula (F ) time-locked to the student’s prediction. Activity in these regions is broken down into low (�0.5) predicted value (light red triangles) versus high
(�0.5) predicted value (dark red circles) according to the model. Error bars indicate SEM.
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synaptic connections to the portions of the insula and the
VmPFC that were found to covary with the student’s prediction
in this study (Mesulam and Mufson, 1982; Mufson and Mesulam,
1982; Morecraft et al., 1992; Cavada et al., 2000). Previous studies
have shown that activity in the VmPFC, the insula, the posterior
portions of the superior temporal sulcus, the paracingulate cortex,
and the temporal poles covaries with parameters from RL-based
computational models during other forms of social interactions
(Ramnani and Miall, 2004; Behrens et al., 2008; Hampton et al.,
2008; Baumgartner et al., 2009; Klucharev et al., 2009; Cooper et
al., 2014; Gariépy et al., 2014). Thus, input from areas that appear
to process information in a manner that conforms to the princi-
ples of RL during social interactions and the input from midbrain
dopaminergic nuclei both highlight the ACCg as a candidate for
processing PE signals relating to the behavior of others. More-
over, these results suggest that the ACCg may process informa-
tion in concert with the VmPFC and the insula to vicariously
process information about the predictions other people make
when learning.

Functional evidence also supports the claim that an overarch-
ing functional property of the ACCg is that it processes informa-
tion about rewards during social interactions (Apps et al., 2013a).
Lesions to the ACCg in monkeys disrupt the processing of social
stimuli (Hadland et al., 2003; Rudebeck et al., 2006) by reducing
the typical delay present when reaching for a rewarding stimulus
in the presence of another monkey. In addition, single-unit re-
cording studies have shown that a large proportion of neurons in
the ACCg code for a reward that a conspecific will receive. Cru-
cially, these neurons do not change their firing rate when an
identical reward is to be received by oneself (Chang et al., 2013).
Imaging studies have also shown that the ACCg signals the net
value of rewards that others will receive (Apps and Ramnani,
2014), signals the unpredictibility of the relationship between
another’s advice and the outcomes of another’s choices (Behrens
et al., 2008) signals information about others during economic
games, and signals when the outcomes of another’s actions are
unexpected (Apps et al., 2013b). These results all support the view
that the ACCg signals information relating to reward-based de-
cisions during social interactions. However, the new contribu-
tion that our study makes is to show that the ACCg processes
information at the time of others’ actions and does so when a
subject’s behavior is aimed at guiding another’s learning.

It has been argued that there are two major social frames of
reference within which brain areas process social information.
Although some areas process information when inferring the in-
tentions and mental states of other people (“other” reference
frame), other regions process information when updating one’s
own behavior based on other’s intentions or behavior (“self” ref-
erence frame) (Hunt and Behrens, 2011; Báez-Mendoza and
Schultz, 2013; Báez-Mendoza et al., 2013; Chang, 2013; Chang et
al., 2013). Understanding the reference frames present in a task is
therefore important for understanding the frame of reference
within which a region, in this case the ACCg, processes social
information. In this task, subjects were monitoring the learning
of others to provide them with feedback. Importantly, the design
of the task ensured that participants were not processing infor-
mation about the relationship between their own actions and the
reward they would receive themselves. Rather, they were process-
ing information about the erroneous predictions of another. In-
terestingly, this supports recent claims that the ACCg (areas 24a�/
24b�) may indeed act as a nexus between these two frames of
reference (Hunt and Behrens, 2011; Apps et al., 2013a). Specifi-
cally, it has been claimed that the area is engaged when processing

information about (1) the rewards that others will receive, based
on one’s own or others’ actions, and (2) others’ predictions about
rewards, when others’ predictions can be used to guide one’s own
behavior (Apps et al., 2013a). Our results support this claim by
showing that the ACCg processes the erroneous predictions of
others (i.e., inferring information about others), in order that a
subject can provide them with feedback (i.e., updating one’s own
behavior based on another’s intentions). Thus, the ACCg appears
to process information in a way that acts as a nexus between the
two major social reference frames.

The functional and computational properties of the whole
ACC are still under considerable debate; however, one common
feature of several recent accounts of the ACC is that they are
underpinned by similar computational principles to those of RL
theory (Yeung and Nieuwenhuis, 2009; Silvetti et al., 2014). Sev-
eral theories of ACC function have recently been developed that
account for a diverse range of single-unit recording, EEG and
fMRI data. The Silvetti et al. (2014) reward-value and prediction
model and Alexander and Brown’s (2011) predicted-response
outcome model both argue that the ACC acts as a “critic,” learn-
ing the value of stimuli or actions through PE signals. Similarly,
Shenhav et al.’s (2013) expected value of control model is based
around the notion that the ACC signals the value of the amount
of cognitive control that will be required and updates this valua-
tion when an outcome suggests this is required. Each of these
models relies upon PE signals updating predictions. These mod-
els are largely supported by empirical evidence reporting from
activity in areas 24c�/32�, which lie in the sulcus of the ACC, a
different region of the ACC from that found of this study. The
area we identified was in the ACCg in areas 24a�/24b�. Thus, in
line with other recent studies (Apps et al., 2013b; Boorman et al.,
2013), our research has shown that this region may also process
PEs, a key component of RL-based models and also of computa-
tional accounts of other ACC regions. Whether this PE is signaled
by neurons that also signal fictive PEs (PEs for the outcomes of
unchosen actions) that have been found in the ACC (Hayden et
al., 2009) is yet to be determined. However, our results suggest
that, although the ACCg may have a degree of specialization for
social information processing, the computational principles that
govern its operation are similar to those of other regions of the
ACC.

In conclusion, this study provides the first characterization of
the neural and computational processes that may operate in the
brain of a teacher as they deliver reinforcement to a student. Our
findings highlight a novel PE processed in the ACCg of a teacher
that may play a key role in signaling the degree to which students’
predictions are erroneous. Furthermore, our findings suggest
that areas previously implicated in RL for oneself may also be
important for vicariously processing and understanding the
learning of others.
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Báez-Mendoza R, Harris CJ, Schultz W (2013) Activity of striatal neurons
reflects social action and own reward. Proc Natl Acad Sci U S A 110:
16634 –16639. CrossRef Medline

Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL (1999) Me-
dial prefrontal cortices are unified by common connections with superior
temporal cortices and distinguished by input from memory-related areas
in the rhesus monkey. J Comp Neurol 410:343–367. CrossRef Medline

Baumgartner T, Fischbacher U, Feierabend A, Lutz K, Fehr E (2009) The
neural circuitry of a broken promise. Neuron 64:756 –770. CrossRef
Medline

Behrens TE, Hunt LT, Woolrich MW, Rushworth MF (2008) Associative
learning of social value. Nature 456:245–249. CrossRef Medline

Boorman ED, O’Doherty JP, Adolphs R, Rangel A (2013) The behavioral
and neural mechanisms underlying the tracking of expertise. Neuron
80:1558 –1571. CrossRef Medline

Brovelli A, Laksiri N, Nazarian B, Meunier M, Boussaoud D (2008) Under-
standing the neural computations of arbitrary visuomotor learning
through fMRI and associative learning theory. Cereb Cortex 18:1485–
1495. CrossRef Medline

Burke CJ, Tobler PN, Baddeley M, Schultz W (2010) Neural mechanisms of
observational learning. Proc Natl Acad Sci U S A 107:14431–14436.
CrossRef Medline

Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in
anterior cingulate cortex. Trends Cogn Sci 4:215–222. CrossRef Medline

Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998)
Anterior cingulate cortex, error detection, and the online monitoring of
performance. Science 280:747–749. CrossRef Medline
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