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Psychosocial stressors induce autonomic nervous system (ANS) responses in multiple body systems that are linked to health risks. Much work
has focused on the common effects of stress, but ANS responses in different body systems are dissociable and may result from distinct patterns
of cortical–subcortical interactions. Here, we used machine learning to develop multivariate patterns of fMRI activity predictive of heart rate
(HR) and skin conductance level (SCL) responses during social threat in humans (N�18). Overall, brain patterns predicted both HR and SCL in
cross-validated analyses successfully (rHR � 0.54, rSCL � 0.58, both p � 0.0001). These patterns partly reflected central stress mechanisms
common to both responses because each pattern predicted the other signal to some degree (rHR¡SCL �0.21 and rSCL¡HR �0.22, both p�0.01),
but they were largely physiological response specific. Both patterns included positive predictive weights in dorsal anterior cingulate and cere-
bellum and negative weights in ventromedial PFC and local pattern similarity analyses within these regions suggested that they encode common
central stress mechanisms. However, the predictive maps and searchlight analysis suggested that the patterns predictive of HR and SCL were
substantially different across most of the brain, including significant differences in ventromedial PFC, insula, lateral PFC, pre-SMA, and dmPFC.
Overall, the results indicate that specific patterns of cerebral activity track threat-induced autonomic responses in specific body systems.
Physiological measures of threat are not interchangeable, but rather reflect specific interactions among brain systems.
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Introduction
Stressful experiences such as social threat lead to physiological
changes that are often adaptive (Cannon, 1935; Kemeny, 2003).
However, these changes have a pronounced impact on the brain
and body that can be harmful if stress experiences are chronic or
prolonged (Juster et al., 2010). Stress-related physiological
changes can be elicited by threats to social and physical well-being

(Campbell and Ehlert, 2012; Wager and Gianaros, 2014) and are
thought to contribute to cardiovascular disease (Everson-Rose
and Lewis, 2005), anxiety and depression (Uliaszek et al., 2012),
and other problems. Social threats are particularly pervasive
in modern society, so the basis for their effects on physiology is
important to understand. Although there are many studies of stress-
ful situations, relatively few relate brain activity to physiology di-
rectly (Wager and Gianaros, 2014) and, surprisingly, no prior studies
to our knowledge compare the brain correlates of multiple specific
autonomic and neuroendocrine responses directly. Such compari-
sons are needed to move beyond “stress responses” in the brain as a
unitary phenomenon and begin to link specific brain processes with
specific physiological measures (Levenson, 2014).

One reason for this gap in the literature is that theories of stress
have historically focused on commonalities in physiological re-
sponses because stressors are thought to drive responses in multiple
body systems in a coordinated fashion (Cannon, 1935; Taylor and
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Significance Statement

We show that threat-induced increases in heart rate and skin conductance share some common representations in the brain,
located mainly in the vmPFC, temporal and parahippocampal cortices, thalamus, and brainstem. However, despite these similar-
ities, the brain patterns that predict these two autonomic responses are largely distinct. This evidence for largely output-measure-
specific regulation of autonomic responses argues against a common system hypothesis and provides evidence that different
autonomic measures reflect distinct, measurable patterns of cortical–subcortical interactions.
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Epstein, 1967; Sze et al., 2010). For example,
preparing a speech under social evaluative
threat elicits increases in heart rate (HR),
skin conductance levels (SCL, a measure of
sweating), cortisol (Kemeny, 2003; Kud-
ielka et al., 2007), and other inflammatory
markers (Steptoe et al., 2007; O’Connor et
al., 2009). As a result, the most commonly
used autonomic measures such as HR and
SCL are often treated as interchangeable
measures of threat. Although HR is com-
mon in the stress literature, SCL and/or skin
conductance responses dominate in “fear”
conditioning studies (Phelps and LeDoux, 2005).

However, physiological responses in different somatic sys-
tems (e.g., responses in the heart, skin, and other organs) are
likely mediated by different patterns of interactions among brain
circuits (Jänig and McLachlan, 1992; Norman et al., 2014). Au-
tonomic measures are modestly correlated at best, even under
stress (r � 0.42– 0.54 in Lazarus et al., 1963; r � 0.36 – 0.60 in
Taylor and Epstein, 1967; r � 0.16 – 0.37 in Croft et al., 2004), and
HR and SCL load on different factors in multivariate analyses
(Cuthbert et al., 2000). This parallels findings of loosely coupled
pattern generators in brainstem autonomic systems in nonhu-
man animals (Jänig and McLachlan, 1992; Saper, 2002).

Therefore, whether stress-related autonomic changes reflect
activation of one coherent brain system or multiple patterned
responses is unclear (Levenson, 2014). The answer to this ques-
tion has important implications for health because responses in
different organs are differentially related to health risks. For ex-
ample, acute HR reactivity is a specific risk factor for cardiovas-
cular disease (Jennings et al., 2004).

In this study, we address the need to compare the brain pat-
terns related to different stress-related autonomic responses
measures by examining brain activity related to moment-by-
moment time courses of HR and SCL during social threat. We
expected physiology-related patterns to be distributed across
brain regions, requiring integration across multiple systems to
“capture” the physiological response; therefore, we used machine
learning to identify multivariate patterns optimized to predict
each of HR and SCL (both within and across participants). We
used cross-predictive accuracy (Woo et al., 2014; Chang et al.,
2015; Osher et al., 2016), similarity in multivariate predictive
maps (Woo et al., 2014), and local spatial similarity analyses
(Chikazoe et al., 2014; Haynes, 2015) to identify both common
and distinct cerebral correlates of HR and SCL. We expected to
find common predictors of both responses in central “threat ap-
praisal systems” detailed below.

Materials and Methods
Participants
Eighteen healthy, right-handed, native-English-speaking students (mean
age 21 years, 9 males) were recruited at Columbia University. Exclusion
criteria were a prior history of neurological or psychiatric illness or cur-
rent or prior psychoactive medication. Participants were asked to abstain
from tobacco and caffeine use for 24 h before scanning. All participants
gave written informed consent and the study was approved by the
Columbia University Institutional Review Board. This study is a reanal-
ysis of existing data (Wager et al., 2009a), but presents novel analysis
methods and conclusions.

Procedure and fMRI task design
Before scanning, participants were informed that during scanning they
would be given 2 min periods to prepare two different speeches mentally

(Fig. 1). The following instructions for these 2 speeches were given before
participants entered the scanner: (1) speeches should be 7 min long and
would be presented to 2 different audiences after the scanning phase: 1
speech would be given before a panel of professors and experts in the law
and business and the second would be scored by a computer analysis
program, latent semantic computer analysis (LSA), which is capable of
grading college-level essays (Landauer et al., 1998) ( pictures and biogra-
phies of panelists were shown); (2) the speech topics would be presented
during fMRI scanning; and (3) for control purposes, there was a small
chance that the prepared speech would not actually be given after the
scanning phase (no participants actually gave speeches).

As shown in Figure 1, after anatomical scans and baseline physiological
and brain data acquisition for 120 s, the first speech topic was presented
for 15 s on the screen and participants then had 2 min to prepare their
speech silently. After that, on-screen instructions (15 s) with the topic of
the second speech were presented. Again, participants were given 2 min
to prepare the second speech. After this, every participant was told that
they were randomly selected to not give a speech and asked to relax for
the remaining 2 min. This period was used to measure recovery and
deconfound effects of the social threat task from effects of habituation
and/or fatigue during scanning. The two speech topics were: “the effects
of interest rates on stock prices” and “the relationship between tariffs and
free trade.” These topics were selected based on data from a pilot study,
which asked a separate group of participants to rate their anticipated
anxiety to a number of possible topics (data not shown). Assignment of
the two topics and the two potential audiences (professors vs LSA) to the
first or second speech preparation period were counterbalanced across
participants.

During baseline, speech preparation, and recovery, participants were
visually cued every 20 s to provide a current subjective anxiety rating on
a continuous visual analog scale using an MR-compatible trackball (Res-
onance Technologies) with the right hand, ranging from “no anxiety” to
“extremely anxious.” These ratings were interpolated to the TR (2 s)
using linear interpolation. All in-scanner stimuli were presented by a
digital projection onto a screen placed in the scanner room. Stimulus
presentation was controlled by E-prime software (Psychology Software
Tools).

Data acquisition and analysis
HR was collected continuously during fMRI acquisition using photopl-
ethysmography (finger pulse) on the left index finger with a sampling
rate of 100 Hz. From those data, successive peaks were identified using a
custom algorithm identifying deviations from a moving average baseline
implemented in Matlab (The MathWorks, RRID:SCR_001622). The al-
gorithm identified deviations from baseline plethysmography using the
intensity and derivative of plethysmography waveforms after using mov-
ing average regression to adjust for baseline drift. This provided auto-
mated finger-pulse peak detection. The positions of the peaks were
reviewed manually and corrected by a coder blinded to conditions using
a systematic review process built into the software. HR time series were
calculated by taking the derivative of the peak-to-peak intervals, which
provides an estimate of instantaneous HR. The time series was down-
sampled to the TR (2 s) by averaging the HR within each TR, which also
provides some smoothing to reduce potential high-frequency artifacts.
Next, the entire time series was detrended linearly by regressing out linear

Figure 1. Task structure.
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time effects using the detrend function in MATLAB (detrend.m; The
MathWorks, RRID:SCR_001622). We did not perform any other high-
pass filtering apart from detrending. Finally, the entire time series for
each participant was transformed into z-scores to ensure that the predic-
tions across each physiological signal and across individuals would be on
the same scale.

Skin conductance data were collected with leads placed on the volar
surfaces of the first and third fingers of the left hand. SCL data were
acquired at 100 Hz, down-sampled to the TR by averaging within each
TR, subjected to linear detrending, and z-scored within each participant.

MR images were collected on a 1.5 Signa Twin Speed Excite HD scan-
ner (GE Medical Systems). Structural images were acquired using high-
resolution T1-spoiled gradient recall images for anatomical localization
and warping to a standard space (the MNI152 average brain). Functional
images were acquired with a T2*-sensitive EPI BOLD pulse sequence
(TR � 2000 ms, TE � 40 ms, flip angle � 60°) sensitive to blood-oxygen-
level-dependent (BOLD) magnetic susceptibility. For each participant,
266 brain volumes were obtained during the scanning run (24 ascending
odd/even interleaved slices, 3.4375 � 3.475 � 4.5 mm).

Functional images were subjected to standard preprocessing. First,
slice timing acquisition correction and realignment of the functional
images to correct for head movement were performed using FSL (FMRIB
Center, University of Oxford). Remaining preprocessing steps were per-
formed using the Statistical Parametric Mapping analysis package
(SPM2, Wellcome Department of Cognitive Neurology, London, UK,
RRID:SCR_007037). The realigned images from each participant were
coregistered to the anatomical space of the structural image. Structural
images were normalized to the Montreal Neurological institute (MNI)
template space (avg152t1.img). Finally, the normalized functional im-
ages were smoothed with an 8 mm Gaussian smoothing kernel to facili-
tate intersubject registration in group analysis. The first 4 images (8 s)
were excluded from analyses. To avoid adding any additional signal loss
of the fMRI signal, we did not apply any high-pass (or low-pass) filtering
to the data because our task design used a very low temporal frequency.
We also did not detrend the fMRI data for the analyses presented here
after additional analyses using detrended data showed no appreciable
impact on the results.

Predictive modeling analyses
To develop multivariate brain patterns predictive of autonomic nervous
system (ANS) signals, we trained a whole-brain pattern map to predict
standardized HR and SCL separately using principal components regres-
sion (Wager et al., 2013; Chang et al., 2015; and see below for more
details). We did this separately for each participant and made predictions
both about new physiological data from individualized (idiographic)
maps and about new individuals (between-subject, population-level
maps).

One of the main advantages of using a multivariate approach over the
standard univariate approach is that we can identify a unique configura-
tion of weights distributed throughout the brain that contribute inde-
pendently to the prediction of a physiological signal. This allows us to not
only assess how much variance in each physiological signal can be ac-
counted for by our multivariate brain representations, but also to exam-
ine which weights in the model contribute more to the prediction of one
signal relative to the other.

The basic premise of our prediction methods is to identify a distrib-
uted multivariate representation of a physiological signal. To accomplish
this, we use penalized principal components regression (Hastie et al.,
2005) to predict a standardized physiological signal using a vectorized
representation of all voxels in a 2 � 2 � 2 mm whole-brain mask. Because
there were more features (n � 352,328 voxels) for a given participant
than we had observations (n � 266 TRs), we performed a principal
components analysis decomposition of the brain data (within the cross-
validation loop; see below) to reduce the number of features in the model
and to estimate regression coefficients on distributed, coherent compo-
nent maps rather than voxels. This allows us to use a reduced number of
components that retain the full variance of the data to predict the phys-
iological time series. We use L-1 regularized regression to estimate the
model parameters (least absolute shrinkage and selection operator;

LASSO). These estimated � weights on the components are then back
projected into voxel space and then back into 3D space. This results in a
3D brain model that can be applied to new test brain data to return a
scalar value reflecting the predicted physiological response for a given
brain image using the dot-product method or spatial correlation (Wager
et al., 2013; Chang et al., 2015).

Our methods were optimized to account for several methodological
challenges (Fig. 2) such as auto-correlation of the continuous data (see
idiographic cross-validation below). To reduce the computational de-
mands for large amounts of RAM (matrix size � 4788 volumes * 352,328
voxels), we used a two-level training approach. Patterns were trained
separately for each participant (idiographic cross-validation) and then
combined at the group level by taking the average weight for each voxel
across participants (group-based cross-validation). Therefore, we used
two different types of cross-validation to train and evaluate the models.
All custom functions used for these analyses are publically available on
our GitHub repository �https://github.com/canlab/CanlabCore�.

Idiographic cross-validation. To account for autocorrelation in predict-
ing the HR/SCL time series, we used a cross-validation technique
developed for training forecasting models called rolling hvg-block cross-
validation, based on a suggested algorithm by Racine (2000). As shown in
Figure 2A, the idea is to denote a test set of v images, with a buffer of
images h collected just earlier and later from the training set so that
influences of the training data on test data due to autocorrelation are
minimized and independence of training and testing data are main-
tained. The training set is a set of g images collected just before and after
the h-image buffer with a fixed sample size to maintain a consistent
number of images in terms of asymptotic convergence. The selection of
training and test sets is “rolling” in the sense that hvg blocks successive
across time are constructed until every image is part of at least one test set.
Here, we excluded h � 5 images both before and after the test set to
account for autocorrelation; this value was chosen based on observations
that the strongest autocorrelation occurs within 5 images (with standard
TR values of 2 s as we have here), with little influence outside of that
window (Bullmore et al., 1996). Each test set consisted of v � 11 images
(one image per TR). The training set included g � 40 images before and
after the hold-out data chosen arbitrarily (although we do not expect
results to depend strongly on this choice, it could be optimized in future,
larger studies). These combinations of 40 � 5 � 11 � 5 � 40 images were
“rolled” across the dataset of 266 images without overlap of the test sets,
leading to 24 cross-validation folds. This resulted in using only 264 of the
266 TRs. To keep the size of the training and the test set equal across folds
and to be able to include the first and last 45 TRs in test sets, we moved the
test set along the data starting at the first TR. Therefore, the first fold
included, in order, 11 TRs for the test set (v), 5 TRs for the excluded
images (h), and 80 (40 � 40) TRs for the training set ( g ). The last fold
was formed in an equivalent way: 80 TRs for the training set, followed by
five TRs for the excluded images and 11 TRs for the test set. With this
cross-validation scheme, every image is used in the test set exactly once
and training and testing set sizes are equal across all folds.

Group based cross-validation. To assess how well the average group
map could predict a new participant’s ANS signals, we used a leave-one-
subject-out cross-validation procedure. For each test subject, we calcu-
lated a predicted physiological time series by applying the following steps.
First, in the training phase, we estimated each training participant’s in-
dividual weight map (not including the test individual). Then, we aver-
aged the training weight maps across training participants into a single
predictive map. Third, in the test phase, we applied the predictive map to
each volume of the test subject’s fMRI time series, calculating the spatial
correlation between the predictive map and each test image to generate a
predicted physiological time series. After estimating the test participant’s
predicted physiological response, we calculated the correlation between
the predicted and actual physiological time series. We repeated this pro-
cedure for each test (held-out) participant and report the average corre-
lation between predicted and actual time courses across all test subjects in
the cross-validation procedure (Fig. 2B).

Temporal considerations. Parasympathetic contributions to HR are
thought to be faster than the hemodynamic response function (HRF),
whereas sympathetic contributions are thought to have a lag more com-
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parable to the HRF (Berntson et al., 1997). Al-
though parasympathetic contributions have a
short time constant and can affect the lag of the
next heartbeat (e.g., within 1 s), sympathetic
influences generally occupy a lower-frequency
range within 0.05– 0.15 Hz (Berntson et al.,
1993; Berntson et al., 1997; Montano et al.,
2001), so sympathetic outflow has a time con-
stant of �4 – 6 s (Eckberg et al., 1985). There
are some potential differences in relative lag of
the fMRI–HR relationship across regions (Wa-
ger et al., 2009a), but these are small. Here, we
tested the influence of potential lags by retrain-
ing our multivariate models using varying lags
shifted 	1 to 	35 TRs.

Thresholding. The pattern maps encompass
voxels across the brain. To find the weights that
contributed most reliably to the overall HR/SCL
prediction across participants, we performed a
univariate one-sample t test on the pattern
weights for each voxel. This allowed us to test
whether each voxel’s contribution to predicting
ANS activity was significantly different from zero
across participants. We present the results of
these statistical maps thresholded using p�0.001
uncorrected for display. The mPFC was specifi-
cally of interest, given both previous human im-
aging work on correlates of autonomic responses
(Gianaros and Sheu, 2009; Beissner et al., 2013)
and recent work showing anatomical projections
from multiple medial PFC zones to the periph-
eral sympathetic nervous system in monkeys
(Dum et al., 2016). To control the familywise er-
ror rate, we additionally performed a nonpara-
metric permutation analysis using 5000 samples
(Nichols and Holmes, 2002; Maris and Oosten-
veld, 2007) with threshold-free cluster enhance-
ment (Smith and Nichols, 2009) in areas of the
mPFC that were specifically of interest to us. We
used the anterior and middle mPFC masks from
a recent three cluster meta-analytic parcellation
of the mPFC, which contained 6010 and
3054 voxels, respectively (de la Vega et al., 2016).
The ROI masks were selected a priori and are
publically available on neurovault �http://www.
neurovault.org/collections/1458/, RRID:SCR_
003806�. Cross-prediction analyses focus on the
predictions made by the entire cross-validated pattern and are thus not sub-
ject to multiple-comparisons concerns because only one test is performed.
As an additional way to localize analyses without requiring voxelwise multi-
ple comparisons, we also calculated spatial similarity with known resting-
state networks, described below.

Additional a priori regions of interest (ROIs). In addition to the predic-
tive analyses, we focused inferences about brain similarity on specific
ROIs based on previous work on autonomic generators in animal models
(Cechetto and Saper, 1990; Yasui et al., 1991; Saper, 2002; Price and
Drevets, 2010) and human work (Critchley, 2002; Gianaros et al., 2005;
Wager et al., 2009a; Beissner et al., 2013; Wager and Gianaros, 2014; Dum
et al., 2016) focusing on the medial prefrontal– brainstem axis. The most
reliable correlates of autonomic activity detectable using fMRI at this
resolution include increased activity (positive brain-autonomic correla-
tions) in dorsal anterior cingulate cortex (dACC) and periaqueductal
gray (PAG) and reduced activity in ventromedial PFC (vmPFC). We used
the anterior division of the cingulate gyrus dilated 5 mm from the
Harvard-Oxford Probabilistic Cortical Structural Atlas (Desikan et al.,
2006) and a manually drawn mask of the vmPFC.

Cross-modality prediction analyses. Validating autonomic responses on
other types of autonomic activity (e.g., correlating SCL with HR) as-
sumes that each signal results from a single underlying factor (stress or

arousal) plus noise. Validation using an external measure such as fMRI
can help determine whether responses to stressors or emotions result
from common or separable factors.

If cross-modality prediction (e.g., a model trained on HR tested on
SCL) is as strong as within-modality prediction (e.g., trained and tested
on HR), then there is evidence for a single common factor underlying
both measures. For example, if HR and SCL are equally good indicators
of “stress” and cerebral activity predictive of HR is caused by activation of
a unitary stress response, then both signals should be predicted equally
well by either an HR- or an SCL-related brain pattern. Within-modality
prediction can thus establish an upper bound on the amount of signal
that can be explained relative to the noise and provides an expected value
for the amount of variance that should be explained if both physiological
measures are equally good indicators of a single underlying construct.

Alternatively, if within-modality prediction is substantially stronger than
cross-modality prediction, that difference constitutes evidence against the
unitary factor model and suggests that each signal is measuring a separable
factor. For example, if each autonomic signal can only be predicted by their
respective brain patterns and there is no evidence of cross-prediction, then
each pattern is separately modifiable and indicates no degree of common
variance between the two factors (Bechara et al., 1995; Plaut, 1995; Sternberg,
2001). Therefore, cross-modality prediction analyses can allow us to make

Figure 2. Cross-validation methods: idiographic prediction: cross-validation within subjects using the rolling hvg method (A);
group based prediction: leave-one-subject-out cross validation based on the mean weights from the idiographic prediction (B).
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inferences about whether HR and SCL measure a single underlying response
to stress or distinct aspects of the stress response.

HR versus SCL weight map contrast. To investigate differences between
the pattern maps for HR and SCL independently of other brain areas, we
computed a difference map by subtracting the SCL-related map from the
HR-related map. This statistical difference map was then thresholded
using p � 0.001 uncorrected. We focused on dACC, vmPFC, and PAG.

Local spatial similarity analyses. To investigate whether each pattern
predictive of autonomic signals contained overlapping brain signals, we
conducted a local spatial similarity analysis. This entailed calculating the
spatial correlation between the two patterns for each participant using
a spherical searchlight with a 5 voxel radius. We then performed a
one-sample t test to determine which searchlight correlations were reli-
ably significantly different from zero across participants. The resulting
statistical map was thresholded using p � 0.001 uncorrected, focusing on
a priori ROIs. Therefore, inferences in regions not predicted based on
prior work are preliminary and we focus primarily on our strongly pre-
dicted ROIs.

Large-scale spatial pattern similarity analysis. In addition, we compared
the weight maps with seven known networks derived from a large sample
(N � 1000; Buckner et al., 2011) using spatial pattern similarity analysis.
We then computed point– biserial correlations between the networks
and the HR/SCL weights maps and t tests on Fisher’s transformations of
those correlation coefficients.

Results
Autonomic physiology
As reported previously (Wager et al., 2009a; Wager et al., 2009b),
the social threat task increased ANS measures reliably compared
with baseline. HR increased during speech preparation (post hoc
comparison for HR before vs during speech task: t(17) � 
6.04,
p � 0.001) and returned back to baseline after the stress (post hoc
comparison for HR during vs after speech task: t(17) � 0.74,
p � 0.47). SCL increased nonsignificantly during speech (post hoc
comparison for SCL before vs during speech task: t(17) � 
0.94,
p � 0.36) and decreased significantly after the stress (post hoc
comparison for SCL during vs after speech task: t(17) � 3.49, p �
0.003). HR and SCL were modestly but significantly correlated
across the entire time course (r � 0.23 	 0.09 (SEM), t(17) � 2.45,
p � 0.03; Figure 3).

Cross-validated prediction: accuracy
We first present results on the accuracy of whole-brain within-
modality prediction and cross prediction. Subsequently, we pres-
ent neuroscientific results on the predictive maps and their
similarity in ROIs.

Within-modality prediction
The time course of the true HR and SCL and the cross-validated
predicted time courses based on idiographic (within-person)
training are shown in Figure 3. For HR, the mean correlation
between predicted and true values across time was r � 0.54 	
0.05 (t(17) � 12.06, p � 0.001). For SCL, the mean correlation
between predicted and true values across time was r � 0.58 	
0.06 (t(17) � 9.45, p � 0.001; Fig. 3). Therefore, within-modality
prediction of each measure based on whole-brain patterns of
brain activity was relatively strong (see time course panels on the
right of Fig. 3), establishing that brain activity patterns are suffi-
cient to predict HR and SCL levels on out-of-sample data. They
are also comparably strong, indicating that neither measure was
substantially more strongly related to brain activity.

The predictive maps for HR and SCL were modestly but sig-
nificantly spatially correlated (r � 0.29 	 0.12, t(17) � 2.40, p �
0.03) across subjects, comparable to the correlation between HR
and SCL.

Cross-prediction
Cross-prediction of each measure using the predictive map
trained on the other measure (i.e., training on HR and testing on
SCL, and vice versa) can help to establish how much of the
within-modality relationship is attributable to a common, non-
measure-specific factor. Cross-prediction was significant for
both measures: r � 0.24 (t(17) � 2.42, p � 0.03) for training on
HR and testing on SCL and r � 0.28 (t(17) � 2.91, p � 0.01) for
training on SCL and testing on HR. However, they were substan-
tially weaker than within-modality prediction (HR: t(17) � 2.61,
p � 0.02; SCL: t(17) � 2.95, p � 0.01), indicating that the predic-
tive brain maps are capturing appreciable measure-specific
variance.

Figure 3. Correlations and SDs between observed and predicted HR and SCL and cross-prediction results with observed (black) and idiographically predicted HR (green) and SCL (blue) (z-scored).
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Dependence on task phase
To investigate task phase dependence, we assessed within-
measure prediction and cross-prediction separately for prestress,
speech preparation, and poststress periods. An ANOVA based
on the correlations with the factors task phase (pre, during,
post) and prediction type (HR¡HR, SCL¡SCL, HR¡SCL,
SCL¡HR) resulted in a significant main effect of task phase
(F(2,204) � 15.08, p � 0.001) and prediction type (F(3,204) � 8.91,
p � 0.001). In the prestress phase, only the within-measure
prediction for HR was significant (HR¡HR r � 0.16 	 0.06,
t(17) � 2.49, p � 0.02; SCL¡HR: r � 
0.12 	 0.09, t(17) � 
1.40,
p � 0.18; HR¡SCL: r � 
0.07 	 0.08, t(17) � 
0.91, p � 0.38;
SCL¡SCL: r � 0.12 	 0.14, t(17) � 0.87, p � 0.40; Fig. 4C). In the
speech preparation phase, during stress, both within-measure
prediction and cross-prediction were significant, with substan-
tially stronger associations within measure (HR¡HR: r � 0.35 	
0.06, t(17) � 5.75, p � 0.001; SCL¡HR: r � 0.22 	 0.08, t(17) �
2.75, p � 0.01; HR¡SCL: r � 0.23 	 0.07, t(17) � 3.27, p � 0.01;
SCL¡SCL: r � 0.58 	 0.07, t(17) � 8.84, p � 0.001). In the
poststress phase, within-measure prediction for both HR and

SCL and cross prediction of HR¡SCL were significant, with
stronger within-measure associations (HR¡HR: r � 0.29 	
0.07, t(17) � 4.25, p � 0.001; SCL¡HR: r � 0.06 	 0.09, t(17) �
0.69, p � 0.50; HR¡SCL: r � 0.20 	 0.08, t(17) � 2.43, p � 0.03;
SCL¡SCL: r � 0.45 	 0.11, t(17) � 4.05, p � 0.001; Fig. 4C).
These findings suggest that predictive patterns do not capture
baseline physiological fluctuations in the absence of stress in at
least some cases. However, they do not depend exclusively on
active thought processes occurring during speech preparation
because they are also present during the poststress epoch. Overall,
the relationship between the brain patterns observed and physi-
ological measures appears to be stress related and not strongly
dependent on active speech preparation.

Temporal considerations
To investigate the influence of temporal lag on the prediction, we
ran cross-validated analyses with temporally shifted data. For a
shift of SCL toward later stages of the BOLD response, correla-
tions between predicted and observed SCL significantly drop af-
ter shifting more than 20 TRs (Fig. 5, top left) and, for a shift

Figure 4. Correlations between predicted and observed HR and SCL. Bar graphs with solid outlines show the mean correlation between predicted levels based on brain patterns and actual
responses. Bar graphs with dotted outlines show cross-prediction, defined as responses in one brain pattern (e.g., HR-related) predicting levels of the other physiological response (e.g., SCL-related).
HR¡HR, Training with HR data, test on HR data; SCL¡HR, training with SCL data, test on HR data; HR¡SCL, training with HR data, test on SCL data; and SCL¡SCL, training with SCL data, test
on SCL data. A,Prediction– outcome correlations for idiographic prediction. B, Prediction– outcome correlations for group-based prediction. “Complete task” means across the entire stress run.
C, Prediction– outcome correlations for idiographic prediction within specific time windows: pre-task (left), during task (center), and post-task (right). ***p � 0.001, **p � 0.01, *p � 0.05.
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toward earlier stages of the BOLD, correlations significantly drop
after 25 TRs. Similarly, for a shift of HR toward later stages of the
BOLD response, correlations drop after 6 TRs (Fig. 5, bottom
left) and, for a shift toward earlier stages of the BOLD response,
correlations only drop significantly at more than 35 TRs. These
results show that the brain-autonomic correlations were fairly
insensitive to the relative timing of physiology and BOLD in this
dataset, which might be expected given the low temporal fre-
quency nature of the task.

Comparison with group-based prediction
The previous analyses have focused on investigating the predic-
tive value of idiographic (within-participant) weight maps within
and across measures. An additional question is to assess the sta-
bility of these weight maps across participants by evaluating how

well the group weight map generalizes to new participants. Using
leave-one-subject-out cross-validation, we found that both
group maps significantly predicted the time course of ANS re-
sponses in new participants, but substantially weaker than idio-
graphic prediction. HR-related brain patterns predicted both HR
(r � 0.32 	 0.07, t(17) � 4.57, p � 0.001) and SCL (r � 0.24 	
0.07, t(17) � 3.71, p � 0.002) equally strongly, showing compara-
ble accuracy for within-measure prediction and cross-prediction.
Likewise, SCL-related brain patterns predicted both SCL (r �
0.28 	 0.08, t(17) � 3.67, p � 0.002) and HR (r � 0.27 	 0.07,
t(17) � 3.63, p � 0.002) equally strongly (Fig. 4B). Therefore,
individualized predictive maps explain more variance in physiol-
ogy than group maps and are required to obtain autonomic
measure-specific brain maps. This suggests that group-level pre-

Figure 5. Correlations (and their SDs) between predicted and observed HR and SCL based on shifted data. Negative shifts (
1 to 
35) represent shifts in which HR and SCL data were aligned
to later TRs of the BOLD response, whereas positive shifts (�1 to �35) represent shifts in which HR and SCL data were aligned to earlier TRs of the BOLD response. Black indicates zero-shift
correlation related to the use of temporally aligned HR/SCL and BOLD data, which was used for the main analyses. Correlations (and their SDs) between predicted and observed SCL (top) and HR
(bottom) are based on shifted data. Negative shifts (
1 to 
35) represent shifts in which HR and SCL data were aligned to later TRs of the BOLD response, whereas positive shifts (�1 to �35)
represent shifts in which HR and SCL data were aligned to earlier TRs of the BOLD response. Black indicates zero-shift correlation related to the use of temporally aligned HR/SCL and BOLD data, which
was used for the main analyses. Asterisks mark significant t tests comparing the zero-shift correlation coefficient with the shifted correlation coefficients. ***p � 0.001, **p � 0.01, *p � 0.05.
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diction is less measure specific and likely reflects central mecha-
nisms of threat appraisal related to both measures.

Cross-validated prediction: characteristics of
predictive patterns
Pattern characteristics and ROIs
Although the entire pattern was used for prediction, weights in
several areas contributed consistently to the prediction of auto-
nomic responses across participants (Fig. 6). HR was predicted by
positive weights in the dorsal and posterior parts of the cingulate
and cerebellum and negative weights in the vPFC and dmPFC
hippocampus and temporal pole (Fig. 6, Table 1). SCL, in con-
trast, was predicted by positive weights in the rostromedial PFC
and cerebellum and negative weights in the vPFC and dmPFC
(Fig. 6, Table 2). We conducted additional analyses to identify
regions that were both unique and common to the prediction of
each autonomic signal.

Specificity of the predictive pattern for HR versus SCL
To identify regions that uniquely contributed to the prediction of
HR and SCL across participants, we conducted univariate paired
t tests between the within-subject HR and SCL maps. The analy-
ses above identify some commonalities in brain patterns predic-
tive of HR and SCL, indicative of shared representation. Next, we

sought to test for significant differences, which shed light on the
differential representation of HR and SCL in the brain. We esti-
mated an HR versus SCL difference map by subtracting the SCL
pattern map from the HR pattern map and repeating this proce-
dure with bootstrap resampling to obtain p-values and make in-

Figure 6. Predictive weight maps for HR and SCL. Maps are thresholded at p � 0.001 (one-tailed) for display and interpretation, but the entire whole-brain patterns were used in prediction.
Warm colors (orange/yellow) indicate increased predicted physiology with increasing brain activity and cool colors (blue) indicate decreased predicted physiology with increasing brain activity. Top,
Medial surface maps for HR (left) and SCL (middle) are shown, with the full patterns in dACC and vmPFC (two midline structures of a priori interest), as well as the difference map for HR 
 SCL (right).
Green outlines show the boundaries of Familywise Error Rate corrected results ( p � .05) based on a permutation test. Bottom, Montages of full maps showing axial slices from 
40 to 50 mm in 6
mm intervals for HR and SCL and for the difference HR 
 SCL. Positive predictive weights were found for both measures in dACC and superior cerebellum and negative weights were found in vmPFC
and temporal pole. However, the patterns were not strongly correlated in many other regions, indicating significant divergence between predictive maps for the two patterns. Specifically, vmPFC
and insula decreases and lateral prefrontal and pre-SMA increases were more strongly predictive of HR than SCL, whereas dmPFC increases were more strongly predictive of SCL (axial slices at the
bottom).

Table 1. HR-related weight map peak regions with positive and negative effects

Region x y z Voxels Volume (mm 3) t (df)

Temporal gyrus 
50 
14 
36 34 272 7.55 (17)
vmPFC 10 42 
30 1 8 
5.18 (17)
vmPFC 14 50 
24 2 16 
5.15 (17)
Lateral OFC 
20 40 
28 1 8 
5.84 (17)
OFC 14 44 
24 16 128 
6.21 (17)
OFC 
20 38 
20 88 704 
7.15 (17)
Lateral OFC 
24 42 
26 1 8 
5.11 (17)
Medial OFC 10 50 
12 2 16 
5.31 (17)
Superior frontal gyrus 0 48 42 2 16 
5.57 (17)
dlPFC 46 16 48 23 184 6.27 (17)
ACC 8 38 
10 101 808 
6.76 (17)a

Cerebellum 2 
52 
24 1 8 5.17 (17)
Pons 
12 
22 
38 3 24 
5.76 (17)

x, y, z, MNI coordinates; t, peak t-value, thresholded at 0.001.
aSurviving FWE correction.
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ferences about which brain regions significantly contributed to
differentially predicting physiology.

The results of this analysis highlight several regions that were
more strongly predictive of HR than SCL at p � 0.001 uncorrected.
Weights in the dACC and lateral prefrontal PFC were more posi-
tively associated with HR, whereas weights in the subgenual ACC
and dmPFC were more negatively associated with HR relative to SCL
(Fig. 6, bottom and top right). These results indicate that HR and
SCL are to some degree represented differentially across the brain,
particularly in the dACC, dmPFC, and vmPFC.

In addition to the whole-brain analyses, we also compared
local predictive patterns within ACC and vmPFC ROIs. Local
pattern responses reflect the local contribution of an ROI to the
overall prediction, controlling to some extent for activity in other
brain regions. The ACC parts of the weight maps for HR and SCL
were not significantly correlated (r � 0.04, t(17) � 0.68, p � 0.51),
whereas local vmPFC patterns showed strong correlations across
the two maps (r � 0.74, t(17) � 3.50, p � 0.003). This pattern of
findings indicates potential shared representations underlying
both measures in vmPFC and distinct representations in ACC.

Commonality of the predictive pattern for HR versus SCL: local
spatial similarity analyses
Although the HR and SCL patterns appear to have some degree of
differential representation across the brain, there are likely other
regions that have a more shared representation. To test local
pattern similarity throughout the brain, we used a “searchlight”
(spatial moving window) with a 5-voxel radius to identify brain
regions that had consistently strong correlations between the
HR- and SCL-predictive patterns across participants. The goal of
this analysis was to identify regions that had common shared
representations across the two patterns.

Results show the strongest correlated local patterns in vmPFC
extending into lateral OFC, anterior temporal cortices, parahip-
pocampal cortex, medial thalamus, paracentral lobule extending
into precuneus, temporoparietal junction, and brainstem ex-
tending into the approximate area of the locus ceruleus and PAG
(Fig. 7, Table 3). These analyses identify common representations
in a number of limbic and paralimbic cortical regions associated
with emotion, stress, and social cognition in previous studies
(Gianaros and Sheu, 2009; Frith and Frith, 2012; Lindquist et al.,
2012).

Pattern overlap with known networks: large-scale spatial pattern
similarity analysis
To test whether this pattern of potential common representations
is associated with specific previously identified cortical networks,
we calculated the similarity of the individual searchlight maps
with seven resting-state networks identified in a large sample of
1000 individuals (Buckner et al., 2011; Yeo et al., 2011; Choi et al.,
2012). Figure 7 shows the mean correlation with SEs across indi-
vidual participants for each of the seven networks. As shown in
Figure 7, the regions with correlated predictive patterns mapped
almost exclusively onto the “limbic” network identified in the
resting-state studies (Yeo et al., 2011), with a significant spatial

correlation with the limbic network (r � 0.03, p � 0.01) and
nonsignificant correlations with other networks, except visual
(r � 
0.02, p � 0.01).

Discussion
This study used machine learning to investigate the brain bases of
HR and SCL responses during social threat. Two brain patterns
were strongly predictive of the time course of HR and SCL. Each
pattern weakly predicted the other measure, indicating some
common brain representation and a substantial divergence in the
brain bases of each autonomic measure. Analysis of local pattern
similarity revealed correlated patterns, implying shared represen-
tation, in a “limbic” network including vmPFC and temporal and
parahippocampal cortices and portions of the thalamus and
brainstem (covering PAG and locus ceruleus) known to be ana-
tomically interconnected with this limbic cortical network and to
drive autonomic responses. Together, these results provide a
novel picture of shared and measure-specific brain representa-
tion of autonomic responses during stress, which is relevant for
understanding the unique health risks associated with specific
types of autonomic reactivity (Patel et al., 1995; Campbell and
Ehlert, 2012).

One system or many?: implications for patterned
autonomic responses
A pervasive hypothesis over the past century is that the ANS
operates as a unitary system when responding to stressors (Can-
non, 1935; Lazarus et al., 1963; Grandjean et al., 2008; Valenza et
al., 2012). However, there is also substantial evidence indicating
that outputs to different body systems (e.g., heart, skin, pupils,
bone marrow, and other organs) operate relatively independently
(Jänig and McLachlan, 1992; Norman et al., 2014). For example,
� antagonists block increases in HR, but not SCL, during stress
(Jacobs et al., 1994).

One question that has been difficult to address in human stud-
ies is whether unshared variance across HR and SCL (e.g., 86%
unshared in Croft et al., 2004) reflects measurement noise or
systematic differences indicative of true patterned responses
(Levenson, 2014). We observed similarly low correlations be-
tween HR and SCL, but also that each measure was much more
reliably predicted by an external referent, in this case brain activ-
ity. Therefore, the unshared variance across HR and SCL is not
noise; a substantial amount reflects true patterned autonomic
responses with an identifiable brain basis.

Among other differences, we found that predictive patterns in
the dACC are uncorrelated across measures. Furthermore, dACC
is more predictive of HR, whereas the vmPFC is more predictive
of SCL (Fig. 4). Our results are incompatible with a strong version
of unitary theories of stress-induced autonomic responses and
suggest that there is differential involvement of sympathetic and
parasympathetic divisions in HR and SCL (Berntson et al., 1994).
Sympathetic measures such as SCL likely have a similar delay as
the HRF, whereas parasympathetic contributions to HR are
thought to be more rapid (Berntson, Cacioppo, and Quigley,
1993; Berntson et al., 1997; Montano, Porta, and Malliani, 2001).
Therefore, it is possible that the observed differences between
SCL- and HR-related patterns could reflect differential involve-
ment of parasympathetic and sympathetic responses (Berntson et
al., 1997).

Multiple brain systems
The brain patterns that predicted autonomic activity were dis-
tributed across the brain, including regions in brainstem, me-

Table 2. SCL-related weight map peak regions with positive and negative effects

Region x y z Voxels Volume (mm 3) t (df)

Lateral OFG 
26 24 
30 4 32 
7.55 (17)a

Lateral OFG 
22 24 
26 7 56 
6.21 (17)
dACC 
20 8 52 8 64 5.84 (17)

x, y, z, MNI coordinates; t, peak t-value, thresholded at 0.001.
aSurviving FWE correction.
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dial and lateral prefrontal, temporal, and parietal cortices.
This extends an autonomic regulation network of brainstem
and some subcortical regions such as the hypothalamus
(Saper, 2002; Price et al., 2008) to areas of the PFC thought to
be involved in autonomic regulation (e.g., vmPFC, dACC, and
insula; see Critchley and Harrison, 2013) and some with a
role in autonomics that is less well understood (e.g., lateral
PFC). Interestingly, recent neuroanatomical work in monkeys
has shown multisynaptic projections to a peripheral sympa-
thetic effector system (the adrenal medulla) from multiple
discrete areas within the medial wall, including dorsal and
ventral aspects of the mPFC and SMA (Dum et al., 2016). This
diversity of regions parallels recent findings that emotional
states are not only related to activity in single areas of the
brain, but also to a complex network (Kassam et al., 2013;
Nummenmaa et al., 2014; Kragel and LaBar, 2015).

Our HR-predictive patterns, in particular, also identified mul-
tiple areas of the dorsal and ventral mPFC and SMA (Fig. 6), as in
the recent study by Dum et al. (2016). Interestingly, the weight
maps for HR and SCL also differ in another respect: the pattern
for HR includes larger clusters compared with the pattern for
SCL. Because we also show that SCL can be predicted as well as
HR, we cannot assume that these differences are based on meth-
odological issues, but the HR-related pattern seems to be more
localized, capturing more variance, whereas the pattern for SCL is
more distributed across systems.

Further, the comparison analyses with established networks
(Yeo et al., 2011) and the spatial similarity maps of HR and SCL
predictive maps showed an overlap with the resting-state-derived
network for limbic activity that is relevant for emotional re-
sponding such as in the context of acute stress, validating the
emotional stress-related nature of the predictive maps.

Context dependence and limits on generalizability
The current results are based on a single social threat paradigm
that has been widely studied because it can create powerful phys-
iological responses in a laboratory environment and is ethically
possible (Dickerson and Kemeny, 2004). These predictive pat-
terns’ generalizability to other emotional situations must be
tested empirically in future studies. The patterns that we identi-
fied are likely to be related to stress, but not driven solely by the
cognitive demands of speech preparation per se because they still
correlate with HR and SCL in the post-task phase, when the de-
mand to prepare the speech is removed but many individuals feel
residual stress. In addition, the brain areas most closely related to
autonomic responses in this study—including vmPFC, dACC,
insula, amgydala, and others—are related to autonomic changes
across diverse challenges in human studies (Gianaros and Sheu,
2009; Beissner et al., 2013; Chang et al., 2015; Gianaros and Wa-
ger, 2015) and animal models of stress (Saper, 2002).

To more fully test the context dependency of brain–auto-
nomic relationships, studies involving different types of tasks are
needed, particularly measuring multiple types of autonomic
activity moment by moment, as we did here. This will also con-
tribute to clarifying the effect of time lags. We observed some
invariance in the predictive validity within a range of �80 s. We
believe this lack of specificity at smaller temporal shifts can be
attributed to the slow-frequency design of the study (�.01 Hz).
Future work should further investigate this question with a de-
sign more amenable to identifying the specificity of the temporal
response.

Limitations
A benefit of the current approach is that it tracks within-person,
moment-by-moment variation in autonomic responses across
time (Levenson, 2014). This within-person approach is more ro-
bust to systematic noise caused by heterogeneity across partici-
pants in brain size and shape and nuisance factors affecting
BOLD signal magnitude (e.g., hematocrit levels and caffeine in-
take) than individual differences approaches. However, our study
is limited to one type of stress and the generalizability to other
stressors and emotion-related remains unknown.

Another endemic issue when studying physiology is the pos-
sibility that HR-related activity reflects physiological (e.g., vascu-
lar, motion) artifacts rather than neural/glial changes of interest.
Although this is possible to some extent, we think that such con-
founds are unlikely to drive our results for several reasons. First,
the regions that we identified as being the most important for
prediction are known to be critical for neural control of auto-
nomics in animal models and human stimulation and lesion

Figure 7. Spatial similarity analysis showing areas with significant local pattern correlations for HR- and SCL-predictive patterns. These results complement the previous analyses showing the
strongest correlated local patterns in vmPFC extending into lateral OFC, anterior temporal cortices, medial thalamus, paracentral lobule extending into precuneus, temporoparietal junction,
brainstem extending into area covering LC and PAG and parahippocampal cortex (left). Comparing the spatial similarities with known networks (Buckner et al., 2011; Yeo et al., 2011) shows a
significant overlap with the limbic network.

Table 3. Peak regions with positive and negative effects for representational
similarity analysis

Region x y z Voxels Volume (mm 3) t (df)

Middle temporal gyrus 56 8 
18 17 136 4.53 (17)
Superior temporal gyrus 46 
44 18 49 392 6.06 (17)
Inferior parietal lobe 40 
36 44 37 296 5.66 (17)
Paracentral lobule 
2 
38 64 16 128 4.6 (17)
Medial orbitofrontal cortex 
4 42 
30 19 152 5.18 (17)
Insula 46 0 
26 13 104 5.32 (17)
Anterior insular cortex 
56 18 
16 21 168 4.39 (17)
Cerebellum 12 
54 
44 11 88 4.96 (17)

x, y, z, MNI coordinates; t, peak t-value, thresholded at 0.001.
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studies (Saper, 2002; Critchley et al., 2003). Second, vascular con-
founds typically involve patterns that include the borders of fluid
spaces and large vessels, particularly around the base of the brain,
which we did not observe here (Glover et al., 2004). Third, dif-
ferent patterns of brain activity are differentially predictive of HR
and SCL levels, which is incompatible with global confounds.

In addition, we did not separate cardiac effects related to ver-
sus unrelated to the respiratory cycle. HR is linked physiologically
to respiration and these relationships seems to be mediated by
blood CO2-sensing systems in the brain (Porges and Byrne, 1992;
Cacioppo et al., 1994; Brooks et al., 2013) and likely in part
through the baroreceptor reflex circuit (Gianaros and Wager,
2015). These respiration effects on HR can sometimes be artifacts
(i.e., related to chest wall motion), but are widely thought to be
largely nonartifactual, reflecting complex interactions between
the respiratory and cardiovascular systems. Therefore, we opted
not to try to separate out respiratory effects here.

Conclusion
In summary, we found evidence for both common and measure-
specific brain patterns that predict physiological responses to
social threat. These findings suggest that social threat does not
result in a unitary autonomic response, but rather in multiple
autonomic responses in different body systems that are largely
decoupled, but nonetheless related to identifiable patterns of
brain activity. These findings are relevant not only for under-
standing stress responses and how they should be investigated in
future research, but also for our understanding of how coherent
physiological measures of autonomic activity really are. They are
also relevant for identifying brain patterns related to specific au-
tonomic measures that confer specific types of health risks.
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