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Oxytocin is a member of a neuropeptide
family with a well established role
modulating reproductive and social be-
haviors (Donaldson and Young, 2008).
Oxytocin is expressed in conserved
populations of neurons that release oxy-
tocin broadly throughout the brain
(Venkatesh et al., 1997; Ross and Young,
2009). Unlike oxytocin, the expression
of oxytocin receptor (OXTR) is remark-
ably variable, and further, associates
with species-specific behaviors. For ex-
ample, differences in expression of an
OXTR homolog in the lateral septum
are associated with variation in group
size preference between bird species
(Goodson et al., 2009). In another case,
monogamous prairie voles express more
OXTR in the nucleus accumbens com-
pared with promiscuous vole species
(Young and Wang, 2004). Prairie vole
pair-bonding requires OXTR activation
in the nucleus accumbens, and higher
individual levels of OXTR in this region
facilitate prairie vole bonding (Ross et
al., 2009b; Keebaugh et al., 2015; King et
al., 2016). Such comparative studies re-
vealed a critical aspect of oxytocin sig-
naling: the peptide acts on specialized
neural networks within a given species.
Marlin et al. (2015) recently investi-

gated the effects of oxytocin in the
context of mouse maternal behavior.
Dams respond to pup distress calls with
retrieval behavior. Virgin females do
not initially respond to pups, but can be
trained to respond as if they had pups
of their own. Oxytocin facilitates the ac-
quisition of this behavior. In an article
recently published in The Journal of
Neuroscience, Mitre et al. (2016) extend
these findings and detail the cellular
distribution of OXTR and the neuro-
physiological response to oxytocin.
These types of studies have been hin-
dered by a lack of reliable OXTR
antibodies (Yoshida et al., 2009). Over-
coming this limitation, Mitre et al.
(2016) designed a specific antibody for
the mouse OXTR, OXTR-2. Mitre et al.
(2016) compared OXTR-2 distributions
between sexes and reproductive states,
to identify regions where oxytocin may
act to influence maternal behavior. Fe-
males differed from males in only one
region, having more OXTR-2-positive
cells in the piriform cortex. Mothers did
not differ from virgins, suggesting the
naive-to-maternal transition may not
require a change in OXTR expression.
Within females, the left auditory cortex
contained more OXTR-2-positive cells
than the right, and the CA2 region more
than other hippocampal regions. There-
fore, the authors proposed that piri-
form cortex, left auditory cortex, and
hippocampal CA2 may be particularly
important for oxytocin-mediated ma-
ternal behavior. The left but not right

auditory cortex is required for retrieval
of isolated pups (Marlin et al., 2015).
Neither the piriform cortex nor hip-
pocampus have yet been studied in the
context of oxytocin-dependent pup
retrieval.

For the most part, the OXTR-2-positive
distribution reported by Mitre et al. (2016)
agrees with OXTR distributions in the
mouse obtained with receptor autoradiog-
raphy; the most commonly used method
to examine OXTR expression. Two recent
studies performed detailed analyses with au-
toradiography and are amenable for a cur-
sory comparison (Hammock and Levitt,
2013; Gigliucci et al., 2014). There are some
small discrepancies worth noting. For ex-
ample, the CA3 region is the only area of the
hippocampus reported to contain notewor-
thy levels of OXTR in the two autoradiogra-
phy studies. The medial amygdala and
paraventricular thalamus are two regions
with high OXTR binding density but no
OXTR-2 labeling. It is not clear why the dis-
crepancies between labeling techniques oc-
cur but future studies could benefit from a
consideration of all potential sites of oxyto-
cin modulation.

Using the specific OXTR-2 antibody to
perform electron microscopy, Mitre et al.
(2016) next characterized the subcellular lo-
cation of OXTR in the left auditory cortex.
In neurons, OXTR-2 immunolabeling ap-
peared at synapses and axons of passage.
Presynaptic and postsynaptic sites were en-
riched for OXTR, at both excitatory and
inhibitory synapses. Inhibitory synapses
were labeled at both dendrites and the soma.
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OXTR is poised to modulate both excitatory
and inhibitory synapses. Some of the
OXTR-2-positive synapses certainly belong
to inhibitory interneurons. In cortical areas,
some inhibitory interneuron cell bodies are
OXTR-positive (Nakajima et al., 2014; Mar-
lin et al., 2015). In the hippocampus, fast-
spiking interneurons respond to an OXTR
agonist (Owen et al., 2013). Some other
synapses may consist of terminals projecting
from other brain regions. For example,
OXTR in serotonergic terminals projecting
from the dorsal raphe nucleus modulates
nucleus accumbens activity in mice (Dölen
et al., 2013). Further work is required to
clarify whether specific cell types account for
any particular subcellular OXTR-2 labeling
patterns.

Several recent studies have shown
that oxytocin modulates inhibitory
transmission (Owen et al., 2013; Marlin
et al., 2015; Oettl et al., 2016). Mitre et
al. (2016) confirmed this effect in the
left auditory cortex. The authors mea-
sured IPSCs in pyramidal neurons after
providing local electrical stimulation in
vitro. Oxytocin caused a rapid (within
3– 6 min) decrease in IPSC amplitude,
after either a bath application or opto-
genetic release of endogenous oxytocin.
Similar levels of disinhibition were
seen in pyramidal neurons in the
piriform cortex and neurons in the
paraventricular nucleus of the hypo-
thalamus. Evoked excitatory currents
did not change after oxytocin treatment
in all three regions. Oxytocin-induced
disinhibition is a functional outcome
for local circuits in multiple brain
regions.

Oxytocin release in the left auditory
cortex during exposure to pups facili-
tates virgin retrieval behavior (Marlin et
al., 2015). Hypothesizing that oxytocin
produces plasticity that could mediate
this behavioral shift, Mitre et al. (2016)
tested whether oxytocin induces long-
term potentiation (LTP). In left audi-
tory cortex slices, the authors measured
EPSPs in response to local stimulation.
Within 20 min of oxytocin application,
both the initial slope of the EPSP and
probability of spiking had significantly
increased. In an in vivo preparation, the
authors made single, multiunit, and
whole-cell current-clamp recordings in
response to pure tones. Pairing oxytocin
with these artificial stimuli for 3 min in-
creased spiking frequency or EPSP am-
plitude. This result extends a previous
finding that oxytocin induces plasticity
in response to pup calls (Marlin et al.,
2015).

Mitre et al. (2016) suggest that corti-
cal disinhibition may account for the
oxytocin-dependent LTP they observed
in the left auditory cortex. Indeed, dis-
inhibition generally influences learning
and sensory processing in the context of
many circuits, behaviors, and modula-
tory systems (Letzkus et al., 2015). Ap-
plication of a GABA receptor antagonist
in the left auditory cortex produced
similar LTP as oxytocin, demonstrating
that disinhibition is sufficient for plas-
ticity independently of oxytocin (Mitre
et al., 2016). Essentially, disinhibition
allows local circuits to respond more
strongly, or with higher fidelity, to in-
coming information without additional
activation that could interfere with the
processing of that information (i.e.,
without generating noise). These short-
term changes in circuit behavior can
then promote longer-term plasticity in
regions like the cortex through mecha-
nisms such as spike-timing-dependent
plasticity (Mitre et al., 2016).

Oxytocin induces long-term changes
in the left auditory cortex when paired
with either a social (Marlin et al., 2015),
or nonsocial auditory stimulus (Mitre et
al., 2016). Oxytocin release therefore
determines coincidence between audi-
tory input and the priming of the cortex
for plasticity. Mammalian parturition
results in a large release of oxytocin, so
OXTR is active in a mother’s brain when
her pups arrive and emit their first
calls. This timing is important because
oxytocin signaling is required for even
mothers to acquire appropriate retrieval
behavior (Rich et al., 2014). Extracellu-
lar oxytocin occurs at small concentra-
tions that are difficult to measure (Ross
et al., 2009a), and thus little is known
about when and how much oxytocin is
released during innocuous social inter-
actions.

OXTR has been proposed as a thera-
peutic target for psychiatric disorders
involving social behavior, such as au-
tism spectrum disorder (Penagarikano
et al., 2015; Young and Barrett, 2015).
Clinical strategies should consider that a
major function of oxytocin is a short-
term enhancement of sensory informa-
tion processing, as shown by Mitre et al.
(2016) and others. For example, Modi
and Young (2012) proposed that OXTR
stimulation could be used in structured
programs to enhance the acquisition of
social skills.
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