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Defense is a basic survival mechanism when animals face danger. Previous studies have suggested that the midbrain periaqueductal gray
(PAG) is essential for the generation of defensive reactions. Here we showed that optogenetic activation of neurons in the PAG in mice was
sufficient to induce a series of defensive responses (including running, freezing, and avoidance). However, the endogenous neural
dynamics of the PAG underlying defensive behaviors still remain elusive. Using chronic extracellular recording, we recorded the spiking
activities of PAG neurons in freely behaving mice exposed to natural threats (rats). We observed that there exist distinct neuronal subsets
within the PAG participating in respective detection (risk assessment) and response (flight) aspects of defensive behaviors. Our results
demonstrate the important role of PAG neuronal activities in the control of different aspects of defensive behaviors, and provide novel
insights for investigating defense from an electrophysiological perspective.
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Introduction
To improve their chance of survival, animals facing threats
exhibit defensive behaviors (e.g., flight, freezing, and risk assess-
ment; Fanselow, 1994; Blanchard et al., 2001a; Gross and Can-
teras, 2012; LeDoux, 2012). Evolutionarily, defense is conserved
across numerous species, including humans (Bandler and De-
paulis, 1991; Blanchard et al., 2001b), and is innate even in
preweanling animals (Takahashi, 1992). Brain regions involved

in controlling defensive behaviors include the amygdala, the hy-
pothalamus, and the downstream midbrain (Fanselow, 1994;
Brandão et al., 1999; Petrovich et al., 2001; Canteras, 2002; Mar-
tinez et al., 2011; Gross and Canteras, 2012; LeDoux, 2012).
Among these regions, the midbrain periaqueductal gray (PAG)
has been considered as an effector of defensive responses. Lesions
in the dorsal PAG (dPAG) attenuate animals’ defensive response
(including flight, freezing, and risk assessment) to threats
(Blanchard et al., 1981; Sukikara et al., 2010). In addition, c-fos
immunoreactive signals in the PAG are prominently enhanced
in animals displaying defensive behaviors (Canteras and Goto,
1999; Dielenberg et al., 2001). Moreover, electrical or pharmaco-
logical stimulation of the PAG evokes defensive responses in rats,
cats, and mice (Hunsperger, 1956; Bandler, 1982; Brandão et al.,
1982; Di Scala et al., 1984; Bittencourt et al., 2005; Miguel and
Nunes-de-Souza, 2006). A recent study has reported that opto-
genetic activation of dPAG neurons induced defensive behaviors
in rats (Chen et al., 2015).

However, the exact role of the PAG in defensive behaviors
remains to be fully understood. Here we show that optogenetic
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Significance Statement

Defense is crucial for animals’ survival in nature. Here, using optogenetic stimulation and in vivo recording in behaving mice
reacting to threats, we explored the role of the midbrain periaqueductal gray (PAG) in defense. We show that optogenetic activa-
tion of PAG neurons is sufficient to elicit different aspects of defensive responses. Consistently, the present study provides in vivo
evidence demonstrating that activity of the population of dorsal PAG neurons is activated during defense. Also, different sub-
populations of units recorded in the dorsal PAG participate in distinct aspects of defensive behaviors. These findings help us
understand the role of the PAG in animal behavior at the single neuron level.
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activation of dPAG neurons in mice evoked a pattern of re-
sponses (including running, freezing, and avoidance) resembling
behaviors of animals facing natural threats. Few studies have ex-
amined the neurophysiology of the PAG during defense. In the
present study, we examined the neural dynamics of the dPAG in
mice exposed to rats, and found that dPAG neural activities en-
coded different aspects of defensive behaviors, including flight
and risk assessment. Moreover, neurons involved in threat detec-
tion and response were largely separable within this region.

Materials and Methods
Subjects. Animal procedures were conducted in compliance with institu-
tional guidelines and approved by the Animal Care Facilities, Institute of
Neuroscience, Chinese Academy of Sciences. Adult male C57BL/6 wild-
type mice and Long–Evans rats (350 –500 g, predator) were used.

Viral vectors. Plasmids, purchased from Addgene, originally came
from Dr. K. Deisseroth. Packaged adeno-associated virus (AAV; �2 �
10 12 particles/ml) were produced by Neuron Biotech.

Surgery. Anesthetized mice (100 mg/kg sodium pentobarbital, i.p.)
were injected with 0.5 �l AAV8-CaMKII�-ChR2-mCherry (ChR2
group) or AAV8-EF1�-DIO-ChR2-mCherry (control group) unilater-
ally into the dPAG (�4.40 mm posterior to bregma, �0.28 mm lateral to
midline, and �2.45 mm ventral to the skull surface) at a rate of 30 nl/min
using a Nanoliter injector and a SYS-Micro4 controller (World Precision
Instruments). An optical fiber (200 �m diameter, 0.37 numerical aper-
ture) held in a 2.5 mm ferrule was implanted 0.5 mm above the injection
site. For extracellular recording, mice were implanted with custom-made
movable electrodes (�4.40 mm posterior to bregma, �1.32 mm lateral
to midline, and �2.35 mm ventral to the skull surface, at a 30° angle to
the vertical). The procedures of assembling the electrodes were as fol-
lows. A bundle of eight tetrodes (made from polyimide-coated 12.5 �m
nichrome wire) was affixed to a movable screw nut assembled in a mi-
crodrive chamber (Liu et al., 2014). Then, the electrodes were soldered to
a 36-pin connector (Omnetics Connector) attached onto the microdrive
chamber. Two additional wires were soldered to the corresponding pins
of the connector, serving as the ground and reference wires. Before im-
plantation, electrodes were gold-plated to reduce impedance to �300 –
400 k� at 1 kHz (IMP-2, Bak Electronics). For the construction of an
optrode, an optical fiber (200 �m in diameter, 0.37 numerical aperture)
held in a 2.5 mm ferrule was affixed to the above electrode assembly.
After surgery, mice were injected with ketoprofen (2 mg/kg body weight)
intraperitoneally for postoperative analgesia.

Behavioral assays. Mice were coupled to a 473 nm laser (Shanghai Laser
& Optics Century) in a chamber (20 � 50 � 30 cm), and received pho-
tostimulation (1 s duration) in the dPAG with varying intensities or
frequencies controlled by an Anilab instrument (Anilab Software & In-
struments). Each stimulation condition was repeated five times and in-
terleaved by a 1 min intertrial interval (ITI). Laser pulse width was 15 ms
in all optogenetic experiments unless otherwise noted.

During the real-time place-aversion test, a box (13.5 � 34.5 � 30 cm)
was divided into two chambers of equal size via a barrier (1 cm height).
After 10 min habituation, mice were stimulated in the dPAG (5 mW, 20
Hz) only when they were within the designated stimulation chamber. For
conditioned place-aversion assay, we modified experimental procedures
from Stamatakis and Stuber (2012). Day 1 consisted of a pretest session
performed in an apparatus containing two contextually distinct cham-
bers: a black chamber (15 � 19 � 30 cm) with a stainless-steel bar floor,
and a white chamber (15 � 19 � 30 cm) with evenly spaced holes (each
7 mm in diameter) on the floor. On days 2– 4, mice were separately
placed into the initially preferred chamber to receive photostimulation
into the dPAG (5 mW, 20 Hz, 10 s on and 10 s off), and the other chamber
without stimulation (counterbalanced, 25 min each). On day 5, mice
were given free access to all chambers without photostimulation.

In the fear-conditioning experiment, mice underwent five pairings of
a tone (20 s, 2 kHz, 75 dB) with laser pulses (2 s, 20 Hz, 5 mW) delivered
into the dPAG in a conditioning cage (18 � 22 � 27 cm) located in an
illuminated room. The floor of the conditioning cage consisted of
stainless-steel bars. After 24 h, mice were subjected to a fear-memory

recall test in a testing cage (18 � 22 � 17 cm) with holes in the side walls
located in another room in darkness. A piece of Plexiglas was placed on
the floor of the testing cage. Freezing was scored using the Anilab
software.

In the predator-exposure test, a large compartment (30 � 43 � 20 cm)
and a smaller (30 � 15 � 20 cm) compartment were separated by wire
mesh. Mice were placed into the large compartment after the stimulus
(toy or rat) was put into the smaller one. Mice were tested in habituation
sessions (no objects or animals presented in the smaller compartment),
toy sessions (a toy rat presented), and anesthetized-rat sessions (a rat
anesthetized by 80 mg/kg sodium pentobarbital presented) for 3 consec-
utive days. In the following days, each mouse was tested in 5–7 awake-rat
sessions. Each session lasted 30 min. Stretch–attend posture was
identified as a posture with an extended body length directed toward
the smaller compartment (Blanchard et al., 1990, 2011; Kemble and
Bolwahnn, 1997; Papes et al., 2010).

Electrophysiological recording. Neural signals were acquired (digitized
at 40 kHz) and bandpass-filtered (250 – 8000 Hz) using a commercial
system (Plexon). Videos (30 frames/s) were synchronized with neural
signals by sending transistor–transistor logic signals from Anilab instru-
ment to the Plexon device. Unit isolation was performed by MClust 3.5
software (A. D. Redish et al.; available at http://redishlab.neuroscience.
umn.edu/). Units were isolated off-line by manually clustering spike
waveform features (peak amplitude, energy, and principal components)
derived from the sampled waveforms. Cluster quality was assessed by
isolation distance and L ratio (Schmitzer-Torbert et al., 2005). Single
units were identified based on three criteria: (1) a clear refractory period
of �1 ms; (2) isolation distance �15 and L ratio �0.2; (3) stable wave-
forms during recording.

Peri-event time histograms. Neural data were analyzed using custom-
written Matlab (Mathworks) scripts. A mean spike density function was
constructed for each neuron by applying a Gaussian kernel (� 	 10 ms)
to each spike. All of the peri-event time histograms (PETHs) were calcu-
lated in 10 ms time bins. For the mean PETH, the firing rate for each unit
was averaged across trials. Cells that showed a significantly increased
firing rate during risk assessment and flight (compared with the firing
rates at 2 s time window randomly chosen for 20 replicates during whole
recording session; Wilcoxon rank-sum test, p � 0.001) were defined as
“assessment” and “flight” cells, respectively.

Histology. Coronal brain sections (60 �m) were collected and stained
with DAPI or fluorescent Nissl (NeuroTrace 500/525, Invitrogen) using
standard procedures. For immunostaining of CaMKII�, collected 30 �m
brain sections were stained with mouse anti-CaMKII� antibody (1:50;
sc-13141, Santa Cruz Biotechnology), and the secondary antibody was
donkey anti-mouse IgG Alexa 488 (1:500; Invitrogen). Fluorescent im-
ages were acquired and processed as described by Liu et al. (2014). The
viral expression areas and the positions of optical fiber and electrode tips
were mapped to a standard mouse coronal atlas (Paxinos and Franklin,
2001). Mice implanted with electrodes received electrolytic lesions before
perfusion. Current (30 �A, 10 s) was delivered to each tetrode through a
stimulus isolator (ISO-Flex, AMPI) controlled by a pulse generator
(Master-8, AMPI).

Statistics. All statistical tests were performed using Prism 6 (GraphPad)
and Matlab. All data are expressed as mean 
 SEM unless otherwise
noted. Group differences were determined using Student’s t test, one-
way ANOVA with Tukey’s post hoc tests, or two-way ANOVA with Bon-
ferroni’s post hoc tests. We applied Wilcoxon rank-sum or signed-rank
test to determine the significance of the changes in firing activities.

Results
Optogenetic activation of dPAG neurons induces
defensive behaviors
We first used optogenetics to confirm the role of dPAG in de-
fense. We targeted dPAG CaMKII�� neurons in wild-type mice
by injecting AAV carrying channelrhodopsin-2 (ChR2) under a
CaMKII� promoter (Fig. 1A,B), and implanted mice with opti-
cal fibers (Fig. 1C). We validated that �66% (66.42 
 3.51%;
mean 
 SD) of CaMKII�-expressing neurons were mCherry� in
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Figure 1. Optogenetic activation of dPAG neurons evokes defensive behaviors. A, Schematic showing virus injection (top) and implantation of optical fiber (bottom) into the dPAG. B, Top,
Visualization of ChR2-mCherry expression in the dPAG (DAPI, blue; ChR2-mCherry, red). Bottom, Overlay of virus expression (n 	 13 mice). Color bar, the number of mice with virus expressed in that
area. C, Placement of optical fiber tips (red circles; n 	 13 mice). D, Top, Representative immunostaining images showing virally induced mCherry expression under the CaMKII� promoter and
endogenous CaMKII� expression immunolabeled with anti-CaMKII� antibody. Bottom, Higher-magnification images of the boxed area in the top panels. Arrowhead indicates aqueduct (Aq). E,
Percentage of overlap between dPAG CaMKII� � and mCherry � cells (n 	 3 mice, 3 sections for each mice). F, Activity of an example unit in response to laser stimulation (blue shading; 5 mW, 20
Hz, 1 ms pulse). Left, Top, Spike raster, with each row corresponding to a single trial and each tick to a single spike. Left, Bottom, Peri-stimulus time histogram calculated by averaging firing rates
across trials. Gray shading, SEM. Right, Spike raster showing latency following first laser pulse stimulation (3.07 
 0.08 ms; mean 
 SD). G, H, Velocity during photostimulation (G) and freezing
percentage during ITI (H ) at different pulse frequencies (power, 5 mW) and laser intensities (frequency, 20 Hz) in the ChR2 and control groups (n 	 5 per group). Two-way ANOVA with Bonferroni’s
post hoc analysis. I, J, Latencies from laser stimulation to flight (I ) and freezing (J ) onset at different pulse frequencies (power, 5 mW) and laser intensities (frequency, 20 Hz) in the ChR2 group (n 	
5). I, Left, One-way ANOVA, F(2,8) 	 18.89, p 	 0.0009, Tukey’s post hoc. I, Right, Paired t test, t(4) 	 4.659, p 	 0.0096. J, Left, One-way ANOVA, F(3,12) 	 12.06, p 	 0.0006, Tukey’s post hoc.
J, Right, One-way ANOVA, F(2,8) 	 0.3364, p 	 0.7239, Tukey’s post hoc. K, Locomotion tracks of a representative ChR2-expressing mouse during real-time place-aversion test. Blue bar, Laser
delivery; color bar, time; time 0, laser onset. L, Withdrawal velocity (left, t test, t(8) 	 5.9824, p � 0.001) and withdrawal latency (right, t test, t(8) 	 �5.8712, p � 0.001) in response to laser
illumination in the real-time place-aversion test in the ChR2 and control groups (n 	 5 per group). M, Percentage of time spent in stimulation chamber during baseline and laser epochs in the
ChR2 and control groups (group � epoch interaction, F(1,8) 	 66.74, p � 0.001; two-way ANOVA, Bonferroni’s post hoc.; n 	 5 per group). N, Schematic of conditioned place-aversion
test (left). Time that ChR2 (n 	 8) and control (n 	 7) groups spent in the stimulation-paired chamber on the pretest and test days (right; group � day interaction, F(1,13) 	 10.24, p 	
0.007; two-way ANOVA, Bonferroni post hoc). O, Freezing percentage during the baseline and tone presentation periods on the training (F(1,18) 	 55.35, p � 0.0001) and test (F(1,18) 	
21.31, p 	 0.0002) days in the ChR2 and control groups (two-way ANOVA, Bonferroni’s post hoc.; n 	 10 per group). On both the training and test days, the ChR2 group showed
significantly higher level of freezing during tone presentation compared with the baseline period ( p � 0.0001 for training day; p � 0.0001 for test day; two-way ANOVA, Bonferroni’s
post hoc.) and the control group ( p � 0.0001 for training day; p � 0.0001 for test day; two-way ANOVA, Bonferroni’s post hoc.). Error bars, SEM; n.s., nonsignificant, p � 0.05; *p � 0.05;
**p � 0.01; ***p � 0.001.
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dPAG, and �90% (90.64 
 5.13%; mean 
 SD) of mCherry-
expressing neurons were CaMKII�� (Fig. 1D,E). Extracellular
recording using optrodes in ChR2-expressing mice confirmed
the effectiveness of optogenetic activation (Fig. 1F ). To inves-
tigate behavioral effects of optogenetic activation of dPAG
neurons, we tested mice systematically using lasers with varying
intensities and frequencies. Photostimulation at higher-frequency or
higher-intensity values induced running reliably in the ChR2
group but not in the control group (wild-type mice injected with
AAV8-EF1�-DIO-ChR2-mCherry, without expression of ChR2
and mCherry), as indicated by significant increase in animals’
velocity during photostimulation (Fig. 1G). We observed that
no risk-assessment behavior occurred during photostimula-
tion. Moreover, ChR2-expressing mice exhibited poststimula-
tion freezing during the ITI, and the freezing levels showed a
progressively increasing trend along with the increase of laser-
stimulation strength (Fig. 1H). We also observed shorter latency
for ChR2 mice to initiate flight upon laser stimulations with
higher-frequency or higher-intensity values (Fig. 1I), while there
was no such tendency for the latency from stimulation to freezing
onset (Fig. 1J).

Next, we asked whether activation of dPAG neurons could
produce avoidance in a real-time place-aversion tests. Laser
illumination was presented only when animals were within a des-
ignated stimulation chamber during laser epoch. Upon photo-
stimulation, ChR2-expressing mice withdrew rapidly from the
stimulation chamber (Fig. 1K,L). Compared with controls, ChR2
mice spent significantly less time in the stimulation chamber
during the laser epoch, while no significant differences were ob-
served during the baseline epoch (Fig. 1M ). Further experi-
ments using contextually distinct chambers showed that
ChR2-expressing mice displayed significant conditioned place
avoidance for the stimulation-paired chamber on the test day
(Fig. 1N). Also, when photostimulation of dPAG was paired with
conditional tone stimulus in a chamber allowing no avoidance,
ChR2-expressing mice displayed freezing behavior during tone
presentation both in conditioning and test phases (Fig. 1O), con-
firming that activation of dPAG neurons serves as an uncondi-
tioned stimulus. Together, optogenetic activation of dPAG
neurons promotes running, freezing, and acute and conditioned
avoidance, mimicking defensive reactions of animals facing
danger.

Rats induce defensive behaviors in mice
To further address what endogenous neural activities of the
dPAG underlie defense, we induced defensive behaviors in mice
in a more natural context, namely by exposing them to rats,
which have been reported as predators of mice (Horovitz et al.,
1965; O’Boyle, 1974; Malick, 1975; Rylov, 1985; de Catanzaro,
1988; Blanchard et al., 2001a). We used an apparatus divided by
wire mesh into two compartments of different sizes (Fig. 2A).
Mice were allowed to move freely only in the larger compart-
ment, while an awake rat was confined to the smaller one (rat
session). As controls, we introduced a habituation session with an
empty smaller compartment, and a toy session with a toy rat
placed in the smaller compartment. To examine whether expo-
sure to rats induced defensive behaviors in mice, we analyzed
three different kinds of behavior: avoidance behavior, flight be-
havior, and risk-assessment behavior, which could be identified
by a stretch–attend response with a flat-back elongated posture
(Blanchard et al., 1990, 2011; Kemble and Bolwahnn, 1997; Papes
et al., 2010). During habituation or toy sessions, mice actively
explored the larger compartment as observed by upward rearing

and even hanging onto the wire mesh. By contrast, mice displayed
marked avoidance of rats (Fig. 2B–D). Moreover, mice showed
greater numbers of flight and risk-assessment responses during
the rat sessions than during habituation or toy sessions, as indi-
cated by a significantly higher velocity of running away from the
wire mesh and an increased number of episodes showing stretch–
attend postures (Fig. 2E,F). Overall, these results validate that
mice exhibit innate defensive reactions (including avoidance,
flight, and risk assessment) upon exposure to rats.

Flight cells in dPAG
Since optogenetic activation of dPAG neurons induced flight, we
reasoned that neurons related to flight might exist in this brain
region. We observed that mice detecting a rat would suddenly
draw back in an apparent attempt to initiate escape as they stayed
around the wire mesh (Fig. 2G). We defined a “flight episode” as
starting with the moment of retraction and ending with the mo-
ment when mice arrived at the opposite side of the chamber. In
total, we collected by extracellular recording 165 single units in
the dPAG from five mice exposed to rats (Fig. 3A,B). Figure 3C
shows units exhibiting significantly increased firing rates during
flight (“flight” cells). Next, to examine the neural dynamics of
flight cells during flight, we plotted their firing rates versus the
mouse’s distance from the wire mesh (Fig. 3D). Flight cells exhib-
ited prominent firing initially, but the firing declined gradually as
mice fled farther from the rat. In contrast, flight cells were barely
responsive when mice moved toward the wire mesh. Then, we
evaluated a potential correlation between movement velocity and
firing activity for each flight cell. We found that the firing rates of
flight cells were not correlated with the instantaneous velocity
during the flight period (Fig. 3E, left), whereas the correlation
coefficients between mean firing activity in any given flight epi-
sode and the corresponding maximum flight velocity were posi-
tively skewed at the population level (Fig. 3E, right). Further
analysis showed that the firing peak of flight cells occurred earlier
than the velocity peak (maximum flight velocity; Fig. 3F).

Assessment cells in the dPAG
Risk-assessment behavior is crucial for animals to detect and an-
alyze threats in the surrounding environment (Blanchard et al.,
2011). We observed that flight behavior was often preceded by a
period when mice showed risk-assessment behavior: investigat-
ing around the wire mesh for a while with a stretch–attend pos-
ture (Fig. 2G). We found that some units recorded in the dPAG
showed higher firing activities during this surveillance period
(“assessment” cells; Fig. 3G). Next, we tested whether these units’
firing activities were correlated with distance from the wire mesh.
We plotted instantaneous firing rates of assessment cells against
each mouse’s distance from the wire mesh, and found that neu-
ronal spikes occurred more frequently when animals were near
the wire mesh (Fig. 3H). To further determine whether the neural
activities were related specifically to risk-assessment behavior or
generally to behavioral inhibition, we examined the activities of
assessment cells during freezing. We found that assessment cells
were not responsive during freezing episodes (Fig. 3 I, J).

Different aspects of defensive behaviors are encoded by
distinct neuronal subsets
Risk assessment and flight constitute consecutive defensive
phases in our paradigm. We then asked whether the dPAG units
encoding these two phases overlapped or were segregated. We
observed that units responsive during both phases were rare
(2%), whereas flight-specific units comprised �22% of total
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Figure 2. Rat exposure induces defensive behaviors in mice. A, Schematic showing induction of defensive behaviors in mice. Mice were tested in habituation, toy, and rat sessions. B, Locomotion
tracks of a representative mouse during habituation (left), toy (middle), and rat (right) sessions. C, Heatmaps illustrating density of spatial location across all experimental mice (n 	 7) during
habituation (left), toy (middle), and rat (right) sessions. Color bar represents time spent in a specific area normalized by the average time if the mouse had no spatial preference. D, Avoidance index
(as calculated by the percentage of time spent in the half zone far from the wire mesh minus time spent in the other half near the wire mesh) during habituation, toy, and rat sessions (F(2,52) 	 32.5,
p � 0.001). E, Quantification of flight behavior (as measured by average velocity of mice moving away from the wire mesh) during habituation, toy, and rat sessions (F(2,52) 	 12.5, p � 0.001). F,
Quantification of risk-assessment behavior (as scored by the number of stretch–attend episodes) during habituation, toy, and rat sessions (F(2,52) 	 9.4, p � 0.001). G, Video frames showing a
representative mouse’s defensive behavior during exposure to awake rat. Group data were pooled from seven mice. Error bars, SEM; one-way ANOVA, Tukey’s post hoc; n.s., nonsignificant, p � 0.05;
**p � 0.01; ***p � 0.001.
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Figure 3. Activities of units recorded in the dPAG during defense. A, Fluorescent Nissl staining showing an electrolytic lesion site (white arrow). B, Summary of electrode recording sites (green
dots). C, Left, Example of a flight cell. Trials were aligned to flight onset. Blue shading, Flight episode; orange, risk-assessment episode. Inset, Spike waveforms. scale bars: 100 �V, 500 �s. Right,
Normalized average PETH across all 36 flight cells. D, Firing rate of an example flight cell (left; same cell in C, left) and normalized average firing rates of all flight cells (right) plotted as a function of
distance to the wire mesh. Red, Running away from the wire mesh. Black, Running toward the wire mesh. E, Left, Distribution of correlation coefficients (Pearson’s r) between instantaneous velocity
and firing rates of flight cells during flight period. Right, Distribution of correlation coefficients (Pearson’s r) between maximum flight velocity and mean firing rates of flight cells during each flight
episode. Black bars indicate significance (Pearson’s p � 0.05); gray bars indicate no significance. F, Left, Firing activity of an example flight cell (same cell in C, left) and the mouse’s instantaneous
velocity during flight. Right, Normalized average firing activities of flight cells and the corresponding instantaneous velocity during flight. G, Left, Example of a risk-assessment cell. Inset, Spike
waveforms. Scale bars: 100 �V, 500 �s. Right, Normalized average PETH across all 16 assessment cells. H, Firing rate of an example assessment cell (left; same cell in G, left) and normalized average
firing rates of all assessment cells (right) plotted as a function of distance to the wire mesh. Orange, Observed data. Black, Shuffled data. I, Average firing rate of an example assessment cell (left;
Wilcoxon rank-sum test, ***p � 0.001; same cell in G, left) and normalized average firing rates of all assessment cells (right; Wilcoxon signed-rank test, ***p � 0.001) during risk assessment and
freezing episodes. Error bars, SEM. J, Normalized average PETH aligned to freezing onset across all 16 assessment cells.
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units and assessment-specific units comprised a smaller (10%)
proportion (Fig. 4A), suggesting that distinct subsets of dPAG
cells are recruited during different processes of defense.

In sessions with awake rats, the normalized average activity of
dPAG units increased gradually during risk assessment and
peaked during flight (Fig. 4A). Similar to exposure to awake rats,
exposure to anesthetized rats triggered defensive behaviors in
mice and induced a similar firing pattern in dPAG units (Fig. 4B).
To determine whether the neural responses were specifically re-
lated to defense or to an unrelated disturbance (such as novelty or
a mouse’s nonspecific motor activity), we examined the spiking
activities of dPAG units during habituation and toy sessions. Af-
ter plotting neural responses aligned by the time point when mice
left the wire mesh, we did not observe firing patterns similar to
those seen in sessions that included rats (Fig. 4C,D). Overall, we
conclude that the dPAG exhibits specific neuronal activities dur-
ing risk assessment and flight, representing two aspects of defen-
sive reactions.

Discussion
Here, we showed that optogenetic activation of dPAG CaMKII��

neurons induced defensive responses (including running, freez-
ing, and avoidance). Compared with electrical and chemical
stimulations, optogenetic stimulation provides cellular specific-
ity and high temporal resolution without activating passing fi-
bers, a drawback of electrical stimulation (Fenno et al., 2011). It
has also been reported that pharmacogenetic silencing of dPAG
neurons in mice decreases the duration of defensive responses
following exposure to a living rat (Silva et al., 2013). Together,
this and our results show that the dPAG is necessary and suffi-
cient to induce defensive behavior. Intriguingly, it is reported
that optogenetic activation of the ventromedial hypothalamus
(VMH)– dorsolateral PAG pathway produces immobility, but
not flight or avoidance (Wang et al., 2015). Given that the induc-
tion of flight or avoidance may require additional threat inputs
that are not provided by the VMH, the behavioral effect of VMH–
PAG pathway activation should be further tested in the presence
of a live predator or a predatory odor. It is reported that direct

stimulation of the VMH induces flight behavior with (Lipp and
Hunsperger, 1978) or without (Lin et al., 2011) a threat present.
Also, there exists an indirect projection from the VMH to the
PAG via the dorsal premammillary nucleus (PMd), another me-
dial hypothalamus nucleus crucial for the expression of defensive
behavior (Canteras and Swanson, 1992; Canteras et al., 1994,
1997; Blanchard et al., 2003). Thus, future work will need to
examine whether activation of the VMH—PMd–PAG circuit
elicits flight, and to address whether the VMH neurons that have
direct and indirect inputs to PAG are segregated or overlap.

Multiple behavioral processes are orchestrated to fulfill com-
plex behavioral patterns. At the cellular level, different aspects of
a behavior could be encoded by overlapping or separate neuronal
subpopulations (Falkner et al., 2014; Jennings et al., 2015). Our
extracellular recording in freely behaving mice identified two
largely segregated subsets of units (assessment and flight cells,
respectively) that correspond to the detection of and response to
a live rat. It remains to be determined whether these two aspects
of defensive reactions are dissociated in other brain regions in-
volved in defense. The dPAG neuronal activities were activated
during sessions involving rat exposure, but were almost nonre-
sponsive during habituation and toy sessions. Moreover, it has
been shown that neurons in the dPAG are activated when rats
express conditioned fear responses (Halladay and Blair, 2015).
The observed neuronal activation during defense is consistent
with the results of optogenetic activation experiments.

Our study also reveals some previously uncharacterized fea-
tures of dPAG neurons. As to flight cells, their firing activities
were not correlated with instantaneous movement velocity dur-
ing flight, but were positively correlated with maximum flight
velocity on a trial-by-trial basis. Due to the limited temporal
video resolution, further studies using headstage-mounted accel-
erometers are needed to reveal the more precise relationship be-
tween neuronal activities and animals’ movement velocity. As to
assessment cells, their spiking activities were inversely correlated
with the distance from a threatening stimulus. These observa-
tions provide electrophysiological evidence suggesting that dPAG

Figure 4. Activities of units recorded in the dPAG during awake-rat, anesthetized-rat, habituation, and toy sessions. A, Top, Activities of dPAG units recorded during awake-rat sessions, with each
row corresponding to one unit and color scale indicating normalized firing activity. Units were sorted by time of peak firing rate for each unit. Bottom, Normalized average PETH of dPAG units. Inset,
Pie plot showing population distribution (flight-specific units, 22%; risk assessment-specific units, 10%; units exhibiting both features, 2%). B–D, Top, Normalized activities of dPAG units recorded
during anesthetized-rat (B), habituation (C), and toy (D) sessions. Bottom, Normalized average PETH of dPAG units recorded during each session.
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is not simply a premotor area and reflects animals’ underlying
defensive state, in agreement with previous work (Nashold et al.,
1969; Johansen et al., 2010; Kincheski et al., 2012; Kim et al., 2013;
Carvalho et al., 2015). The finding of dPAG units related to risk
assessment expands what was previously detected by stimulation
and c-fos studies (Brandão et al., 1982; Di Scala et al., 1984; Can-
teras and Goto, 1999; Dielenberg et al., 2001; Bittencourt et al.,
2005; Miguel and Nunes-de-Souza, 2006), and is also consistent
with previous lesion studies (Sukikara et al., 2010). Activation of
dPAG neurons did not induce risk-assessment behavior in the
present study, and also the induction of risk-assessment behavior
by dPAG stimulation is not reported by other studies (Brandão et
al., 1982; Di Scala et al., 1984; Bittencourt et al., 2005; Miguel and
Nunes-de-Souza, 2006). It is possible that flight cells outweighed
the behavioral output of assessment cells. After all, assessment
cells constitute a smaller population (10%) than flight cells
(22%). In addition, assessment cells resemble a type of VMH
neuron responsive in mice investigating male conspecific mice
(Lin et al., 2011; Falkner et al., 2014). To better understand
predator-fear processing at the circuit level, researchers should
further examine the spiking activities in the medial hypothalamic
nuclei, including those of the VMH and PMd, during predator
exposure, and explore the functional inputs that dPAG neurons
receive from these nuclei.
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