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Neural Activity in the Medial Temporal Lobe Reveals the
Fidelity of Mental Time Travel

X James E. Kragel,1,2 X Neal W Morton,1 and Sean M. Polyn1

1Department of Psychology and 2Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37240

Neural circuitry in the medial temporal lobe (MTL) is critically involved in mental time travel, which involves the vivid retrieval of the
details of past experience. Neuroscientific theories propose that the MTL supports memory of the past by retrieving previously encoded
episodic information, as well as by reactivating a temporal code specifying the position of a particular event within an episode. However,
the neural computations supporting these abilities are underspecified. To test hypotheses regarding the computational mechanisms
supported by different MTL subregions during mental time travel, we developed a computational model that linked a blood oxygenation
level-dependent signal to cognitive operations, allowing us to predict human performance in a memory search task. Activity in the
posterior MTL, including parahippocampal cortex, reflected how strongly one reactivates the temporal context of a retrieved memory,
allowing the model to predict whether the next memory will correspond to a nearby moment in the study episode. A signal in the anterior
MTL, including perirhinal cortex, indicated the successful retrieval of list items, without providing information regarding temporal
organization. A hippocampal signal reflected both processes, consistent with theories that this region binds item and context information
together to form episodic memories. These findings provide evidence for modern theories that describe complementary roles of the
hippocampus and surrounding parahippocampal and perirhinal cortices during the retrieval of episodic memories, shaping how humans
revisit the past.
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Introduction
The capabilities of the human memory system rival any internet
search engine in terms of the flexibility and specificity of search.
With a moment of thought, one can search through memories of
the recent or distant past, retrieving a particular memory from
many thousands. The memories one retrieves during search vary
in fidelity. When a memory emerges that is rich in detail regard-
ing the time and place of its original occurrence, the strong sub-
jective sense that one is revisiting past experience inspired
Tulving (1993) to call this phenomenon “mental time travel.”

Brain structures in the medial temporal lobe (MTL) are criti-
cally involved in the retrieval of memories of one’s past experi-
ence, i.e., episodic memories (Milner et al., 1998). Distinct
subregions of MTL cortex have distinct functional properties.
Perirhinal cortex, which is located on the anterior portion of the
parahippocampal gyrus (PHG), becomes active during retrieval
of objects and their features (Davachi et al., 2003; Haskins et al.,
2008; Staresina and Davachi, 2010). In contrast, parahippocam-

pal cortex, on the posterior extent of the PHG, is engaged during
processing of scene context (Hayes et al., 2007; Litman et al.,
2009), spatial attributes (Burgess et al., 2002), and nonspatial
contextual attributes (Aminoff et al., 2007; Bar et al., 2008). Ac-
tivity in this region is also sensitive to the temporal context in
which a visual scene is presented (Turk-Browne et al., 2012). One
view of MTL function (Diana et al., 2007) describes parahip-
pocampal cortex as encoding and retrieving contextual informa-
tion, while perirhinal cortex mediates item-specific processing
(Davachi, 2006; Mayes et al., 2007; Wixted and Squire, 2011).
Both item and contextual information are thought to converge in
hippocampus, allowing this region to represent objects in a spe-
cific temporal sequence (Hsieh et al., 2014) and support temporal
memory (Ezzyat and Davachi, 2014).

While these theories outline the functional properties of the
MTL, they do not specify the cognitive operations underlying
neural signals from these brain regions, nor do they describe how
these signals relate to memory search. Retrieved context models
(Howard and Kahana, 2002; Polyn and Kahana, 2008) describe
memory search in terms of two interacting cognitive processes:
temporal reinstatement (TR) and item retrieval. Temporal rein-
statement underlies mental time travel: when a particular studied
item is remembered, the memory system reactivates a temporal
code specifying when the study event occurred relative to other
events in the episode. Reactivation of a high-fidelity code makes
memories that were formed near that point in time more acces-
sible. The temporal reinstatement operation is followed by a re-
call competition to determine which memories will be retrieved.
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A successful competition yields a remembered item, while a failed
competition leads to termination of memory search.

To test whether subregions of the MTL are involved in these
cognitive operations, we developed a set of neurally informed
models of memory search. These models were designed to predict
the sequence of recalls made by a participant in a free recall task,
while neural activity was measured using functional MRI. In the
TR model, neural signal at the time of a recall event controls the
fidelity with which the temporal code associated with the re-
trieved memory is reactivated. In the retrieval success (RS)
model, neural signal controls the balance between success and
failure in the recall competition. In this approach, the computa-
tional model bridges between neural signal and human behavior,
providing a framework to test hypotheses regarding the compu-
tational mechanisms supported by specific MTL structures.

Materials and Methods
Participants and behavioral task
Twenty native English speakers (13 female) between 18 and 35 years of
age participated in the study, which was conducted in accordance with
the procedures approved by the Vanderbilt University Institutional Re-
view Board, after giving informed consent. Participants received com-
pensation of $20/h, with the opportunity to additionally earn up to $10
based upon task performance.

Each participant performed 12 trials, spread across two scanning ses-
sions, with 6 trials per session. On each trial, a list of 24 words was
presented serially. On half of the trials, list learning was followed by a
free-recall test. On the remainder of trials, a source recognition task was
used to test memory. The order of the trials was determined pseudoran-
domly within each session. In the present work, we examine only the
free-recall trials. As each word was presented, the participant performed
an orienting task, in which they made a button press indicating either the
size or animacy of the word, using an MRI-compatible response box. A
prior study (Polyn et al., 2012) characterizing task-sensitive patterns of
neural activity in these data may be consulted for other methodological
details.

For each studied item, the participant first saw a pretrial cue (duration,
0.7 s) indicating which judgment to make, followed by a fixation cross
(duration, 0.3 � 0.1 s) and the study word (duration, 2.5 s). Items were
separated by an interstimulus interval containing a fixation cross (dura-
tion, 0.5–5 s), with timing optimized to increase efficiency in the estima-
tion of the response to each judgment type (Dale, 1999). A retrieval
precue (duration, 2 s) followed the final item, indicating whether the
current trial involved free recall or source recognition. Finally, a row of
asterisks and an auditory tone (duration, 0.5 s) indicated the start of the
recall period (duration, 75 s). During this time, subjects were instructed
to recall as many items as they could from the most recent list, in any
order. Vocal responses were recorded with a scanner-safe microphone
(Resonance Technologies), and were scored using PyParse (Solway et al.,
2010) and Penn TotalRecall.

Image acquisition
Imaging was performed using a 3 T Philips Intera Achieva magnet at the
Vanderbilt University Institute of Imaging Science. Functional data were
collected using an interleaved gradient echo T2*-weighted pulse se-
quence with BOLD contrast (repetition time � 2000 ms, echo time � 30
ms, flip angle � 75°, voxel size � 3.0 � 3.0 � 3.6 mm, field of view � 192
mm). Thirty oblique slices, oriented parallel to the AC–PC plane were
collected during functional scanning. Whole-brain structural scans were
acquired using an MP-RAGE sequence (repetition time � 2500 ms, echo
time � 4.38 ms, flip angle � 8°, voxel size � 1.0 � 1.0 � 1.0 mm, field of
view � 256 mm).

Image processing
The first four functional images of each session were discarded to allow
the scanner signal to equilibrate. Preprocessing was carried out using the
SPM8 software package, as follows: the remaining functional volumes

from each run were realigned to the first functional scan to correct for
head motion. The mean of this realigned series was computed and coreg-
istered to the T1 structural image. The T1 image was then segmented (i.e.,
separated into gray matter, white matter, and CSF), and normalized to
Montreal Neurological Institute (MNI) stereotactic space using the uni-
fied segmentation approach (Ashburner and Friston, 2005). Voxels were
resampled to 3 mm isotropic and smoothed spatially, using an 8 mm
FWHM Gaussian kernel.

Construction of regions of interest
BOLD time series were extracted from the MTL, as well as a set of nearby
temporal fusiform regions previously shown to play a role in the retrieval
of temporal sequences (Ekstrom and Bookheimer, 2007; Lehn et al.,
2009). Extrahippocampal regions of interest (ROIs), including anterior
and posterior regions of the parahippocampal gyrus and temporal fusi-
form cortex, were constructed using the Harvard-Oxford atlas. Hip-
pocampus was defined as all hippocampal subregions (i.e., the subicular
complex, dentate gyrus, and cornu ammonis), as well as the entorhinal
cortex, from the Jülich Atlas probabilistic maps (Amunts et al., 2005;
Eickhoff et al., 2005). A 25% threshold was applied to all probabilistic
maps, resulting in an ROI of 2024 voxels within the MTL and surround-
ing cortical regions. We created an additional set of ROIs that partitioned
both MTL cortex (eight ROIs) and hippocampus (six ROIs) along their
anterior–posterior axes. Each ROI was up to 6 mm in length, limited by
the anterior–posterior extent of the MTL. ROI placement respected the
anatomical boundary between perirhinal cortex and parahippocampal
cortex (Insausti et al., 1998).

A neurally informed computational model of memory search
Overview of the general approach. We used a computational model of
memory search as part of an analytic framework designed to determine
whether the neural signal from the MTL contained information that
could improve the ability of the model to predict the sequence of re-
sponses made by participants during the recall task. This model was
based on the Context Maintenance and Retrieval (CMR) model of free
recall (Polyn et al., 2009). We created a set of model variants to test
specific hypotheses regarding the functional properties of the neural sig-
nal recorded from different regions of the MTL.

The analysis framework is presented schematically in Figure 1. Figure
1a describes the neural signals incorporated into the model. We recorded
BOLD time series from voxels within a priori anatomical ROIs, as par-
ticipants performed a memory search task. The BOLD signal at the time
of each recall event was collected and normalized across the events in a
given trial.

Figure 1b demonstrates how a set of model variants is used to infer
what cognitive operations are reflected in BOLD signal changes during
memory search. For a given neural signal, two neurally informed model
variants were created. The behavior and predictions of each model vari-
ant are determined by a set of model parameters, each of which corre-
sponds to a different cognitive mechanism. For each neurally informed
model, the degree of engagement of a particular cognitive mechanism
was controlled by a neural signal sampled at the level of individual recall
events.

On each trial of the experiment, participants produced a series of
responses, which were coded as recall events. An example recall sequence
is presented, in which the participant recalled six items before terminat-
ing recall. This was coded as a series of seven events, one for each of the
recalled items, and a termination event. For each recall event, the model
produced a likelihood score: the estimate of the probability of that par-
ticular response being generated by the model, given the particular set of
recall events leading up to that response. These probability scores were
collected in a vector pevent. The fitness of a model, given a particular set of
parameters, was then determined as follows:

L� � �log�pevent). (1)

By this equation, a smaller value of L (the negative natural logarithm of
the maximum likelihood for each model) corresponds to a better fitting
model (i.e., one that makes more accurate predictions regarding the
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recall sequences). For each model variant, an optimization procedure
was used to estimate the set of parameters that maximized the likelihood
that the model generated the observed behavioral data.

The predictive power of the neurally informed model variants were
compared with the predictions of a baseline version of the model (which
was not informed by neural data). If the BOLD signal from a particular
region was informative about a model mechanism, this would improve
the ability of the neurally informed model to predict recall sequences,
resulting in a significant improvement to the global likelihood score
associated with that model.

We additionally created a generative version of the baseline model,
which generates synthetic recall sequences for a given set of parameters.
In this version of the model, the behavior of the model during recall is
stochastically determined by the probability of each possible recall event
(i.e., recall of a list item or termination), rather than the observed recall
sequences. The generative model was used to demonstrate the ability of
the model to capture important summary statistics characterizing recall
behavior.

Basic structure of the model. The CMR model is best described as a
simplified neural network, in which two representational layers interact
with one another via two sets of associative weighted connections. Each
layer contains a set of elements with activation states that can vary be-
tween 0 and 1. The first layer contains a feature-based representation of
studied material (f ), and the second layer contains a contextual repre-
sentation (c), where f and c are column vectors, each containing 50
elements. To simulate the presentation or retrieval of an individual item,
the activation of f changes to represent that item. As a simplifying as-
sumption, item representations in f correspond to a unit vector, with a
single element in f activated. As such, 24 elements in f correspond to the
individual items from the study list. The remaining elements are used to
simulate the activation of task-irrelevant information during the inter-

stimulus intervals of the study period (24 elements) or during the end-
of-list retention interval (1 element). The final element is used to
initialize context at the start of each list. The dimensionality of c is con-
strained to match that of f. The activation patterns in both c and f are
constrained to be of unit length.

These layers are connected by the following two associative matrices:
one that allows featural representations to update the current state of
context (the item-to-context matrix, MFC), and another that allows con-
text to reactivate item features during memory search (the context-to-
item matrix, MCF). Each of these matrices is initialized with a set of
pre-experimental associations, corresponding to associations formed be-
fore the experimental session; learning processes create experimental
associations as the list progresses.

The diagonal elements of MFC allow an item representation f to influ-
ence c, when the item is first studied. A model parameter, �, controls the
relative strength of pre-experimental and experimental associations;
these diagonal elements are initialized at 1 � �, with other elements
initialized to zero. Elements of MCF representing associations between
context and individual list items are initialized at a uniform value deter-
mined by the model parameter �; these pre-experimental associations
are meant to represent a participant’s knowledge of relationships be-
tween the studied items.

Simulating the study period. The study period of each trial was simu-
lated as a sequence of 49 events, as follows: 24 study events, which sim-
ulated the presentation of a particular item; and 25 disruption events
(one preceding each study event and one following the final study event).
The equations below describe how the state of the model changes over the
course of these events. We use the subscript t � 1 to indicate when a
particular term represents the influence of a prior state of the model,
where t indexes the set of 49 events. We have omitted the t subscript for
terms representing the current state of the model.

Figure 1. Schematic overview of the computational analysis framework. a, BOLD signal from a priori regions of interest within the MTL, including hippocampus (HCMP; red), anterior PHG (aPHG;
blue), posterior PHG (pPHG; yellow), and temporal fusiform cortex (anterior and posterior regions not shown) is recorded while participants recall items from memory. The BOLD time series is
sampled at the onset of vocalization of a given recall event, and neural responses are normalized within the trial. b, For a given neural signal, three models are created. In the TR and RS models, this
neural signal controls the value of a specific parameter on a recall-by-recall basis. The parameters of the baseline model are not controlled by neural signal. A hypothetical recall sequence and the
associated neural signal for seven recall events (including recall termination) demonstrate the predictions of each model. Each model determines a set of probability estimates for a given recall event,
corresponding to the likelihood that each studied item is recalled (serial position), as well as the likelihood that no more items are recalled (stop). Given the increased MTL signal during the second
retrieval event, the TR model (purple squares) predicts that nearby items are more likely to be recalled next. The RS model (green squares) predicts a general increase in the likelihood that any studied
item will be retrieved, relative to the baseline model (blue squares). The red bar indicates the item that was actually recalled. The likelihood estimates made by each model are aggregated across all
recall events to determine the overall likelihood score associated with each model.
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To simulate presentation of an item during study, encoding processes
activate the representation of that item, fi, where i indexes the serial
position of the item on the list. This information projects through MFC to
influence the contextual representation. An integrative mechanism gov-
erns context updating, such that the updated state of the contextual
representation is a function of both the incoming information and the
prior state of context, as follows:

c � �ct�1 � �cIN, (2)

where

cIN � MFCf, (3)

and is normalized to unit length before updating context. Here, � is a
model parameter controlling the amount of item information that is
integrated into the current state of context, and � is a scaling parameter
that ensures that c is of unit length, as follows:

� � �1 � �2��ct�1 � cIN�2 � 1	 � ��ct�1 � cIN). (4)

During encoding, � is determined by the free parameter �enc; below, �
will take on other values to simulate contextual updating during interi-
tem intervals and recall.

After context is updated, an episodic learning process creates associa-
tive structures binding the current state of f to c, according to the
following:

MFC � Mt�1

FC
� �cfT (5)

MCF � Mt�1
CF � 	ifcT, (6)

where � controls the strength of experimental associations, and 	i is a
scaling factor that increases context-to-item associations for early list
positions to capture the primacy effect (i.e., the enhanced recall perfor-
mance associated with the first few list positions). Primacy scaling is
determined by the following equation:

	i � 	se
�	d�i�1� �1, (7)

where 	s and 	d are free parameters, and i indexes the serial position of
the item.

Preliminary simulations suggested that this primacy gradient did not
adequately describe the primacy effect in the behavioral data. As such, we
incorporated a secondary primacy mechanism, which was inspired by
prior theoretical work (Laming, 1999). By this mechanism, at the start of
the recall period, the model partially reactivates the contextual state as-
sociated with the start of the study list. This process follows the contex-
tual updating rule described in Equation 2, using the model parameter
�s to determine the fidelity of reactivation of start-of-list context. We
found that a version of the model with both primacy mechanisms
(primacy gradient and start-of-list contextual retrieval) was able to
account well for the behavioral variance associated with the primacy
effect.

The model also allows the contextual representation to be perturbed
by task-irrelevant information during the interstimulus intervals (ISI)
and the end-of-list retention interval (RI), as described in prior work
(Sederberg et al., 2008). A representation of the task-irrelevant informa-
tion is activated on f and is allowed to update the contextual representa-
tion, following Equation 2, with the exception that the rate of integration
is controlled by either �isi or �ri. We assume that no associative learning
takes place during these intervals (i.e., MFC and MCF are not updated) and
that these task-irrelevant representations do not enter the recall compe-
tition described below.

Simulating the recall period. On each trial, the participant made a series
of responses, which were coded as a series of recall events and a termina-
tion event (Fig. 1b). Repetitions and recall errors (i.e., intrusions) were
rare during this task. To simplify the dynamics of the model, we removed
recall events corresponding to repetitions of already recalled items (46
events across 120 recall trials), as well as prior and extralist intrusions (a
total of 37 events).

For each recall event, the context representation c is projected through
the associative weight matrix MCF, determining the relative support (s)
for each individual item representation in f, as follows:

s � (MCFc). (8)

Here, s is a vector in which each element corresponds to the support for
a given studied item. If a participant were to recall an item that was
assigned a zero probability in the recall competition, the likelihood met-
ric used to assess model performance would assign a log-likelihood of
negative infinity to that model. To avoid this possibility, we introduced
the assumption that there is always some minimal support for any item
(for the present simulations, this was set to 10�6). Once s is created, a
recall competition is simulated. The probability of the model recalling
each of the not-yet-recalled study items ( pi, where i indexes serial posi-
tion) and the probability of recall termination ( pstop) are calculated.

The pstop term is determined by an exponential function based on the
ratio of support for items that have not yet been recalled to items that
have been recalled, as follows:

pstop � 
s � e�
dsnr/sr. (9)

Here, 
d is a model parameter controlling the rate at which pstop rises with
output position, and sr and snr are scalar values corresponding to the
summed support for the already recalled items and the not-yet-recalled
items, respectively. For the present simulation work, 
s was fixed to a
value of 10�3 and corresponds to the probability that recall terminates
before any items are retrieved. The 
d parameter is controlled by neural
signal in the RS version of the model, which is described below.

We then set the support values for already recalled items to zero and
calculate the probabilities associated with the recall of each of the remain-
ing studied items ( pi), as follows:

pi � �1 � pstop�
si

�
k

N

sk

, (10)

where N is the number of items in the list.
At this point, the element of p corresponding to the item that was

actually reported by the participant (or pstop, if the participant termi-
nated recall at this point) is appended to the vector pevent (from Eq. 1). If
this is a termination event, the trial is over, and the model is initialized for
the next trial. If this is a recall event, the model simulates recall of that
item. First, the featural representation of the item is reactivated on f. The
reactivated item representation is then projected through MFC, which
retrieves the temporal code associated with that item. This updates the
state of c, following Equation 2, setting � to �rec. The �rec parameter is
controlled by neural signal in the TR version of the model, which is
described below.

Incorporating BOLD signal into a model. To test hypotheses regarding
potential links between BOLD activity in the MTL and particular model
mechanisms, we constructed a number of model variants in which neural
signal influences specific model parameters on a recall-by-recall basis. In
these models, a given model parameter, �, is updated for each recall
event, according to the following:

�event � � � �Nevent, (11)

where Nevent represents the neural signal recorded for this recall event
(i.e., BOLD signal measured at the onset of vocalization), and � is a neural
scaling parameter determining the influence of the neural signal on the
model parameter �. Thus, �event represents the value of that model pa-
rameter for this particular recall event.

We constructed a TR model in which � corresponds to �rec (which
controls contextual integration during retrieval), and the neural signal is
scaled by �TR. We also constructed an RS model in which � corresponds
to 
d (which controls the rate pstop increases as items are recalled), and the
neural signal is scaled by �RS. For the TR model, �RS was fixed to zero; for
the RS model, �TR was fixed to zero. The baseline model can be consid-
ered a restricted variant of either of the neurally informed models, in that
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both �TR and �RS were fixed to zero. Finally, we created a joint model,
which allowed both �TR and �RS to take nonzero values.

Parameter estimation techniques
For a given version of the model, we estimated the set of parameters that
best allows the model to capture the observed behavioral data, using a
particle swarm optimization (PSO) algorithm to search over the param-
eter space (Eberhart and Kennedy, 1995). This technique creates a set of
particles, each of which can be thought of as a point moving through the
high-dimensional parameter space, searching for the region of this space
that maximizes the fitness of the model. This technique was used to
estimate the optimal parameters for the baseline model and was used
three times for each voxel containing neural signal (for the TR, RS, and
joint models).

A swarm was constructed by creating 40 uniformly distributed ran-
dom parameter sets, each of which serves as the initial position for one of
the particles. The movement of each particle was determined by the
velocity vector v, which was added to the position vector x to determine
the position of the particle on each iteration of the search. The set of
positions visited by each particle was saved as the search progressed,
allowing the algorithm to keep track of the best-fit position of each par-
ticle (b) and the global best fit over all particle histories (g).

Three steps were repeated until the average change in fitness over 50
generations did not change by more than a specified tolerance (10�7).
For each iteration of the PSO algorithm, (1) the fitness L of the parameter
set associated with each particle was evaluated; (2) the individual and
global best fitness values and positions were updated; and (3) the veloc-
ities and positions of each particle were updated.

The velocity of each particle, vi, in the swarm was determined as fol-
lows:

vi�t � 1) � wvi(t) � c1r1[bi(t) � xi(t)] � c2r2[g(t) � xi(t)],

(12)

where i indexes a given particle, and t indexes the generation of the
particle search. The ith particle is represented by its position in a high
dimensional search space, with dimensionality determined by the num-
ber of parameters to be fit. The value of bi is the position of an individual
particle that produced the best fitness value over the history of the search,
and g(t) is the best-fitting position in parameter space over all particles.
In the current work, the PSO parameters c1, and c2 were fixed at 0.5 and
1.25, respectively. The values of r1 and r2 were pseudorandom values
drawn from the standard uniform distribution on the interval (0,1) dur-
ing each generation of the PSO algorithm.

The parameter w controls the inertia of the particles in the swarm, and
was updated as follows:

w � 0.9 � 0.4�t � 1�/�T � 1�, (13)

where t is the current generation, and T is the maximum number of
generations, which was set to 1000 in the implemented parameter
searches. For all of the parameter estimation searches reported here, the
algorithm terminated search before reaching T.

Model comparison techniques
Once the optimal set of parameters was estimated for the baseline model
and a neurally informed model, a likelihood ratio test (Wilks, 1938) was
used to determine whether any improvement in model predictions for
the neurally informed model was significant. This produced a test statis-
tic, D (also known as deviance, twice the difference of the log-likelihood
of the neural and baseline models), for each voxel within a priori regions
of interest. Significance was determined by testing D on a 
 2 distribution
with 1 df.

Once D was calculated for all voxels, a Monte Carlo resampling pro-
cedure [3dClustSim from AFNI, National Institute of Mental Health,
Bethesda, MD (http://afni.nimh.nih.gov/afni)] was used to identify sig-
nificant clusters, correcting for multiple comparisons across the entire
search region. First, individual voxels surviving an uncorrected threshold
of p 
 0.05 (D � 3.8415) were identified, and a resampling procedure

indicated that a cluster extent of 31 would ensure a cluster-level p 
 0.05,
corrected for multiple comparison within the predefined anatomical ROI.

Aikake’s information criterion (AIC) was used to evaluate model fit-
ness across multiple models (Burnham and Anderson, 2004; Wagenmak-
ers and Farrell, 2004). This measure takes model complexity (i.e.,
number of free parameters) into account, allowing us to compare a neu-
rally informed model to the baseline model. Unlike the likelihood ratio
test, this method does not require nested models, and was used to com-
pare the TR, RS, and joint models to one another. For each model, we
computed the AIC with a correction for finite samples, as follows:

AICc � 2L � 2V �
2V�V � 1�

�n � V � 1�
, (14)

where the L value is for the candidate model (from Eq. 1), V is the number
of free parameters, and n is the number of estimated data points. AIC
weights were computed to determine the probability that each model (of
K competing models) generated the observed data, under the assumption
that one of the models generated the data, as follows:

wiAIC �

exp��
1

2
�iAIC�

�k�1

K
exp��

1

2
�kAIC�. (15)

Here, �iAIC is the difference in AICc between a given candidate model
(specified by i) and the best-fitting model in the set.

To determine which of the models was most supported for a given
cluster of voxels, we created an average model representative of that

cluster. The parameter values ��̂ for this representative model were calcu-

lated as a weighted average of the parameter values �̂ for all of the models
associated with the voxels in that cluster, as follows:

��̂ � �
i�1

N

wiAIC�̂i, (16)

where �̂i is the set of estimated parameters from voxel i in the set of N
voxels in the cluster. This approach was used to calculate the relative
fitness of the TR, RS, and joint models for a given cluster.

To perform model comparisons for a given anatomical ROI, we used a
bootstrap sampling procedure. For each ROI, informative voxels (i.e.,
those identified by either the TR or the RS analyses) were selected at
random with replacement, allowing for the construction of a distribution
of AIC weights for each model type, for each ROI. Bootstrap statistics
were used to compare these distributions to one another and to test for
linear trends across anatomical ROIs (at p 
 0.05, Bonferroni corrected
for multiple comparisons).

Results
Behavioral characterization of recall sequences
During the memory search period of the free-recall task, partici-
pants produced a series of responses; each response is referred to
as a “recall event.” Figure 2 (red lines) summarizes the major
behavioral phenomena present in these recall sequences in terms
of how participants initiated recall, transitioned between recall
events, and, finally, terminated search. Figure 2a depicts the
probability of initiating recall with each studied item, arranged in
their order of presentation. Participants most often initiated re-
call with the final list position (demonstrating the recency effect),
but sometimes started with the first list position (demonstrating
the primacy effect), with a small but nonzero probability of ini-
tiating recall with some mid-list item. Our analysis of recall tran-
sitions focuses on the temporal organization of the response
sequences. Figure 2b depicts the probability of transitions of dif-
ferent lengths, with length measured as the positional distance in
the study list (i.e., the lag) between any two successively recalled
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items. When a particular item was recalled, there was a strong
tendency for the next recalled item to come from a nearby list
position, demonstrating the contiguity effect, a nearly ubiquitous
phenomenon in free-recall response sequences (Kahana, 1996,
2012; Kahana et al., 2008). The peaks for small values of lag are
taken as evidence for the temporal organization of the studied ma-
terial in memory. Temporal organization is taken as a marker of
mental time travel, as this behavior indicates that memories formed
near in time to the just-recalled item have become more accessible.

At some point, participants failed to recall any more items,
and the recall process terminated (Miller et al., 2012). Figure 2c
depicts the probability of recall termination as a function of the
number of items recalled (i.e., output position). Finally, Figure 2d
depicts the probability that a given studied item appeared any-
where in the recall sequence, demonstrating again the primacy
and recency effects, as well as the relatively flat probability of
recalling a mid-list item. On average, participants recalled 42% of
the studied items before the end of the recall period.

Comparison of neurally informed models to a baseline model
To determine whether the model provides a good account of the
core behavioral phenomena of free recall, we developed a gener-
ative version of the model, which produces synthetic recall se-
quences for a given parameter set. Using the parameter settings
for the optimized baseline model, we generated a large number of
synthetic recall sequences and created model-generated versions
of the four critical summary statistics described above. Figure 2
compares these synthetic recall sequences (black lines) to the

observed recall sequences (red lines). The correspondence be-
tween the black and red lines demonstrates a good qualitative fit
to the behavioral dynamics of free recall. A quantitative descrip-
tion of the fitness of the model is provided in Table 1.

The neurally informed TR model allows a signal from a par-
ticular MTL voxel to determine the success of the contextual
reactivation operation for each recall event. In contrast, the base-
line model assumes that the parameter controlling temporal re-
instatement (�rec) is stationary over the course of the recall
period. The baseline model can capture the average degree of
temporal organization in the recall sequences (Fig. 2b), but the
addition of a neural signal can improve the predictive power of
the model if it indicates, for a particular recall event, the fidelity
with which that temporal code is reactivated. That is, a neural
signal can potentially allow the model to capture not only the

Figure 2. Comparison of summary statistics of behavioral performance (Data; red lines) with predictions of the best-fitting baseline model (Model; black lines). The parameter estimation process
found the set of parameters that maximized the ability of the model to predict the likelihood of individual recall events; the model was not explicitly fit to these summary statistics. a, Recall initiation,
as measured by the probability of first recall by serial position. b, Recall transitions, as measured by the probability of transitions in which the two successively recalled items were separated by a
particular positional lag. c, Recall termination, as measured by the probability of stopping recall as a function of output position for the first 16 output positions. d, Overall recall performance, as
measured by the probability of recalling an item as a function of its serial position.

Table 1. Model fitness of representative models

Model Cluster k Center of mass (mm) n L

TR Left MTL 167 �28, �27, �21 11 3581.5
TR Right pPHG 63 25, �32, �18 11 3580.4
RS Right aMTL 336 28, �6, �32 11 3570.8
RS Left MTL 554 �28, �16, �27 11 3571.7
RS Right pPHG 52 17, �31, �10 11 3578.81
Joint Left MTL 93 �27, �26, �21 12 3576.91
Baseline 10 3586.7

Center of mass values are reported in MNI space. L was computed using the average neural signal and representative
model for each significant cluster. n, number of free parameters; k, extent of each cluster; pPHG, posterior PHG;
aMTL, anterior MTL.
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mean level of temporal organization, but also the variability in
organization, at the level of individual recall events.

We identified two clusters of voxels within the MTL that sig-
nificantly improved the predictions of the TR model relative to
the baseline model. Figure 3 presents a D map, which indicates
the predictive power of the TR model relative to the neurally
naive baseline model, on a voxel-by-voxel basis. One cluster con-
sisted of a number of voxels in left MTL cortex extending from
entorhinal cortex through posterior PHG, as well as posterior
temporal fusiform cortex. A second cluster in right MTL ex-
tended from the hippocampus through posterior PHG, with the
caudal extent of activation reaching posterior temporal fusiform
cortex (for more detail, see Table 2). Consistent with the hypoth-
esis that engagement of the parahippocampal cortex during re-
trieval reflects the reinstatement of contextual information, we
observed positive neural scaling factors (�TR) linking activity in
these clusters to the fidelity of temporal reinstatement.

To visualize the behavioral consequences of shifts in MTL
activity during memory search, we partitioned the set of recall
events into periods of high and low neural signal (split at 0.5 SDs
above the mean), using a weighted average of the voxels within
each MTL cluster. We separately constructed lag-based condi-
tional response probabilities for these two sets of recall events.
Figure 3 (right column) shows an increase in the temporal orga-
nization of recall events occurring during periods of increased
MTL activity.

The neurally informed RS model allows signal from a partic-
ular MTL voxel to influence the relative likelihood that the model
will continue to recall studied items, as opposed to terminating
recall. Three clusters of voxels were identified (p 
 0.05, cor-
rected) that improved the predictions of the RS model relative to
the baseline model, within a priori regions of interest. Two bilat-
eral clusters were composed mostly of anterior PHG, including
perirhinal cortex, the anterior extent of the hippocampus, and
anterior parahippocampal cortex. The third cluster spanned right
hippocampus and adjacent posterior PHG. The neural signal in
these models was associated with a positive neural scaling factor
(�RS; Table 3); increased neural activity indicated a reduced like-

Figure 3. Model evidence for temporal reinstatement processes in the MTL. Left, A deviance map showing clusters of informative voxels ( p 
 0.05, corrected) within anatomically defined
regions of interest, outlined in black. Right, Recall events were partitioned on the basis of neural activity in each MTL cluster, and an analysis of temporal organization was carried out separately for
each cluster. Periods of high neural activity were associated with increased temporal organization. The y-value indicates the probability (�SEM) that the next recalled item will have a particular lag
to the just-recalled item (conditional on the availability of that item for recall). The y-coordinate of coronal sections from the group average anatomical image is given in MNI space. R, Right; L, left.

Table 2. Peak voxels within a priori regions of interest

Model Region (hemisphere) Peak coordinate (mm) D

Temporal reinstatement TFC (L) �33, �37, �17 13.30
ERC (L) �18, �19, �29 13.28
TFC (R) 27, �34, �23 11.57
HCMP (R) 18, �25, �11 9.13

Retrieval success aPHG (R) 21, 5, �23 29.52
aPHG (L) �18, �1, �23 24.91
aPHG (R) 36, �10, �29 20.21
HCMP (L) �21, �10, �20 14.93
HCMP (R) 18, �28, �14 11.58

Peak coordinate values are reported in MNI space. TFC, temporal fusiform cortex; ERC, entorhinal cortex; HCMP,
hippocampus; aPHG, anterior PHG; R, right; L, left.
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lihood that recall will terminate, as shown in Figure 4). These
findings are generally consistent with theories in which item of in-
formation is reactivated in perirhinal cortex during memory re-
trieval. If perirhinal activity reflects the reactivation of successfully
retrieved studied materials, increased perirhinal activity should in-
dicate that the participant will continue to produce recall responses.

Visual inspection of the maps depicted in Figures 3 and 4
suggests that the neural signal in certain regions was informative
for both models. To determine whether, for regions containing
neural signal that was informative to both models, these two
neurally controlled cognitive mechanisms explain independent
sources of variability in the behavioral data, we constructed a
joint neural model. In this joint model, a neural signal from a
given voxel influenced both the temporal reinstatement and re-
trieval success mechanisms (with a separate neural scaling pa-
rameter for each process). This analysis identified a single cluster
of voxels within the left MTL, composed of hippocampus, poste-
rior PHG, and posterior temporal fusiform cortex, which allowed
the joint model to perform better than the baseline model (Fig. 5a).

Each of the voxel time courses within this cluster was associ-
ated with a positive neural scaling factor for the temporal rein-

statement process and a positive neural scaling parameter for the
recall success process. In other words, under this model, in-
creased activity in this region reflects both the high-fidelity reac-
tivation of temporal context, as well as a decreased likelihood that
recall will terminate. As in our analyses of the TR and RS models,
we partitioned the set of recall events into periods of high and low
neural signal (Fig. 5b), using a weighted average of the voxels
within the left MTL cluster. Figure 5c shows a clear increase in the
temporal organization of recall events occurring during periods
of increased MTL activity. Furthermore, we observed a clear de-
crease in the probability of recall termination for the set of recall
events with high MTL activity (Fig. 5d). A bootstrap analysis con-
firmed that representative models constructed from this cluster fa-
vored the joint model over both the RS and TR models alone
[mean � SEM weighted AIC (wAIC) � 0.68 � 0.009, p 
 0.0001].

Model support varies along the anterior–posterior axis of
the MTL
The maps presented in Figures 3 and 4 suggest that the relation-
ship between neural signal and the temporal reinstatement pro-
cess in the model is stronger in posterior MTL regions, while the

Table 3. Average model parameters from best fitting models

Parameter

Temporal reinstatement Retrieval success Joint

Right pPHG Left MTL Right pPHG Right aMTL Left MTL Left MTL

�enc 0.33 (0.0076) 0.35 (0.018) 0.33 (0.0018) 0.33 (0.002) 0.33 (0.004) 0.34 (0.0083)
�rec 0.82 (0.018) 0.81 (0.016) 0.86 (0.0031) 0.86 (0.0018) 0.86 (0.0021) 0.82 (0.017)
�s 1.69 (0.08) 1.48 (0.13) 1.69 (0.031) 1.81 (0.059) 1.75 (0.054) 1.54 (0.069)
�d 0.43 (0.0084) 0.42 (0.014) 0.43 (0.0035) 0.44 (0.0072) 0.43 (0.0075) 0.42 (0.0089)
� 0.23 (0.011) 0.27 (0.018) 0.23 (0.0022) 0.23 (0.0012) 0.23 (0.0017) 0.26 (0.01)

d 2.37 (0.046) 2.35 (0.047) 2.37 (0.025) 2.50 (0.035) 2.44 (0.048) 2.36 (0.029)
� 0.05 (0.0019) 0.05 (0.0011) 0.05 (0.00023) 0.05 (0.00025) 0.05 (0.0005) 0.05 (0.0011)
�TR 0.35 (0.014) 0.10 (0.016) 0.09 (0.019)
�RS 0.35 (0.043) 0.57 (0.042) 0.50 (0.051) 0.26 (0.046)
�s 0.28 (0.043) 0.28 (0.054) 0.23 (0.003) 0.22 (0.0064) 0.22 (0.006) 0.26 (0.016)
�ri 0.76 (0.14) 0.75 (0.14) 0.82 (0.0035) 0.82 (0.0047) 0.82 (0.0056) 0.78 (0.039)
�ipi 0.90 (0.0027) 0.90 (0.0044) 0.89 (0.00059) 0.89 (0.00038) 0.89 (0.00086) 0.90 (0.0034)

Data are reported as mean values from each cluster (SD). pPHG, Posterior PHG; aMTL, anterior MTL.

Figure 4. Model evidence for retrieval success processes in the MTL. Left, A deviance map showing clusters of informative voxels ( p 
 0.05, corrected) within anatomically defined regions of
interest, outlined in black. Right, Recall events were partitioned on the basis of neural activity in each MTL cluster; periods of high neural activity were associated with a decreased likelihood of recall
termination. The y-values correspond to the mean probability (�SEM, averaged across participants) that the recall event in question is the final item in the recall sequence. The y-coordinates of each
MTL section are given in MNI space. aMTL, anterior MTL; pMTL, posterior MTL.
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relationship between neural signal and retrieval success is stron-
ger in anterior regions. To test whether evidence of a cognitive
operation differed along the anterior–posterior axis of the MTL,
we carried out a wAIC analysis (Burnham and Anderson, 2004).
We computed four wAIC scores corresponding to the four mod-
els under consideration (baseline, TR, RS, and joint) for each
voxel within anatomical ROIs constructed along the anterior–
posterior axis of the MTL (Fig. 6a). For each ROI, we used a
bootstrap sampling procedure to generate an estimated average
wAIC score for each model. This sampling procedure was re-
stricted to neurally informative voxels (i.e., those identified in the
deviance maps of Figs. 3, 4, 5), answering the following question:
if a neural signal in this region is informative for at least one of our
neural models, which of the neural models is best supported?

The relative support for each of the three neural models is
presented for hippocampal ROIs (Fig. 6b) and MTL cortical ROIs
(Fig. 6c), with the ROIs arranged in terms of their position along
the anterior–posterior axis of the region. Within the hippocam-
pus, RS models were most supported in anterior ROIs; evidence
for these models significantly increased in the anterior direction,
as revealed by linear regression (� � 6.79 � 2.28, p 
 0.0001).

This pattern also held across MTL cortical ROIs. Evidence for RS
models significantly increased in the anterior direction (� �
14.32 � 0.62, p 
 0.0001). Within the hippocampus, a significant
linear trend in the opposite direction was observed for the TR
model, with increasing support in posterior ROIs (� � �11.09 �
3.97, p 
 0.0001). This pattern also held across MTL cortical
ROIs. Evidence for the TR models significantly increased in the
posterior direction (� � �25.19 � 1.90, p 
 0.0001). Support for
the joint model did not vary along the anterior–posterior axis in
the hippocampus (� � �13.7 � 7.55, p � 0.14), although in
MTL cortical ROIs there was a reliable increase in support for this
model in the posterior direction (� � �26.77 � 3.24, p 

0.0001).

For two of the three posterior hippocampal ROIs, and all of
the posterior MTL cortical ROIs, the joint model was strongly
favored. While we observed an anatomical gradient to these sig-
nals, both processes (i.e., temporal reinstatement and retrieval
success) were reflected in neural signal from posterior regions.
These posterior MTL cortical ROIs spanned parahippocampal
cortex and adjacent temporal fusiform cortex.

Figure 5. Cortical regions in the left MTL jointly support the temporal reinstatement and retrieval success hypotheses. a, A deviance map indicates a single cluster of voxels where the joint model
is significantly better than the neurally naive baseline model, in a functionally defined region of interest, outlined in black (voxels identified as informative to both temporal reinstatement and
retrieval success). Inset, A priori anatomical regions of interest. HCMP, Hippocampus; aPHG, anterior PHG; pPHG, posterior PHG; TFC, temporal fusisform cortex; aTFC, anterior TFC; pTFC, posterior TFC.
The x-coordinates are given in MNI space. b, A histogram depicting the distribution of MTL neural responses across all recall events. Neural response is z-score normalized within a trial and is averaged
across the voxels in the identified cluster. Responses �0.5 SDs above the mean response (across all trials) are labeled as high-activity recall events. c, Recall events were partitioned according to the
level of activation in the cluster; periods of high activity were associated with increased temporal organization. d, Periods of high neural activity were also associated with a decreased likelihood of
recall termination.
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MTL signal is informative at the level of individual trials
As mentioned, our baseline model assumes that the parameters
associated with temporal reinstatement and item retrieval are
stationary over the recall period. This does not mean that the
baseline model predicts that the behavioral markers associated
with those parameters are stationary over the recall period. This is
clearly indicated in Figure 2c. Despite the recall termination pa-
rameter 
d being stationary, the model captures the increasing
probability of recall termination as a function of output position
(due to the dynamics described in Eq. 9). Likewise, the baseline
model captures a small decline in temporal organization with
output position. According to the baseline model, temporal re-
instatement is equivalent across these recall events, but the tem-
poral organization associated with early recall events is amplified
by the recency effect, the tendency for the first few recall events to
come from the final few serial positions of the study list.

It is worth considering whether a neural signal could shift in
such a way that it could be artifactually identified as informative
to one of the models, despite not reflecting the cognitive opera-
tion embodied by the model. For example, if the baseline model
did not perfectly capture the decline in temporal organization
from early to later output positions, it is possible that a neural
signal that generally decreased over the course of the recall period
would be identified as neurally informative for the TR model, as
it would allow the model to decrease the amount of temporal
reinstatement in later output positions, relative to early output
positions. Similarly, one can imagine an equivalent scenario for
the RS model, as follows: a neural signal that generally changes its
magnitude between early and late output positions could help the
model fit the ever increasing tendency toward recall termina-
tion with later output positions. We developed a permutation-
based analysis of these neurally informed models to address
these concerns.

This permutation analysis was designed to rule out the possi-
bility that our analytic framework identified a neural signal re-
flecting some general process that changes as a function of output
position, but does not indicate temporal reinstatement or item
retrieval per se. For each representative model associated with a
given MTL cluster, we permuted the observed neural signal re-
corded for a given output position across trials. Permutations
were constrained to occur within subjects, and ensuring the vari-
ability in BOLD response between subjects did not bias the results

of this analysis. If the observed neural signal contains informa-
tion that reflects a general process that changes as a function of
output position, a permuted signal should be as informative as
trial-specific neural data. We observed significantly improved
performance in the two representative TR models constructed
from left (p � 0.005) and right (p � 0.011) MTL clusters, relative
to models informed by a permuted neural signal. The same was
true for the three representative RS models, which were con-
structed from the right anterior MTL cluster (p 
 0.001), the left
MTL cluster (p 
 0.001), and the right posterior PHG cluster
(p � 0.009). These results confirm that trial-level variability in
neural signal improved the ability of the neurally informed mod-
els to predict recall behavior.

Discussion
To determine the cognitive functions of MTL subregions during
memory search, we developed computational models that tested
hypotheses regarding the links between complex cognitive oper-
ations and BOLD activity recorded during retrieval. We found
evidence that distinct MTL structures are associated with differ-
ent computational mechanisms predicting successful perfor-
mance and temporal organization during a free-recall task. Our
findings implicate the posterior PHG and hippocampus in rein-
stating the temporal context of prior episodes. This temporal
reinstatement is thought to be an important mechanism support-
ing the subjective reliving of past experience (Tulving, 1993). In
contrast, anterior MTL structures, including perirhinal cortex, were
agnostic to the temporal structure of retrieved memories, while gen-
erally supporting recall of items from the targeted episode.

The hypothesis that particular MTL subregions control the
fidelity of mental time travel was strongly supported by the data.
Two clusters of voxels carried a signal whose recall-by-recall fluc-
tuations improved the predictive power of the temporal rein-
statement model relative to both the retrieval success model and
a baseline model. Multiple MTL structures, including right hip-
pocampus, bilateral parahippocampal cortex, and surrounding
temporal fusiform cortex contributed to this model. When these
regions showed increased activity for a particular recall event,
there was an increased likelihood that the next recalled item
would come from a nearby point in time (Fig. 3). These results are
consistent with theories implicating parahippocampal cortex in
the maintenance of contextual information (Davachi, 2006; Ran-

Figure 6. Relative fitness of neural models across MTL subregions. a, Anatomically defined ROIs along the anterior–posterior extent of the hippocampus (HCMP; left) and MTL cortex (right).
b, Average wAIC scores from six anatomically defined hippocampal ROIs. c, Model fitness from eight anatomically defined MTL cortical ROIs. Bars indicate the bootstrap-estimated average wAIC
scores for neurally informative models within that ROI. Error bars reflect the bootstrap-estimated SEM. Horizontal dashes denote significant pairwise differences ( p 
 0.05, Bonferroni corrected).
The vertical line denotes the anatomical boundary between the perirhinal and parahippocampal cortices.
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ganath and Ritchey, 2012), studies demonstrating recruitment of
the parahippocampal cortex and hippocampus during the re-
trieval of temporal information (Ekstrom and Bookheimer,
2007), and studies implicating MTL structures in the representa-
tion of temporal information in a variety of memory tasks (Jen-
kins and Ranganath, 2010; Manning et al., 2011; Howard et al.,
2012; Ezzyat and Davachi, 2014). These findings are in accord
with the proposed role of the MTL in providing temporal struc-
ture to one’s experience (Levy, 1996; Wallenstein et al., 1998;
Howard et al., 2005; Eichenbaum, 2013).

It has been proposed that the hippocampus contains associa-
tive structures that are responsible for binding item and contex-
tual information during the formation of episodic memories
(McClelland et al., 1995; Howard et al., 2005; Diana et al., 2007;
Polyn and Kahana, 2008). During retrieval, patterns of activity
present during encoding are reinstated within cortex (Danker
and Anderson, 2010). Studies using multivoxel pattern analysis
(MVPA) have shed light on how reinstated patterns of neural
activity reflect the attributes of memory (Polyn et al., 2005; Lewis-
Peacock and Postle, 2008; Johnson et al., 2009), and hippocampal
activity has been implicated in the success of this reinstatement
process (Staresina et al., 2013; Bosch et al., 2014; Gordon et al.,
2014). The analytic framework presented here raises the possibil-
ity of linking neural representations characterized with MVPA to
the cognitive operations of retrieved-context models of memory
search. For example, Polyn et al. (2012) identified patterns of
neural activity during list learning that were sensitive to the en-
coding task used on a particular item. These task-sensitive neural
representations were reinstated during memory search. One can
imagine an extension to the current analytic framework in which
the fidelity of the neural reinstatement of task information (mea-
sured with MVPA) is used to control a model parameter indicat-
ing how strongly the source characteristics of a given item are
represented in the contextual representation (Polyn et al., 2009).
As in the current work, support for this neural– cognitive linking
hypothesis would take the form of improved behavioral predic-
tions. In this case, an informative neural signal would improve
the ability of the model to predict variability in source organiza-
tion during memory search, providing information regarding the
representation of source attributes in the MTL. This approach
may also prove valuable in relating distributed neural represen-
tations of semantic structure (Haxby et al., 2001; Kriegeskorte et
al., 2008) to the behavioral dynamics of memory search (Socher
et al., 2009; Manning et al., 2012; Morton et al., 2013).

The hypothesis that MTL subregions indicate the success of
memory search was also strongly supported by the data. Activity
in the anterior extent of MTL cortex, including perirhinal cortex,
demonstrated the strongest evidence for the retrieval success pro-
cess during memory search. Fluctuations in these regions during
memory search did not indicate whether recalled materials will be
temporally organized; however, when activity in these regions
declined, participants were more likely to terminate the search.
This is consistent with prior work implicating perirhinal cortex in
the associative retrieval of item details (Düzel et al., 2003; Kirwan
and Stark, 2004; Law et al., 2005; Diana et al., 2010). One inter-
pretation of these results is that anterior PHG activation during
retrieval reflects the reactivation of item-specific information
during memory search. This information could then be projected
to executive and attentional systems to determine task relevance,
and to linguistic systems for verbal report. Under this interpreta-
tion, activity in this region would indicate retrieval success (mea-
sured in terms of the verbal reports made by the participant), but

the level of engagement would not necessarily indicate the tem-
poral organization of the recalled materials.

We observed the neural signal in a left MTL region, spanning
hippocampus and adjacent entorhinal and parahippocampal
cortices, that was informative for both the retrieval success and
temporal reinstatement mechanisms of our computational
framework. A joint model, in which both of these mechanisms
were influenced by neural signal, was favored over the other
models when using signal from this region (Fig. 5). One possibil-
ity is that these two cognitive processes produce independent
neural signals, and hemodynamic activity in this region simply
reflects a superposition of these signals. However, it is also possi-
ble that the neural circuitry of the posterior MTL performs a
function that is important for both of these cognitive operations.
Our findings linking the hippocampus to both computational
mechanisms align with theories in which this region plays a
domain-general role in the retrieval of associative information
(McClelland et al., 1995; Diana et al., 2007). Electrophysiological
studies with high temporal resolution support this idea, suggest-
ing that associative information flows from the hippocampus to
cortex during memory tasks (Naya and Suzuki, 2011; Staresina et
al., 2012a). Future computational studies of MTL function may
identify a single mechanism signaled by activity within posterior
hippocampus and parahippocampal cortex, arbitrating between
these possibilities.

We found that the computational mechanisms defined by the
model were differentially engaged along the anterior–posterior
axis of the MTL, highlighting the anatomical organization of
functional signals within this region. Temporal reinstatement ef-
fects showed stronger engagement in the posterior hippocampus
and PHG, and recall success effects showed stronger engagement
in the anterior hippocampus and PHG (Fig. 6). A number of
studies have examined how the functional properties of the MTL
shift as one moves along this anterior–posterior axis. Neuroim-
aging studies of cued recall suggest that the representational con-
tent of retrieved information is important, with retrieval of visual
object and scene information driving perirhinal and parahip-
pocampal cortices, respectively (Staresina et al., 2011, 2012b,
2013). A shift in representational selectivity has also been ob-
served in hippocampus; while posterior hippocampus is selec-
tively engaged by scene information, anterior hippocampus
seems to be agnostic to the representational content of studied
material (LaRocque et al., 2013; Liang et al., 2013; Huffman and
Stark, 2014). It has been suggested that the selective engagement
of parahippocampal cortex for scene information indicates a
more general role in contextual processing, with scenes engaging
mechanisms involved in encoding spatial context (Davachi,
2006). This is consistent with a number of studies relating para-
hippocampal cortical activity to source context (Davachi et al.,
2003), nonspatial contextual attributes (Aminoff et al., 2007),
and temporal context (Turk-Browne et al., 2012; Hsieh et al.,
2014). Our study provides converging evidence for the idea that
posterior regions of the MTL (namely, posterior hippocampus
and parahippocampal cortex) are involved in contextual process-
ing, and our model raises the possibility that context-sensitive
neural signals in this region are shaped by the cognitive mecha-
nisms underlying temporal reinstatement.

The findings provided by our neurally informed computa-
tional model of memory search represent a significant advance in
the ability to understand the contributions of the MTL to human
memory. Directly relating neural signals to computational mech-
anisms has led to advances in a number of cognitive domains,
including visual search (Purcell et al., 2012), reinforcement learn-
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ing (Daw et al., 2011), object categorization (Nosofsky et al.,
2012), and problem solving (Rosenberg-Lee et al., 2009). While a
number of recent studies suggest the promise of this approach in
the domain of episodic memory (Manning et al., 2011; Polyn et
al., 2012; Turner et al., 2013; Polyn and Sederberg, 2014), our
understanding of the cognitive processes engaged in memory
search remains tentative. A number of prior studies have used
GLM-based approaches to make inferences about the functional
contributions of MTL regions during memory search (Long et al.,
2010; Shapira-Lichter et al., 2012; Kragel and Polyn, 2013). These
inferences rely on the logic of cognitive subtraction, which in-
volves the partitioning of behavioral events into distinct groups
and relies on the assumption that a particular cognitive operation
is differentially engaged for the two groups. In and of itself, the
GLM does not provide evidence regarding the plausibility of this
differential engagement, or even whether the proposed cognitive
operation is sufficient to account for the observed behavior. By
incorporating well-specified cognitive operations directly into
the analytic model, our approach overcomes this limitation. The
ability of the model to account for the observed behavioral phe-
nomena (Fig. 2) demonstrates the sufficiency of the cognitive
operations used in the model. With the basic form of the model
validated, improvement in the predictive power of a neurally in-
formed model allows us to draw inferences regarding the cognitive
processes associated with the observed neural signal. Using this ap-
proach, we have developed, to our knowledge, the first computa-
tional model using activation of the MTL to predict the organization
of human memory, allowing us to make inferences about the mech-
anisms that are sufficient to give rise to mental time travel.

The neurally informed computational models presented here
link particular regions of the MTL with the cognitive operations
that enable an individual to search through memories of their
past experience. Neural signal in the posterior MTL indicated the
fidelity of mental time travel, consistent with the proposal that
this region specifies the spatiotemporal context of a memory. A
neural signal within multiple MTL structures, including the
perirhinal cortex, reflected successful item retrieval. Neural signal
in the hippocampus was linked to both mental time travel and
retrieval success, consistent with the proposal that associative
structures in this region support the reactivation of mnemonic
representations in cortex. This approach demonstrates how com-
putational models of cognition can be integrated with models of
neural activation, providing a unified framework to test specific
hypotheses regarding how fluctuations in the neural signal map
onto the dynamics of thought.
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