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Modern society requires individuals to
possess solid numerical skills to succeed in
everyday life (Gerardi et al., 2013). Under-
standing the cognitive and neural markers
of early numerical skills could provide
much needed information about the de-
velopment of long-term mathematical ca-
pabilities, and inform early intervention
for those at risk of mathematical learning
disability. In this regard, a longitudinal
approach can disentangle whether specific
brain networks and cognitive processes
are predictive, rather than the consequen-
tial effect, of mathematical achievement.

In a recent study published in The
Journal of Neuroscience, Evans et al. (2015)
investigated whether morphometric and
functional brain indices acquired from
children aged 8 years could predict their
respective longitudinal gains in numerical
skills. After assessing participants’ mathe-
matical skills, IQ, and reading compre-
hension, the authors acquired structural
and resting-state functional MRI data.
Assessments were repeated two or more
subsequent times during the children’s
development, acquiring data up to age 14
years in some instances. Rather than using
children’s scores in mathematical ability, the
authors calculated a measure of perfor-

mance change as the main outcome variable
in their study. To compute this change mea-
sure, for each child, the authors fit a linear
regression to the standardized scores of the
Numerical Operations subscale of the
Wechsler Individual Achievement Test-II
(WIAT-II; Wechsler, 2001) as a function of
age. This approach provided a measure that
captured each child’s change in perfor-
mance between testing sessions, which was
used as an explanatory variable within the
neuroimaging analyses. This enabled the
authors to identify the neural correlates
of a change in performance, rather than
those responsible for an absolute level of
achievement.

Evans et al. (2015) sought specificity to
identify brain regions involved in longitu-
dinal growth for numerical operation
skills, rather than other academic skills or
cognitive processes. This was achieved by
using two different scales to evaluate spe-
cific aspects of mathematical ability. One
scale featured mathematical problems
that were embedded in short stories. In
this instance, additional reasoning skills,
beyond pure calculation, are required to
solve each mathematical problem (Lucan-
geli et al., 1998). Conversely, the second
scale evaluated knowledge of calculation
algorithms and numerical symbols (e.g.,
x 9/x 3) and can be considered a purer mea-
sure of numerical skill. By controlling
for the first scale, the authors obtained a
neurocognitive measure of performance
change on the basis of numerical skill ac-
quisition, rather than improvements in

fluency with the language of mathematics
per se.

Informed by the results of a whole-
brain analysis, structural and functional
connectivity measures extracted from the
left ventrotemporal occipital (VTOC;
particularly the fusiform gyrus), posterior
parietal (PPC) and prefrontal (PFC) cor-
tices were shown to be correlated with
longitudinal gains in numerical abilities.
Gray matter volume in these regions was
associated with longitudinal growth of
numerical skills and not with mathemati-
cal achievement, reading, working mem-
ory, or IQ measures acquired at baseline.
Importantly, the association between gray
matter in this network and the growth in
numerical skills remained significant even
when measures of mathematical reason-
ing, word reading, and working memory
were statistically controlled. Similarly,
functional connectivity among these re-
gions was correlated with longitudinal gains
in numerical abilities, but not with mathe-
matical reasoning or reading. These results
were validated using machine learning,
wherein it was possible to define functions
that were predictive of the change measure,
based on gray matter volume in the VTOC,
PPC, PFC, and, separately, connectivity
metrics.

The left lateralised network described
by Evans et al. (2015) is consistent with
previous reports of typical cortical devel-
opment, where left PFC and PPC mature
earlier than the corresponding regions in
the contralateral hemisphere (Gogtay et
al., 2004). Moreover, the involvement of a
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predominantly left lateralized fronto-
parietal network in number cognition is
relatively well established (Moeller et al.,
2015; for review, see Matejko and Ansari,
2015). The balance of frontal to parietal
recruitment shifts as greater mathemati-
cal proficiency is achieved during child-
hood or, analogously, in adults following
mathematical training. Reduced activa-
tion in the frontal cortices is accompanied
by increased recruitment of parietal re-
gions, which may reflect less reliance on
resource-heavy computations requiring,
for example, working memory and atten-
tion, toward specialized numerical pro-
cesses computed within PPC (Matejko
and Ansari, 2015). Relatedly, fractional
anisotropy (FA) in the superior longitudi-
nal fasciculus (SLF), an association tract
that connects temporal and lateral PFC
through PPC, is correlated with greater
arithmetic skill in children (Tsang et al.,
2009), and changes in FA in the left SLF
following math tutoring parallel perfor-
mance gains in mathematical learning
(Jolles et al., 2015). FA in the inferior lon-
gitudinal fasciculus (ILF), an occipito-
temporal tract that is thought to support
consolidation of visual memories (Catani
et al., 2003), correlates with performance
in calculation, but not in mathematical
problem solving (van Eimeren et al.,
2008). Together, these data highlight that
brain indices consistent with the network
outlined by Evans et al. (2015) relate to
current mathematical ability and changes
in mathematical performance. Evans et al.
(2015) add to this literature by highlight-
ing that features of this network might
also be prognostic in this domain.

There is growing evidence for the util-
ity of baseline brain metrics to predict
learning outcomes. For example, Gryga et
al. (2012) demonstrated that initial cere-
bellar gray matter volume could predict
relevant motor performance outcomes, as
well as the amount of gray matter change
in other cortical regions, including M1,
after motor skill learning. Initial hip-
pocampal gray matter volume was corre-
lated with behavioral improvements after
short-term math tutoring (Supekar et al.,
2013). Likewise, midline occipito-parietal
gray matter volume was predictive of
learning rate when learning to juggle
(Sampaio-Baptista et al., 2014). While
these studies reflect relatively short-term
learning interventions, Qin et al. (2014)
demonstrated that fine-tuning of hip-
pocampal-neocortical circuits around ad-
olescence accompanies the transition to
mature strategies in arithmetic problem
solving. Such circuits were relatively un-

stable in participants aged 7–9 years, dur-
ing which time counting strategies, rather
than arithmetic facts, tended to be used.
The absence of any predictive role for the
hippocampi in Evans et al. (2015) may be
explained by heterogeneity in problem-
solving strategies adopted for the Num-
erical Operations subtest, and related
variability in hippocampal–neocortical
architecture at the initial time point. It
could also be that the protracted analyses
within their work preclude the relevance
of the hippocampi, where hippocampal
indices would be relevant for a more tran-
sient period.

Evans et al. (2015) demonstrate an en-
during role for neural features in future
learning outcomes, indicating that nu-
merical ability may reflect considerable
genetic predisposition. Indeed, in adoles-
cence, genetic factors explain over two-
thirds of the variance in FA in the parietal
and frontal lobes (Chiang et al., 2009).
Over half of the phenotypic variability in
children’s mathematical ability can be ex-
plained by genetic effects, where the de-
gree to which structural and functional
connectivity can be modified is likely to be
largely determined by genetics (de Zeeuw
et al., 2015). Nevertheless, recent data sug-
gest that brain stimulation, teamed with
mathematical training, may facilitate
plasticity over and above training alone,
allowing the possibility to enhance each
individual’s capacity to learn (Snowball et
al., 2013; Grabner et al., 2015). In addition
to acting as early biomarkers for learning
disability as Evans et al. (2015) suggest,
the potential for their approach to inform
neuroenhancement-based interventions,
and to measure the efficacy of such inter-
ventions (for example, by highlighting
achievement beyond an individual’s neu-
ral predicted level) is also worthy of note.

Evans et al. (2015) present a fronto-
parietal network comprising VTOC, PFC,
and PPC where brain indices extracted at
around 8 years of age were predictive of
longitudinal change in numerical skills.
Recent evidence suggests that this net-
work is likely to be supported by the SLF,
connecting PPC and PFC to support
domain-general and specialized numeri-
cal processes, and the ILF, an occipito-
temporal pathway responsible for visual
memory consolidation, which will be ac-
complished in part by the fusiform gyrus.
These data suggest what may be a some-
what unexpected fixedness in mathe-
matical ability, which is supported by
behavioral genetics. However, in addition
to directing early detection of learning
disabilities, their work is informative to

future research examining plasticity following
cognitive training, neuroenhancement, and
educational interventions.
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