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Disentangling Representations of Object and Grasp
Properties in the Human Brain
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The properties of objects, such as shape, influence the way we grasp them. To quantify the role of different brain regions during grasping,
itis necessary to disentangle the processing of visual dimensions related to object properties from the motor aspects related to the specific
hand configuration. We orthogonally varied object properties (shape, size, and elongation) and task (passive viewing, precision grip with
two or five digits, or coarse grip with five digits) and used representational similarity analysis of functional magnetic resonance imaging
data to infer the representation of object properties and hand configuration in the human brain. We found that object elongation is the
most strongly represented object feature during grasping and is coded preferentially in the primary visual cortex as well as the anterior
and posterior superior-parieto-occipital cortex. By contrast, primary somatosensory, motor, and ventral premotor cortices coded pref-
erentially the number of digits while ventral-stream and dorsal-stream regions coded a mix of visual and motor dimensions. The
representation of object features varied with task modality, as object elongation was less relevant during passive viewing than grasping.
To summarize, this study shows that elongation is a particularly relevant property of the object to grasp, which along with the number of
digits used, is represented within both ventral-stream and parietal regions, suggesting that communication between the two streams
about these specific visual and motor dimensions might be relevant to the execution of efficient grasping actions.
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To grasp something, the visual properties of an object guide preshaping of the hand into the appropriate configuration. Different
grips can be used, and different objects require different hand configurations. However, in natural actions, grip and object type are
often confounded, and the few experiments that have attempted to separate them have produced conflicting results. As such, it is
unclear how visual and motor properties are represented across brain regions during grasping. Here we orthogonally manipulated
object properties and grip, and revealed the visual dimension (object elongation) and the motor dimension (number of digits) that
aremore strongly coded in ventral and dorsal streams. These results suggest that both streams play arole in the visuomotor coding
essential for grasping. j

ignificance Statement

Introduction typically grasped between the thumb and the index finger (a grip

To efficiently grasp objects, the visuomotor system needs to as-
certain object properties and use them to prepare the appropriate
grasp. For example, a small round sphere, such as a pearl, is
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we denote as Precision 2), while a long object, such as a dumbbell,
is typically grasped with the palm and all the five fingers (Coarse
5). To characterize the contribution of different brain regions
during grasping, it is necessary to distinguish whether these re-
gions represent object properties, grip type, or both.
Neurophysiological studies have identified two core regions
involved in grasping: the anterior intraparietal area (AIP) and
premotor area F5 (Taira et al., 1990; Jeannerod et al., 1995; Mu-
rata et al., 1997, 2000). However object and grip type covaried in
these studies, as the monkey grasped each object with its natural
grip. Therefore, it is unclear to what extent neurons in these
regions are representing object type, grip type, or both. A few
studies have orthogonally manipulated these dimensions and re-
ported that both regions in the monkey contained neurons selec-
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tive for grip type, object orientation, and their interaction
(Baumann et al., 2009; Fluet et al., 2010), but during movement
execution, the majority of cells in the AIP coded both grip type
and object orientation (Baumann et al., 2009), while in area F5
the majority coded grip information (Fluet et al., 2010).

The corresponding areas in humans, the anterior intraparietal
sulcus (aIPS) and the ventral premotor cortex (PMv), have been
found to activate more strongly during grasping than reaching
(Culham et al., 2003; Frey et al., 2005; Cavina-Pratesi et al., 2010)
and to show selectivity for grip type (Gallivan et al., 2011; Fabbri
etal., 2014). However, these neuroimaging studies focused on the
motor aspects of the grasping task without manipulating object
properties. To our knowledge, the only study that orthogonally
manipulated grip type (Precision 2 and Coarse 5) and object size
(small and large sphere; Begliomini et al., 2007) found higher
activity in the aIPS during Precision 2 than Coarse 5 grasping,
regardless of object size, suggesting that the aIPS represents
mainly the hand configuration and not object information dur-
ing grasping. These results have been recently extended with mul-
tivariate pattern analysis by Di Bono et al. (2015). This selectivity
in the alPS for grip type and not object properties appears in
conflict with sensitivity for object orientation reported in mon-
key areas AIP and F5 (Baumann et al., 2009; Fluet et al., 2010). An
explanation for this conflict may be that orientation selectivity
reported in monkeys reflects selectivity for the orientation of the
wrist instead of the object. Therefore, it remains unclear whether
object properties are coded in grasping regions and which object
properties are more relevant than others during grasping.

To disentangle the representation of visual and motor codes for
grasping, human participants passively viewed or grasped in various
ways (Precision 2, Precision 5, and Coarse 5) six real objects (plates,
disks, spheres, cubes, cylinders, and bars) presented in three sizes
(small, medium, and large) during functional magnetic resonance
imaging (fMRI). We used representational similarity analysis (RSA;
Kriegeskorte etal., 2008; Nili et al., 2014) to distinguish the represen-
tation of visual (object shape, size, and elongation) and motor (num-
ber of digits, degree of precision) aspects of the grasping tasks in
regions of the grasping circuits. We also included regions of the
ventral stream, as previous studies have shown that ventral-stream
area lateral occipital complex (LOC) codes grasp-relevant dimen-
sions during action planning (Gallivan et al., 2014; Monaco et al.,
2014). Specifically, we predicted that visuomotor areas, including
the aIPS, represent both visual and motor aspects of the grasping
task, while motor areas, including the PMv, primarily represent mo-
tor codes. Furthermore, we tested which object dimensions (shape,
size, or elongation) are most strongly represented during grasping.
Finally, given evidence of ventral-stream involvement in grasping,
we expected representation of object properties in both dorsal and
ventral streams.

Materials and Methods

Participants. Analyses were based on data from 12 neurologically healthy
adult participants (eight females and four males) recruited for this study;
mean age was 24 years. Due to excessive head motion, data from an
additional three participants were excluded. All participants were right-
handed and had normal or corrected-to-normal visual acuity. Informed
consent was obtained from each participant in accordance with the Uni-
versity of Western Ontario Health Sciences Research Ethics Board and
the Declaration of Helsinki.

Objects. In a rapid event-related fMRI design, participants directly
viewed a series of 18 objects and performed one of four tasks. The 18
objects were a factorial combination of six shapes and three sizes created
from blocks of maple wood and painted white. The six shapes were a
factorial combination of three types of elongation (flat, isotropic, or

J. Neurosci., July 20, 2016 - 36(29):7648 7662 * 7649

elongated) and two types of edges (shape: square or round), yielding a
square plate, cube, elongated square bar, disk, sphere, or cylinder, as
shown in Figure 1a. Each object could have one of three sizes along the
depth dimension (7.6, 5.7, or 3.8 cm); because subjects were instructed to
grasp the objects along this dimension, this corresponded to the final grip
aperture size, which has been shown to be particularly relevant in fMRI
studies of grasping (Monaco et al., 2014). To vary the elongation, the
other dimensions were either equal to the size (depth) dimension or fixed
(14 cm width for elongated objects; 0.8 cm height for the planar objects;
Fig. 1a). Note that elongation here is not strictly equivalent to the aspect
ratio of the objects as they would be projected on the retina. Our choice of
dimensions was based on two considerations: (1) the aim to vary the
graspable dimension (and round/square shape) independently of other
dimensions; and (2) the aim to investigate objects that included planar
shapes and elongated objects, two categories for which neural subpopu-
lations have been identified using neurophysiology (Sakata et al., 1998),
as well as an intermediate (isotropic) shape.

Tasks. The four tasks included passive viewing and three grasping tasks
that differed in the number of digits used and the precision required (Fig.
la). In the first grasping task, participants used the index finger and
thumb to precisely grasp the object (Precision 2 condition). In the second
grasping task, participants used all five digits to precisely grasp the object
(Precision 5 condition). In the third grasping task, participants grasped
the object coarsely in a whole-hand grasp using all five digits (Coarse 5
condition). All grasps were performed with the right hand.

Apparatus. Participants lay supine in the scanner with the head tilted
20° to allow direct sight of the objects placed in front of them. Each
stimulus was placed on a pedestal positioned on a wooden platform
above the participant’s pelvis (Fig. 1b), which was placed such that the
objects on the pedestal could be comfortably grasped. Each participant
was instructed to place his or her right hand on the platform in a com-
fortable resting position (Fig. 1b) and to maintain fixation during the
entire experiment on the light-emitting diode (LED) placed above the
object by ~10-15° of visual angle. Participants wore headphones to
receive auditory instructions. To limit head movements during grasping,
the participant’s right forearm was strapped to the bed. Throughout the
experiment, the participant’s actions were recorded by an MR-
compatible infrared camera (MRC Systems) placed at the entrance of
the magnet bore. Behind the participant’s head, a series of LEDs
illuminated the workspace during the trial and turned off during the
intertrial interval (ITI).

To efficiently alternate placement of the 18 objects, two experimenters
were required. One experimenter stood in front of a table where the 18
objects were each positioned beside an LED that illuminated to indicate
when a given object should be passed to a second experimenter. The
second experimenter placed the appropriate object for the upcoming
trial on the pedestal in darkness during the ITI.

Procedure. Consistent with other RSA studies using many stimuli
(Kriegeskorte et al., 2008), we used a fast event-related design to present
10-12 experimental runs (depending on time constraints) in which each
combination of 18 objects X 4 tasks (72 trials) was presented once per
run in a pseudorandom order for each run (with the constraint that the
same object was not presented more than twice in sequence, even if
different actions were performed upon it). At the start of each trial, the
workspace was illuminated and participants received a one-syllable
auditory instruction of the task to execute: “None” (passive viewing),
“Two” (Precision 2), “Five” (Precision 5), or “Palm” (Coarse 5). Partic-
ipants had 2 s of illumination in which to execute the task with visual
feedback and return the hand to the starting position. The windows in the
scanner room were covered with black quilts and the room lights were off
such that the fixation LED was the only thing visible when the illuminator
lights were off during the ITI. Each run lasted 9 min and began and ended
with 16 s of a resting baseline in darkness. To decorrelate the hemody-
namic responses of successive trials, we jittered the ITIL: 2 s in 50% of the
trials, 6 s in 33% of the trials, and 8 s in 17% of the trials. The distribution
of ITIs was counterbalanced across conditions between runs and bal-
anced across odd and even runs. The experiment lasted 2 h on average.
Experimental timing, audio, and lighting were controlled with Psych-
toolbox-3 for Windows (Brainard, 1997).
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The conditions and experimental setup. a, Six objects were shown to participants during passive viewing (first row) and three grasping tasks: Precision 2 (second row), Precision 5 (third

row), and Coarse 5 (last row). The six objects were presented in different sizes, varying in the depth of the graspable dimension, which was 3.8, 5.7 (as showed in this figure) or 7.6 cm. Other
dimensions were chosen to either retain the object’s size (all dimensions of isotropic stimuli, cube and sphere, width of square plate and disk) or to increase or decrease the object’s elongation (0.8
«m height for square plate and disk; 14 cm width for bar and cylinder). b, The participant’s head was tilted to allow fixation of the LED above the object (dotted line), which sat on the pedestal. An
LED located behind the flex coil illuminated the workspace during the trial. A bore camera was used to record the events during the trial and to exclude error trials. The participant’s right upper arm
was restrained with a strap that still permitted movements of the elbow, wrist, and hand. Brain activation was measured with the bottom six channels of a 12-channel head coil, tilted to facilitate

direct viewing, and a four-channel flex coil suspended above the forehead.

Data acquisition. All imaging was performed at Robarts Research In-
stitute at the University of Western Ontario (London, Ontario, Canada),
using a 3 tesla Siemens TIM Trio MRI scanner.

fMRI volumes were collected using a T2*-weighted, single-shot,
gradient-echo echo-planar imaging acquisition sequence [time to repe-
tition (TR) = 2000 ms; slice thickness, 3 mm; in-plane resolution, 3 X 3
mm; time to echo (TE) = 30 ms; field of view, 240 X 240 mm; matrix size,
80 X 80 pixels; flip angle, 90° and acceleration factor (integrated parallel
acquisition technologies [iPAT] of 2 with generalized, auto-calibrating,
partially parallel acquisition reconstruction)]. Each functional volume
comprised 34 contiguous (no gap) oblique slices acquired at a ~30°
caudal tilt with respect to the plane of the anterior and posterior com-
missure (ACPC), providing near whole-brain coverage.

The T1-weighted anatomical image was collected using a MPRAGE
sequence (TR = 2300 ms; TE = 2.98 ms; iPAT, 2; field of view, 192 X
240 X 256 mm; matrix size 192 X 240 X 256 mm; flip angle, 9° 1 mm
isotropic voxels).

We used a combination of imaging coils to achieve a good signal-to-
noise ratio and to enable direct viewing without mirrors or occlusion.
Specifically, we tilted (~20°) the posterior half of a 12-channel receive-

only head coil (six channels) and suspended a four-channel receive-only
flex coil over the anterior—superior part of the head.

Data analysis. Data analysis was performed using Brain Voyager
QX 2.8 (Brain Innovation), the BVQX Toolbox (http://support.
brainvoyager.com/available-tools/52-matlab-tools-bvxqtools.html),
NeuroElf (http://neuroelf.net), and custom software written in Mat-
lab (The MathWorks).

Preprocessing. Data were preprocessed by applying slice scan-time cor-
rection (sinc interpolation for slices acquired in ascending interleaved
even—odd order), 3D motion correction (sinc interpolation), and high-
pass temporal filtering (cutoff frequency of 3 cycles per run). Functional
runs were aligned to the run closest in time to the anatomical volume that
was used for functional-to-anatomical coregistration. Both functional
and anatomical data were aligned to the ACPC plane and transformed
into Talairach space using sinc interpolation. Because the data were an-
alyzed with multivariate pattern analysis (MVPA), no spatial smoothing
was applied.

For each participant, we excluded the functional runs where 3D mo-
tion parameters indicated abrupt movements >1 mm translation or 1°in
rotation (two runs were excluded in three participants and one run was



Fabbri et al. ® Neural Coding of Object and Grasp Properties

excluded in four participants). By off-line video screening, we excluded
3.6% of the trials due to errors in which participants did not correctly
perform the task or the experimenter placed the wrong object in the
pedestal. We also performed careful quality-assurance inspections to ver-
ify that the data were not contaminated by artifacts related to hand
movements.

General linear model. Data were analyzed with a random-effects
general linear model that included one predictor for each of the 72
conditions convolved with the default Brain Voyager “two-gamma” he-
modynamic response function (Friston et al., 1998) and aligned to trial
onset. As predictors of no interest, we included the six motion parame-
ters (x, y, and z, for translation and rotation) resulting from the 3D
motion correction.

Definition of regions of interest. We investigated a wide range of regions
of interest (ROIs) that included early visual areas, motor and somatosen-
sory areas, and areas within the ventral stream (occipitotemporal cortex)
and dorsal stream (occipitoparietal and premotor cortex) thought to be
specialized for visual recognition versus visually guided actions, respec-
tively (Goodale and Milner, 1992; Culham et al., 2003; Cavina-Pratesi et
al., 2007a). Recent studies have suggested that ventral-stream areas may
contain more action-related information (Gallivan et al., 2014; Monaco
et al.,, 2014) and dorsal-stream areas may contain more object-related
information than previously thought (Bracci and Op de Beeck, 2016).

ROIs were based on the general contrast of all conditions versus base-
line, which led to widespread activation related to visual, somatosensory,
and motor aspects of the tasks. Initially, we examined random-effects
group statistical maps of the general contrast on group-averaged ana-
tomical scans in Talairach space (Talairach and Tournoux, 1988) or on
an individual cortical surface. This group statistical map was used for
visualization purposes (see Fig. 3) and to determine which regions were
commonly activated across the group. That is, foci that were active in
individual participants but not apparent in the group analysis were not
included as ROIs. Given that right-hemisphere foci may not be reliably
identified in sensorimotor tasks performed with the right hand (and that
the number of regions included was already considerable), we limited
our ROIs to the left hemisphere.

Importantly, ROIs were defined in individual participants based on
criteria used in past studies from our laboratory (Gallivan et al., 2011).
The ROT approach enabled us to optimally identify regions within indi-
viduals (despite variations in stereotaxic location of anatomical land-
marks and thus functional regions) without biasing the localization
toward any specific hypothesis (Kriegeskorte et al., 2009). Specifically, we
localized each ROI based on the activation for each individual in the
contrast of all conditions versus baseline (false discover rate, <0.05)
using data transformed into Talairach space. Each ROI was localized by
selecting the voxels active within a cube (10 mm*) and ensuring that the
cluster contained =4 functional voxels [4 X (3 X 3 X 3 mm?) = 108
mm]. These cubes were centered at the “hotspot” of activation closest to
the expected anatomical landmarks. For example, the aIPS ROI was de-
fined by identifying a cube centered on the hotspot of activation nearest
to the junction of the anterior intraparietal and postcentral sulci, as has
been done across dozens of studies from our laboratory (see examples of
alPSlocalization in individual participants in Cavina-Pratesi etal., 2010).
Importantly, regions were defined in individuals independently from the
subsequent MVPA analysis to avoid any selection bias (Kriegeskorte et
al., 2009). Regions were defined based on anatomical and activation
criteria rather than stereotaxic coordinates, although Talairach coordi-
nates, as shown in Table 1, were computed based on the average locations
of individual ROIs to permit comparisons with other studies.

The following ROIs were identified in the left hemisphere on each
individual brain using the following criteria: the putative V1 was identi-
fied based on the voxels in, or adjacent to, the calcarine sulcus (Snow et
al., 2014); the anterior superior parietal occipital cortex (aSPOC) was
localized anterior to the superior end of the parietal occipital sulcus
(POS; Culham et al., 2003; Cavina-Pratesi et al., 2010; Monaco et al.,
2014); the posterior superior parietal occipital cortex (pSPOC) was lo-
calized posterior to the superior end of the POS (Cavina-Pratesi et al.,
2010); the LOC was localized inferior to the junction between lateral
occipital sulcus of the inferior temporal sulcus, anatomically close to the
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Table 1. Talairach coordinates and size of ROIs average across subjects”

Talairach coordinates ROl size
ROl name Mean x Mean y Mean z SD x SDy SDz mm?>
PMV —50 =3 34 3 5 3 783
M1 —35 —27 48 4 6 3 888
PMd/FEF —25 =15 49 3 6 3 853
V1 —6 —81 -2 2 3 6 957
pMTG —46 —64 -1 2 5 4 800
L0OC —42 —72 -1 3 4 4 728
miPS -29 —57 39 3 6 5 754
alPs —40 —40 38 6 6 3 843
S1 —44 —32 49 3 8 3 847
pIPS =27 —60 4 5 5 5 744
aSPOC —14 —80 29 3 8 7 693
pSPOC -13 -79 29 4 7 9 703

“Talairach coordinates (center of mass mean coordinates and SD) and ROI size.

object-selective area LO (Talairach coordinates: —42, —76, —10; Bracci
etal., 2012); the posterior middle temporal gyrus (pMTG) was localized,
in 11 of 12 participants, at the posterior end of the middle temporal
gyrus, anatomically close to the hand-and-tool-selective focus (Talairach
coordinates: —47, —66, —2; Bracci et al., 2012); the posterior intrapari-
etal sulcus (pIPS) was localized at the posterior end of the parietal lobe,
close to the anatomical coordinates of the putative caudal intraparietal
sulcus (cIPS) area, which has been reported during discrimination of
surface orientation in a previous study in humans (Shikata et al., 2008);
the PMv was localized at the junction of the inferior frontal sulcus and
precentral sulcus (PreCS; Tomassini et al., 2007); the primary motor
cortex (M1) was localized at the “hand knob” landmark in the central
sulcus (Yousry et al., 1997); the dorsal premotor cortex (PMd/FEF) was
localized at the junction of the precentral sulcus and superior frontal
sulcus (Tomassini et al., 2007; in absence of specific localizer tasks to
distinguish between premotor activity due to eye or hand movements, we
called this area PMd/FEF, even though our region is close to the dorsal
branch of the superior precentral sulcus, shown to be involved during
hand but not eye movements; Amiez et al., 2006); the middle intrapari-
etal sulcus (mIPS) was localized halfway up the length of the IPS, on the
medial bank (Gallivan et al., 2011); the aIPS was localized at the junction
of the IPS and postcentral sulcus (PostCS) (Culham et al., 2003); the
somatosensory cortex (S1) was localized by selecting the voxels in the
postcentral gyrus and sulcus (Gallivan et al., 2011).

RSA. Multivoxel pattern analysis was performed using the method of
RSA to measure the nature of coding in each region (Kriegeskorte et al.,
2008; Nili et al., 2014). Essentially, by examining in an ROI the degree to
which each of the 72 conditions evoked a similar pattern of brain activity
to each of the others, the nature of the neural code (or representational
geometry; Kriegeskorte and Kievit, 2013) can be assessed. We then com-
pared the measured neural codes to three hypothetical motor and three
hypothetical visual codes.

At each voxel, baseline z-normalized (3 estimates of the blood-oxygen-
level-dependent response, representing the mean-centered signal for
each voxel and condition relative to the SD of signal fluctuations, were
extracted for each of the 72 conditions at every functional voxel in each
ROL This procedure was repeated for all runs. Error trials were excluded
in the matrix of 8 weights.

First, we computed representational similarity matrices (RSMs) for
each ROI. Using Pearson correlations of voxel 8 weights across voxels
within the ROI, these RSMs measure how similar the pattern of activity
evoked by each condition is to the pattern of activity evoked by every
other condition. To test the within-subject reliability of these 8 weights,
we used the cross-validation procedure of splitting the data in two halves
(odd and even runs). For each set of runs, the B weights were averaged
separately for each condition and voxel. For each voxel, the average 8
weight was normalized to a mean of zero by subtracting the mean (3 value
across conditions from the B value of each condition in that voxel (Haxby
etal.,2001). Pearson correlations (r) were computed between the pattern
of B’sacross voxels in each condition during odd and even runs, resulting
in a 72 X 72 asymmetrical RSM, and then Fisher transformed to yield a
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similarity metric with a Gaussian distribution. A second, nonsplit sym-
metrical RSM, obtained correlating conditions averaged across all runs,
was calculated to visualize the similarity structure of the activity patterns
for all 72 conditions (or separately for the 54 conditions during grasping
and the 18 conditions during passive viewing) in each ROI using multi-
dimensional scaling (MDS) transformation. To do so, for each ROI the
nonsplit RSM was averaged across participants and subjected to MDS
(using the Matlab function mdscale, which performs nonmetric MDS for
two dimensions with the squared stress criterion) to generate 2D repre-
sentational plots. To enable direct comparison between regions, all the
MDS plots were created using the same scale for all regions. While non-
split RSMs, which have r = 1 along the diagonal because the correlations
are based on the same data, are necessary for MDS plots shown in Figures
3 and 4 (because a given condition must be zero distance from itself), the
split RSMs do not artificially inflate the similarity of same-condition
correlations relative to between-condition correlations and were used in
the following steps of the analyses. To test whether each region contained
information about condition differences, we measured correlations be-
tween the RSM in each region and a model that contrasted diagonal
versus off-diagonal cells. This provides a test as to whether voxel patterns
show higher similarity between identical conditions than between differ-
ent conditions. Because correlations in all regions were significant (p <
0.05), we proceeded with testing specific models as described below.

Second, we tested how well the representational data in each ROI
could be explained by models based on the similarity between motor
attributes (grasping tasks) and/or visual attributes (grasping and passive-
viewing tasks). Although the investigation of grip type classically includes
Coarse 5 (also called Power grip, when applied to elongated objects, or
Whole-hand grasp) and Precision 2 (for review, see Castiello, 2005), here
we also included a third type, Precision 5, in which participants used all
five digits, but not the palm, to grasp an object precisely. This enabled us
to test whether the relevant dimension was the number of digits involved
(Digit Model), or the amount of precision required (Precision Model).
Neurophysiological studies have found neurons selective for elongated
and flat objects in the macaque cIPS (Sakata et al., 1998), which provides
input to the AIP and which may have a human homolog (Shikata et al.,
2008). Moreover, elongation may influence human sensorimotor pro-
cessing (Fang and He, 2005; Sakuraba et al., 2012). To test whether these
3D properties were coded in the human brain, we created the Elongation
Model contrasting flat, isotropic, and elongated objects. We also created
the Shape Model to test whether the geometrical shape (rectangular or
square) of the object was represented during grasping and/or during
passive viewing. Finally, we created the Size Model to test the represen-
tation of the object’s size along the grasped dimension, shown to be
relevant during grasping (Ganel and Goodale, 2003). These models are
not exhaustive for all possible dimensions in the stimuli. Indeed, some
dimensions can be derived by the combination of the aforementioned
models; for example, the aspect ratio of the stimuli is a combination of
object elongation and size, as the bar and cylinder have a different aspect
ratio depending on size, while aspect ratio remains constant for a disk,
plate, sphere, and cube of different sizes. We also did not explicitly test
the effect of the object’s volume (i.e., which would determine its weight)
because our participants did not lift the objects and because the effects of
this variable have been carefully examined previously (Gallivan et al.,
2014).

Specifically, in the RSMs for grasping (54 X 54) and passive viewing
(18 X 18), we tested five models (see Fig. 5). Motor models during
grasping tasks were as follows: (1) Precision Model: regardless of object
properties, the two grips that require precision (Precision 2 and Precision
5) are represented similarly to each other but differently from the less
precise Coarse 5 grip; (2) Digit Model: regardless of object properties, the
two grips that use five digits (Precision 5 and Coarse 5) are represented
similarly to each other but differently from the grip that uses two digits
(Precision 2). Visual models (tested separately during grasping and dur-
ing passive viewing) were as follows: (1) Shape Model: regardless of grip
and other visual properties, square objects (plates, cubes, and bars of all
sizes) are represented differently from round objects (disks, spheres, and
cylinders of all sizes); (2) Size Model: regardless of grip and other visual
properties, objects are represented similarly based on the size of the
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dimension to grasp; small, medium, and large objects are differently
represented; (3) Elongation Model: regardless of grip and other visual
properties, objects are represented similarly based on their elongation
[e.g., flat objects (square plates and round disks) are represented simi-
larly to each other but differently from isotropic objects (cubes and
spheres) and elongated objects (cylinders and bars)].

To assess each code, we computed the Spearman correlation between
the individual Fisher-transformed split RSMs and each model and plot-
ted the results for all regions during grasping and passive viewing. We
then used ¢ tests to determine whether these correlations were signifi-
cantly >0 within each ROI and corrected the p values for the number of
models tested within a region [during grasping, p < 0.010 (0.5/5 models);
during passive viewing p < 0.016 (0.05/3 models)]. The results are shown
with markers in Figures 6 and 7. Next, to compare the strength of signif-
icant models in a region, we computed pairwise f tests (noncorrected p <
0.05) between all models within each region and showed the models that
provided a significantly better fit of the data with filled markers in Figures
6and 7. To estimate the maximum correlation value expected in a region,
given the variability across subjects for each region, we computed the
noise ceiling by using aleave-one-out approach correlating each subject’s
RSM with the average RSM of the other subjects’ RSMs (for a similar
approach, see Bracci and Op de Beeck, 2016). The resulting correlation
values are shown with the dotted line in Figures 6 and 7. Since the noise
ceiling indicates how consistent the RSMs are across participants, a high
noise ceiling indicates highly consistent patterns of correlations within
that region across participants, while very low values of the noise ceiling
indicate high variability in the RSM between participants within that
region. Therefore, the performance of the models should be interpreted
with caution in a region where the noise ceiling is low because in that
region data are not very consistent between participants.

Third, we used two techniques to visualize the similarity of represen-
tations between the 12 ROIs. Because of the possibility that regional
similarities differed between grasping and passive-viewing tasks, they
were examined separately (on a 54 X 54 condition matrix for grasping
and an 18 X 18 condition matrix for passive viewing). Spearman corre-
lations were computed between the split odd—even RSM of each region
and every other region, producing a symmetrical 12 X 12 RSM for the
grasping task and another one for the passive-viewing task. MDS was
applied to these 12 X 12 RSMs to produce a 2D plot showing the simi-
larities between the representations in the 12 ROIs during grasping (see
Fig. 8b) and passive viewing (see Fig. 9b). These RSMs were also used to
create hierarchical cluster plots (using the weighted distance criterion of
the Matlab function linkage).

Searchlight analysis. To test whether our ROI analyses may have missed
additional areas that code the visual and motor attributes we examined,
we performed, with custom-made Matlab scripts, a whole-brain search-
light RSA, using a 15-mm-diameter sphere on each individual brain
(Kriegeskorte et al., 2006). For each model (see Fig. 5), a second-level
analysis was performed to generate t maps showing voxels where the
correlations between the individual RSM and the model were statistically
>0. The resulting t maps were thresholded at t > 3.4 (p < 0.005) with a
cluster correction using a Monte Carlo simulation method (Forman et
al., 1995) performed with the function AlphaSim in NeuroEIlf (http://
neuroelf.net/).

Results

Representational similarity between all 72 conditions within
each ROI

Figure 2 shows the 72 X 72 RSMs for each of the 12 ROIs. Each
point in the matrix represents the similarity of the neural code
evoked by one condition during the odd runs with that evoked by
another condition during the even runs. Warmer colors indicate
the conditions that evoked more similar patterns of activity in the
ROL. Structure in the matrix reveals the representational geome-
try of the neural code. For example, the fine checkerboard pattern
apparent in the V1 RSM data indicates strong similarity (red
squares) between bars, cubes, cylinders, and spheres (nonflat ob-
jects), when these objects were grasped with the similar degree of
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spatial patterns in the region during odd and even runs. The data were split in odd and even runs, and thus noise may make the matrix
asymmetric.
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(corresponding to conditions where ob-
jects were grasped using Precision 5). Vi-
sual inspection of all the RSMs reveals that
the strongest similarity in most of the re-
gions is between conditions within the
same task modality (i.e., within passive
viewing and within the three grasping
tasks). Conditions within different task
modalities (i.e., passive viewing vs grasp-
ing) share very low similarity, particularly
in motor (M1), somatosensory (S1), and
high-level sensorimotor (PMd/v and
alPS) regions. Although the RSMs do not
show a striking difference between the di-
agonal cells compared with off-diagonal
cells, two considerations are important.
First, RSMs are often generated using
nonsplit data, where correlation values
along the diagonal must be 1 (because the
data are fully correlated with the same da-
ta); however, here we preferred to show
the split data (with correlations between
even and odd runs) because they do not
artificially exaggerate the diagonal corre-
lations and thus provide a better estimate
of the maximum correlation that could be
expected. Second, as our data will show,
most regions do not exclusively represent
only one combination of object and task
(as would be found along the diagonal)
but rather a combination of attributes. To
visualize the major aspects of the organi-
zation of these condition groupings, 2D
MDS plots of representational spaces are
shown for each of the 12 ROIs in Figure 3.
Although the group data are shown on the
inflated surface of one individual’s left
hemisphere, the analyses were based on
ROIs extracted separately for each indi-
vidual. The distribution of the icons in an
MDS plot represents the neuronal simi-
larity between conditions in the specific
region: the closer together the icons are,
the more those conditions are similarly
represented in the specific brain area. By
contrast, the farther apart the icons are,
the more their neuronal representation is
distinct. This way of plotting the correla-
tions between the experimental condi-
tions allows visualization of similarities
and differences among our 72 conditions
in a data-driven approach, since the MDS
plot groups the data without any assump-
tion about categorical organization. It is
worth emphasizing that these MDS plots
qualitatively show only the two dimen-
sions that account for the most variance in
the data. Although the inclusion of addi-

precision (Precision 2 and Precision 5). Note that this pattern of  tional dimensions would account for more of the variance, they
similarity is also shown in the MDS plot for V1 in Figure 3, where  are also more difficult to visualize and interpret (as our own
green icons for bars, cubes, cylinders, and spheres (correspond-  inspection of 3D plots revealed). Importantly, our quantification
ing to conditions where those objects were grasped using Preci-  and statistical testing of various models (presented below) relies
sion 2) overlap with orange icons for the same objects on the full (N-dimensional) data.
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pIPS

The random-effects contrast among all conditions and baseline projected onto the inflated cortical surface (sulci, dark gray; gyri, light gray) of the left hemisphere of a representative

participant, thresholded at false discovery rate-corrected p << 0.05. Lines on the inflated brain localize key sulci. From each region, the MDS plots indicate the similarities of the representations
evoked in 2D space by the 18 objects (indicated by icons) during passive viewing (red) and grasping in the Precision 2 (green), Precision 5 (orange), and Coarse 5 (blue) conditions. Across regions,
the spatial organization of the icons shows a clear separation of the red icons from the other icons, indicating that the neuronal representations differ between passive-viewing and grasping
conditions. This grouping based on task is particularly strong in M1, where it swamps any differences based on other dimensions of the data, and weaker in V1, where data representations are also

affected by object elongation.

Visual inspection of MDS plots reveals that data are orga-
nized based on object dimensions (such as clustering based on
object elongation) and task types (as indicated by color group-
ings). This organization varies across regions. The MDS plot
in M1 reveals a strong distinction between passive viewing and
the three grasping tasks. The MDS plot for SI is similar, but
with some added distinctions among the three grasping tasks.
Pronounced differences among the grasping tasks and passive
viewing are also seen in premotor cortices (PMd and PMv),
anterior areas within the posterior parietal cortex (aIPS, mIPS,
pIPS) and the posterior middle temporal gyrus, and to a lesser
degree in SPOCs (aSPOC and pSPOC), the LOC, and V1.
Within V1, in addition to task differences, effects of object
elongation are also apparent. Elongation effects are also ap-
parent in other regions. The spatial organization of object
properties in relation to the specific task differs among re-
gions, indicating different sensitivity for different stimulus
dimensions across regions. To better visualize the effect of
object properties within each task modality, we created MDS
plots separately for grasping and passive viewing. Figure 4
shows that during grasping, motor areas like M1, S1, and the
PMyv represented conditions based on the type of action, as
indicated by the grouping of icons based mainly on their col-
ors. In contrast, the MDS plots in the remaining regions re-
vealed grouping based on both object properties and type of
action. During passive viewing, groupings were less clear as
the icons were generally more scattered, with the exception of

M1 and S1 where there is no clear distinction between icons. In
the remaining regions, elongated objects tend to group sepa-
rately from the others.

Representation of visual and motor information in each ROI
separately during grasping and passive viewing

To quantify the degree to which the spatial organization
shown in Figure 4 reflected the representation of object prop-
erties, of the specific task, or both, we tested the extent to
which specific theoretical models correlate with the neural
data. In particular, we computed correlations between the
split RSMs for each participant and three visual models, where
object elongation, size, and shape were represented regardless
of the task, and three motor models, where the degree of pre-
cision and the number of digits used to grasp the object were
represented independently of object properties (Fig. 5; see
Materials and Methods). Because the MDS plots in Figures 3
and 4 show that each region represents information differently
during grasping versus passive viewing, we analyzed the data
first for the three grasping tasks combined (56 X 56 matrix)
and later for the passive-viewing condition (18 X 18 matrix)
alone. For the grasping data, we tested both motor models
(Precision and Digit models) and all three visual models
(Shape, Size, and Elongation models); for the passive-viewing
data, only the visual models were tested.
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From each region, the MDS plots indicate the similarities of the representations evoked in 2D space by the 18 objects (indicated by icons) separately during grasping (first row: Precision

2, green; Precision 5, orange; Coarse 5, blue) and passive viewing (second row: red). Note that in MDS plots, the orientation of the axes can vary; that is, similar attributes may be coded in an area
during grasping and passive viewing, but the plots may have different layouts. For example, the aSPOC shows a grouping by elongation during both tasks, but the layout is opposite (elongated

objects appear on the left for grasping and on the right for passive viewing).

Grasping tasks

As expected from our factorial design, the patterns within RSMs
from many areas could be accounted for by multiple models.
Indeed, in most regions (except the aSPOC), >1 model per-
formed significantly better than chance (r = 0, p < 0.01), as
indicated by round markers in Figure 6 (Table 2). Filled markers
in Figure 6 show models that provided a significantly better fit of
the data than other models (based on pairwise comparisons be-
tween all models within each ROL; p < 0.05).

Across regions, we found that Elongation and Digit models
explain the data better than the Shape, Size, and Precision mod-
els. The strength of each model’s coding was compared with the
noise ceiling, representing an estimate of the maximal coding
strength observable, given the degree of noise in the data, the
lower bound on the noise ceiling (Nili et al., 2014; see Materials
and Methods). In general, the Elongation and the Digit models
were the only models that approached or exceeded this noise
ceiling, suggesting that these models perform about as well as
could be expected given the variability in the data across partici-
pants. Different levels of the noise ceiling across regions indicate
that the neural representation is more consistent across partici-
pants in primary visual, motor, and somatosensory areas than in
the remaining regions. Given these different levels of noise ceiling
among regions, we statistically compared models within but not
among regions.

Areas demonstrated a gradient from visual to visuomotor to
motor coding, with only visual and only motor sensitivity in early

visual and motor areas at the extremes of the gradient, and both
visual and motor sensitivity in ventral-stream and dorsal-stream
areas. Specifically, in V1, as well as the aSPOC and the pSPOC, the
visual Elongation model explained the data significantly better
than all the other visual and motor models. By contrast, in M1,
S1, and the PMyv, the motor Digit Model was significantly stron-
ger than all the other motor and visual models. The Digit Model
as well as Shape and Elongation showed comparable significance
in the aIPS. This visuomotor sensitivity in the alPS and exclusive
motor sensitivity in the PMv confirmed our predictions, suggest-
ing that the aIPS combines object properties into the specific
hand configuration, while the PMv codes motor aspects of the
grasping task. In line with our last hypothesis, we found similar
sensitivity in ventral-stream and dorsal-stream regions during
grasping, showing coding of both object elongation and number
of digits in the pM TG, the LOC, the pIPS, the mIPS, and the PMd.
Beyond object elongation and the number of digits, the PMd and
the pMTG also coded object size, while the pMTG also coded the
amount of precision used to grasp the object.

Passive-viewing task

Although we were primarily interested in analyzing the factors
contributing to neural representations during grasping, the
passive-viewing condition provides a valuable way to measure
whether visual information is differently processed when no ac-
tion is required. Notably, given that the vast majority of neuro-
imaging studies of object recognition have used 2D images (or
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occasionally 3D simulations), here we can
investigate the coding of real objects in the
human brain, as has been done previously
in the macaque (Schaffelhofer et al.,
2015). There are both theoretical and em-
pirical reasons to expect that the represen-
tations of real objects may differ from
those of visually matched images. Theo-
retically, real objects are visually richer
(including for example multiple and con-
sistent cues to 3D structure) and afford
genuine actions (and adults never attempt
to grasp objects in images, although in-
fants may; DeLoache et al., 1998). Empir-
ically, recent fMRI data suggest that both
the ventral and dorsal streams process real
objects differently from visually matched
photos. Specifically, while passive viewing
of 2D photos elicits adaptation in ventral
and dorsal streams, the effect was weak or
absent for real objects (Snow et al., 2011).
Critically, ongoing work from our labora-
tory finds substantial differences in the
representations (based on RSA) of real
objects compared with visually matched
photos (Snow et al., 2015).

Thus to examine the representations
of real objects, we measured the similar-
ity between the visual models (Fig. 5)
and the individual RSMs in each region
during passive-viewing conditions. The
resulting correlation averages across par-
ticipants are shown in Figure 7, where
models that performed significantly bet-
ter than chance are shown with round
empty markers, as in Figure 6 (Table 3).
Notably, the absence of filled markers in Figure 6 indicates no
statistical difference between models.

Overall the representation of object properties during passive
viewing followed a similar gradient as during grasping, with visual
properties of the object represented exclusively in visual and parietal
areas, except for object elongation in M1. Interestingly, during pas-
sive viewing the representation of visual information changed com-
pared with the reported sensitivity during grasping. Indeed, visual
areas represented object elongation and shape at the same strength in
V1, the pMTG, and the pSPOC. Thus, visual areas no longer showed
a strong preference for object elongation. By contrast, the LOC and
the aSPOC coded object shape only, while the mIPS and M1 coded
only object elongation. The LOC, aSPOC, pIPS, aIPS, PMd/FEF, and
S1 lost their sensitivity for object elongation observed during grasp-
ing. The fact that most of the models did not exceed the noise ceiling
indicated that the neural representation of the visual models during
passive viewing was variable across participants. The noise ceiling
around zero in the pMTG and M1 indicated that the amount of
information contained in these regions is highly variable across par-
ticipants, reaching chance level if some participants are excluded.

GRASPINC

GRASPING

PASSIVE VIEWING

Figure 5.

Representational similarities across regions

To more formally evaluate similarities in the neural code across
different regions, we computed the structure of representational
similarity among ROIs. We used their RSMs to create a hierar-
chical cluster plot and a 2D MDS plot. Given the observed differ-

Precision Model

Shape Model

Shape Model

- ] ] I | ]

The motor and visual models tested. For each model, each of the 72 X 72 cells (ordered as in Fig. 2) is color coded to
show which conditions are expected to be most similar (green) or dissimilar (red). Each model was correlated with the RSM for each
area (Fig. 2) to derive the graphs in Figures 5 and 6. For grasping trials (lower right 56 XX 56 region of the matrix), both motor and
visual models were tested. For passive-viewing trials (upper right 18 XX 18 region of the matrix), only visual models were tested.
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ences in processing pathways for grasping and passive-viewing
tasks, we analyzed these tasks separately.

Grasping task

Both panels in Figure 8 show that similarities among brain re-
gions form two main groups during grasping: motor areas S1,
M1, PMd/FEF, and PMv group together and separately from the
remaining regions. The second cluster contains early visual and
ventral areas during grasping. Interestingly, dorsal-stream re-
gions pIPS, mIPS, and alIPS are also part of this latter cluster,
suggesting that these regions share information with visual areas.
This gradient of information can be visualized along the x-axes of
the MDS plot where areas are organized along the aforemen-
tioned visuo-to-motor gradient. While the main findings can be
observed in both plots (e.g., S1, M1, PMd, and PMv are part of the
same group based on their neuronal similarity), small inconsis-
tencies between the two plots (e.g., S1 and M1 share a lot of
similarity in the hierarchical plots, and less in the MDS plot) can
be related to different assumptions: while the hierarchical plots
assume the presence of a structure in the data, the MDS plot does
not rely on this assumption (Nili et al., 2014). The clusters
showed in Figure 8 is in line with the significant models shown in
Figure 5, indicating that the cluster formed by S1, M1, and the
PMv could reflect the exclusively motor sensitivity of these re-
gions for the motor aspects of the grasping task, in particular for
the number of digits and the grip type. The cluster formed by the
remaining regions might reflect the common sensitivity for visual
information, which, depending on the extent of this common
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Figure 6.  Average correlations between individual RSMs and the visual (cold colors) and motor (warm colors) models across ROls during grasping tasks. Round markers indicate models
significantly different from zero ( p corrected for the number of models; p << 0.010). The strongest models, resulting from post hoc pairwise comparisons within each ROI ( p << 0.05) are shown with
filled markers. A single filled marker in an ROl indicates a winner-take-all patterns, whereas multiple empty markers indicate multiple neural codes of a similar strength. The black dotted line shows
the lower bound on the noise ceiling—an estimate of the maximal coding strength expected given the measured noise in the data. Error bars show the SE.

Table 2. p values resulting from t test versus zero during grasping”

ROl name
Model name v1 pMTG LOC pSPOC aspoC plPS mIPS alPs PMd/FEF  PMv M1 S1
Digit Model 0.0006°  0.0088°  0.0079°  0.0730 0.1105 0.0002°  0.0066°  0.0001°  0.0080° 0.0033°  0.0033°  0.0004°
Precision Model 0.0017° 00095  0.0167 0.0010° 00572 0317 0.0368 0.0337 0.1598 0.0625 0.2100 0.0010°
Shape Model 0.0478 0.2345 0.019 0.0343 02736 0.1419 0.1280 0.0007°  0.0140 0.0368 0.0936 0.0075°
Size Model 0.0037°  0.0020°  0.0418 0.0013°  0.0446 0.0344 0.0413 0.0142 0.0070° 0.0277 0.1630 0.0550
Elongation Model ~ 0.0009°  0.0001°  0.0007°  0.0038°  00000°  00027°  0.0007°  0.0087°  0.0004° 0.0177 0.0025°  0.0002°

“Results of t test for each model in each ROl during grasping.
bSignificant p values (p corrected for the number of models; p < 0.010).

sensitivity, creates the subgroups of primarily visual areas (V1,
pSPOC, aSPOC, LOC, and pMTG) and both visual and motor
areas (aIPS, mIPS, pIPS).

Passive-viewing task

Figure 9 shows that neural similarities among brain regions form
two main groups during passive viewing: motor areas S1, M1, and
PMv group together and separately from the remaining regions.
The second cluster contains early visual and ventral areas. Similar
to results during grasping, dorsal-stream regions pIPS, mIPS,
aIPS, and PMd/FEF are part of this latter cluster, suggesting that
these regions shared similar information with visual areas during
passive viewing.

Because most of the regions that group together in the cluster
analysis, like S1 and M1, are also anatomically close, one could
argue that Figures 8 and 9 reflect not representational similarity
but physical proximity. We do not think this arises from artifacts
related to physical proximity (for example if noise followed a
gradient) as these would not be expected to produce the intuitive
findings here (for example, the dominance of visual models in
visual areas and motor models in motor areas) nor the different
inter-regional similarities found for grasping and passive view-
ing. Rather, the effect of physical distance likely arises from a
fundamental principle of brain organization: brain regions with
similar function evolve and develop to be physically close to min-

imize the amount of “wiring” (white matter fibers) that connects
them (Van Essen, 1997). Such patterns are often observed in
anatomical and functional connectivity studies (Young, 1992)
and this is found across diverse methods from tract tracing in
nonhuman primates to resting-state connectivity in humans. By
such an account, representational similarities are better ex-
plained by connectivity than physical proximity per se (although
connectivity and proximity are closely related). For example, in
our data, M1 and S1 group separately from the other areas, which
is consistent with their position in the sensory-motor hierarchy,
rather than appearing “between” parietal and frontal areas, as
they are in terms of physical location.

Searchlight analysis

To test whether the ROI analysis may have missed regions that
code the visual and motor attributes we examined, we ran a
whole-brain searchlight RSA during grasping and passive view-
ing. Since Precision and Shape models did not survive cluster
correction, only the  maps of the remaining models are shown in
Figure 10.

Although the searchlight (Fig. 10a) identified similar coding
during grasping as the ROI analysis, there were also some differ-
ences. Both approaches showed that the predominant visual
model was Elongation, though the searchlight revealed that size
coding also accounted for data in early visual areas. In fact, the
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Figure7.

Average correlations between individual RSMs and the visual models across ROIs during passive viewing. As in Figure 5, markers indicate models that significantly differ from chance

(p corrected for the number of models; p << 0.016). As in Figure 5, filled markers would indicate models that have stronger coding than others within that ROI. An absence of filled markers indicates
no statistical difference among significant models. The black dotted line shows the lower bound on the noise ceiling—an estimate of the maximal coding strength expected given the measured

noise in the data. Error bars show the SE.

Table 3. p values resulting from t test versus zero during passive viewing“

ROl name

Model name Vi pMTG Loc pSPOC aspPocC

pIPS mIPS alPS PMd/FEF PMv M1 1

0.0147°
0.6809
0.0467

0.0056°
03167
0.0041°

Shape Model 0.0025° 00137 0.0011°
Size Model 0.0672 0.1380 0.0181

Elongation Model 0.0093° 0.0151° 0.0403

0.0418
0.0593
0.0617

0.2970
0.2724
0.0096°

0.1795
0.3451
0.0392

0.2065
0.5985
0.1289

0.2904
0.1564
0.3390

0.1291
0.5013
0.0080°

0.7578
0.3789
0.1113

“Results of t test for each model in each ROI during passive viewing.
bSignificant p values (p corrected for the number of models; p < 0.016).
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Visualization of similarity of regions in their neural codes during grasping. a, Hierarchical clustering, which shows the hierarchically grouped regions with the most similar represen-

tations, indicated two broad clusters: one comprising motor—premotor areas and another comprising visual-parietal areas. b, A 2D MDS plot also showed two main groups, as seen in panel a
(left—right axis), and additionally showed that parietal representations fell between visual and motor areas.

searchlight revealed that elongation and size coding extended
beyond the putative-V1 (calcarine) and ventral-stream foci se-
lected for the ROI approach, to include the cuneus (where the
V1/V2/V3 process the lower visual field where our stimuli were
presented) and the superior/lateral occipital cortex (which in-
cludes midlevel visual areas, such as V3A). As with the ROI ap-
proach, the searchlight revealed that the Elongation Model
predominated throughout the IPS and in the motor cortex.

Moreover both approaches showed that the Digit Model was
more influential than the Precision Model [including in areas not
examined in the ROI analysis, such as the somatosensory area
(S2)] in the motor, somatosensory, premotor, and aIPS regions,
as in the ROI analysis, but also in the supplementary motor area
and regions surrounding the insula, including S2. Although an
effect of Digit and Elongation models appears on the superior
temporal gyrus and could include the auditory cortex, we suspect
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Figure9. Visualization of similarity of regions in their neural codes during passive viewing. a, A hierarchical clustering again indicated two broad clusters, one thatincludes M1, S1, and the PMv
and one thatincludes the PMd and visual-parietal areas. b, A 2D MDS plot also indicated two main groups seen in panel a (left—right axis), and additionally showed that parietal representations fell
between visual and motor areas, while the PMv is separated from other regions.
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Figure 10.  Results from the searchlight RSA. a, Group t maps showing significant motor and visual models during grasping. b, Group t maps showing significant visual models during passive
viewing. As in Figure 3, group results are rendered on the cortical surface of one individual participant.
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this is an artifact of the projection of volumetric group dataon a
cortical surface (such that insula S2 activation, which has a wide
spread based on the searchlight diameter, appears projected on
both banks of the Sylvian fissure). Alternatively, it may be that the
auditory cortex can decode the audio cues related to Digits; how-
ever, there were no such cue differences for Elongation condi-
tions, making attribution to S2 more plausible.

For passive viewing (Fig. 10b), the searchlight confirmed the
weak coding of object properties within regions identified in the
ROI analysis. During passive viewing, one might have expected
that the searchlight analysis would have revealed coding of object
properties in ventral-stream regions like the medial fusiform
gyrus, shown to code tool manipulability (Mahon et al., 2007).
Unlike Mahon et al., who used pictures of familiar objects, we
used real unfamiliar objects, so that their manipulability was not
based on prior experience.

In some cases, the searchlight found regions missed by the
ROI analysis, which is the benefit of whole-brain approaches over
ROTI analysis. In other cases, the ROI analysis revealed similarities
between the model and data that were missed by the searchlight.
This is to be expected as the searchlight analysis is less powerful
(more conservative) than the ROI analysis for two reasons: (1)
because of the required correction for multiple comparisons nec-
essary when considering voxels across the whole brain and (2)
because it is vulnerable to variations in the stereotaxic location of
functional areas across subjects.

To summarize, this study revealed that visuomotor sensitivity
across regions involved in grasping is mainly driven by the rep-
resentation of object elongation above object shape and size in
visual areas, and by the number of digits above grip type in motor
areas. Within this continuum, ventral and parietal regions repre-
sented visual and motor properties at a similar strength during
grasping. This reported sensitivity to object elongation is specific
to the grasping task as during passive viewing the representations
of object shape and/or size were represented together with object
elongation, indicating that the visual information about the ob-
ject is influenced by task demands in these regions.

Discussion

The way in which objects are manipulated is highly related to
their intrinsic properties. Here we used representational similar-
ity analyses to investigate which object properties (i.e., elonga-
tion, size, or shape) are most strongly encoded and whether this
information is coded together with motor aspects of the grasping
task (i.e., degree of precision or number of digits). Since the sim-
ilarity matrices revealed differences among conditions during
passive viewing and grasping in most of the regions, we will dis-
cuss below results separately during the two task modalities. Since
similar regions were identified using the searchlight and the ROI
analyses, we will focus the discussion on the results of the latter.

Visuomotor gradient during grasping

Based on their neural similarity, regions grouped in the following
clusters during grasping: one cluster included M1, S1, and the
premotor cortex (PMd/FEF and PMv) and one cluster comprised
visual areas (V1, LOC, pMTG) and parietal areas (aSPOC,
pSPOC, pIPS, mIPS, aIPS). To focus on the neural similarity
within regions of the same cluster, we discuss the two clusters
separately.

Motor and premotor areas code number of digits
Motor and premotor areas showed a clear preference for motor
coding in the grasping task, except for the PMd/FEF, where num-

Fabbri et al. ® Neural Coding of Object and Grasp Properties

ber of digits, object elongation, and size were represented to a
similar extent. The homologous macaque area, F2, is mostly
known to be involved in the transport phase of the reaching
movement (Caminiti et al., 1991), but it has also been shown to
be involved in grasping (Raos et al., 2004). Similarly, the human
PMd showed directional tuning as well as grip selectivity (Fabbri
etal., 2014) and adaptation for grasp-relevant object dimensions
(Monaco et al., 2014). Our results support the possible involve-
ment of the PMd in the continuous updating of the configuration
and orientation of the hand as it approaches the object to grasp
(Raos et al., 2004). S1, M1, and the PMv represented the number
of digits. In S1, this sensitivity probably reflects the somatosen-
sory stimulation elicited by different hand configurations. The
finding that the PMv represented the motor task but none of the
visual dimensions appears in contrast with object selectivity re-
ported in the homologous monkey area, F5 (Murata et al., 1997).
However, the covariation of object and grip type in that study did
not allow to distinguish between area F5’s role in coding grip and
its role in coding object. Indeed, studies disambiguating grip se-
lectivity and object type showed that the majority of neurons in
this area were tuned to grip type and not object orientation (Fluet
et al., 2010). Similarly, multiunit recordings in monkey area F5
found that it coded for grip type more than object orientation
(Townsend et al., 2011). The strong motor representation in the
PMyv and the existence of direct connections between this area
and M1 (Matelli et al., 1986) suggest a fundamental role of the
PMy in the generation of grasping movements. The representa-
tion of the number of digits in M1 probably indicates that the
index and the thumb are often used together to grasp, as well as all
digits of the hand, in line with a recent study showing that M1
represents the use of fingers more than the individual fingers or
their muscles (Ejaz et al., 2015). Our findings are in line with a
study showing higher activation in M1, S1 and the PMv during
Precision grip with three and five digits compared with two digits
(Cavina-Pratesi et al., 2007b).

Visual and parietal areas encode object elongation and
number of digits

V1, the aSPOC, and the pSPOC showed a clear preference for
object elongation above the other visual and motor aspects. This
sensitivity in V1 probably reflects different visual stimulation due
to different object elongations, as this area in known to be selec-
tive for line orientation (Hubel and Wiesel, 1959). Even though
the Elongation Model shows a winner-take-all pattern above all
the other models in V1, it is at first surprising that motor codes
were found in this area. In particular, Precision was coded more
strongly than the Number of Digits. However, since grasping was
executed in light, the two precision grasps led to a very similar
visual configuration with the hand high on top of the object in
both cases. It is likely that this visual similarity, more than a
motor code per se, explains the significance of the Precision
Model in V1. We found exclusive sensitivity to object elongation
also in the pSPOC and the aSPOC, which have been proposed to
be the human homolog of monkey area V6 and V6A, respectively
(Cavina-Pratesi et al., 2010). Even though area V6A is part of the
dorsolateral stream dedicated to the reaching component of the
reach-to-grasp action (Jeannerod, 1999), this area showed selec-
tivity for object type both during passive viewing and grasping
(Fattori et al., 2010, 2012). Consistent with these results, the
aSPOC showed adaptation for action-relevant features of the ob-
ject instead of the visual size during grasping (Monaco et al.,
2014). In light of these findings, the sensitivity for object elonga-
tion we found in the aSPOC might indicate that this specific
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dimension is important for the visual extraction of object affor-
dances and selection of wrist orientation, which is particularly
important for elongated objects. We measured similar sensitivity
in the pSPOC that correspond to monkey area V6, providing
visual information to the aSPOC through direct connections
(Galletti et al., 2001).

Differently from this winner-take-all pattern, the remaining
regions represented both motor and visual aspects of the grasping
task. In particular, in the pMTG and LOC, both visual and motor
dimensions were represented to a similar extent, suggesting that
object properties in these ventral regions are represented in rela-
tion to the grasping action. Previous studies also showed an in-
volvement of ventral-stream areas in visually guided grasping
(Culham et al., 2003; Cavina-Pratesi et al., 2010) and during
hand-movement tasks based exclusively on somatosensory input
(Fiehler et al., 2008). Recent studies also showed ventral-stream
regions representing action-related object features, like the
graspable dimension (Monaco et al., 2014) and object weight
(Gallivan et al., 2014). Overall, these results are consistent with
possible exchange of information between ventral and dorsal
streams that controls skilled grasps (van Polanen and Davare,
2015) through the anatomical connections, such as those be-
tween the pMTG and aIPS (Borra et al., 2008). The aIPS in our
study similarly coded number of digits, object elongation, and
shape, suggesting that sensitivity for the hand configuration in
this region is highly related to the object properties. These results
apparently contrast with a preference for Precision 2 compared
with Coarse 5 in previous univariate studies (Begliomini et al.,
2007). However, multivariate analysis is more sensitive to detect
representations distributed across voxels (Kriegeskorte et al.,
2006). Indeed, a multivariate study showed the possibility of de-
coding different grip types in the alPS (Di Bono et al., 2015). Our
results suggest that the distinction between grip types arises from
the number of digits more than the degree of precision required.
The representation of object elongation in the pIPS and mIPS,
along with the number of digits, agrees with neural selectivity for
flat or elongated objects reported in the monkey cIPS (for review,
see Sakata et al., 1997), a putative homolog of the human pIPS.

Changes in object representation during passive viewing

and grasping

The representation of object properties differed between passive
viewing and grasping. As expected by the specialized role of the
ventral stream in “vision for perception” (Goodale and Milner,
1992), we found representations of object elongation and shape
in V1 (and other low-level and mid-level visual areas) and the
PMTG, while object shape alone was coded in the LOC. Object
properties were also processed in parietal areas: object shape was
represented in the aSPOC, while object elongation was repre-
sented in the mIPS and M1, as well as in the pSPOC, together with
shape. Selectivity for object properties during passive viewing has
been also reported in macaque parietal regions cIPS (Sakata et al.,
1997) and area V6A (Breveglieri et al., 2015), probably reflecting
the extraction of object-appropriate grips. Interestingly, the aIPS
coded object shape and elongation during grasping but not pas-
sive viewing. Coding for object shape both in the aIPS and S1
might suggest sensitivity in the aIPS to different somatosensory
information during manipulation of square and round objects, in
line with the involvement of this area in integrating visual, sen-
sorimotor, and motor information (Lewis and Van Essen, 2000).
Object elongation was also coded in M1 during passive viewing,
potentially reflecting unexecuted associations with the appropri-
ate grasps.
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In conclusion, by orthogonally manipulating object proper-
ties and grip types, we identified the most strongly represented
visual and motor dimensions during grasping. In particular, we
found that object elongation was a relevant property of the object
to grasp, and that it was coded more strongly than size and shape
in various human brain regions. The preference for object elon-
gation during grasping but not during passive viewing might
reflect the importance of this dimension in determining the op-
timal grip type and wrist orientation. The representation of ob-
ject elongation, together the number of digits in both ventral-
stream and dorsal-stream regions, suggests that communication
between the two streams about these specific visual and motor
dimensions is relevant to the execution of efficient grasping
actions.
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