2558 - The Journal of Neuroscience, March 2, 2016 - 36(9):2558 —2560

Journal Club

Editor’s Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral
fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more
information on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml.

Understanding the Role of miR-33 in Brain Lipid
Metabolism: Implications for Alzheimer’s Disease

Florence Jaouen' and ““Eduardo Gascon?
Developmental Biology Institute of Marseille (IBDM), UMR7288 CNRS Universite Aix-Marseille, Scientific Campus of Luminy, 13288 Marseille Cedex 09,
France, and 2Neuroscience Institute of La Timone, UMR7289 CNRS Universite Aix-Marseille, 27, 13005 Marseille, France

Review of Kim et al.

Because of its incidence and devastating
consequences, Alzheimer’s disease (AD)
has attracted much research attention
over the last decades. Intensive work has
led to the identification of several cellular
and molecular pathophysiological pro-
cesses present in the disease, including
tau alterations, (-amyloid (AB) depo-
sition, lipid homeostasis dysregulation,
excitotoxicity, neuroinflammation, and
autophagy defects (Di Paolo and Kim,
2011; Ittner and Gotz, 2011; Heppner et
al., 2015; Menzies et al., 2015; Wang and
Mandelkow, 2016). Despite much effort,
how these different pathways interact and
contribute to disease pathogenesis rem-
ains poorly understood.

Recent work has begun to investigate a
possible role of microRNAs (miRNAs) in
the development of AD (Femminella et
al., 2015). miRNAs are a class of short
noncoding regulatory RNAs that silence
gene expression in plants, invertebrates,
and mammals, including humans (Bartel,
2009). Mechanistically, miRNAs bind
to short sequences found in target tran-
scripts, resulting in mRNA destabiliza-
tion and/or translational repression. The
target sequence for a particular miRNA
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could be present in hundreds of mRNAs
and a single transcript can, in turn, be tar-
geted by multiple mRNAs (Huntzinger
and Izaurralde, 2011). Because of this
combinatorial mode of action, miRNAs
are thought to act as high-order regula-
tors of gene expression. Not surprisingly,
miRNAs are involved in multiple biologi-
cal processes (van Rooij et al., 2007; Pauli
etal., 2011; Tan et al., 2013) and accumu-
lating data suggest that disruption of
miRNAs networks contribute to human
disorders, including neurodegenerative
diseases (Esteller, 2011; Gascon and Gao,
2012; Abe and Bonini, 2013). Moreover,
transcriptomic studies have described
specific and consistent alterations in
miRNAs associated with AD, and some
targets of these miRNAs have been impli-
cated in pathophysiological cascades rele-
vant to the disease (Femminella et al.,
2015). Unfortunately, direct experimental
data arguing for a causal role of miRNAs
in AD are still scarce.

Work by Horie et al. (2010, 2012)
suggests that miR-33 might be particu-
larly important in these pathological cas-
cades. They reported that miR-33 controls
the expression of the cholesterol trans-
porter, ABCALI, and reduces HDL choles-
terol levels systemically (Horie et al., 2010).
Genetic deletion of miR-33 induced plaque
regression in a mouse model of atheroscle-
rosis (Horie et al., 2012). This is relevant to
AD because there is extensive literature sup-
port for a connection between cholesterol
and B-amyloid homeostasis (Puglielli et al.,

2001; Jiang et al., 2008; Choi et al., 2015).
The presence of AB plaques, formed by the
sequential cleavage of the amyloid precursor
protein (APP) and deposition of AB oli-
gomers, is a prominent neuropathologic
feature of the disease and is thought to be
central to AD development (Nhan et al.,
2015). Moreover, polymorphisms of several
genes encoding proteins that regulate cho-
lesterol metabolism such as ApoE and
ABCA1 have been associated with AD risk
(Corder et al., 1993; Koldamova et al., 2010;
Cramer et al., 2012). Therefore, if miR-33
also controls ABCAI expression in the
brain, it may have profound effects on
cholesterol transport and therefore AB
accumulation.

To test this idea, Kim et al. (2015) first
examined miR-33 expression across differ-
ent tissues and cell types. Remarkably,
miR-33 was enriched in the brain—partic-
ularly in the cortex—and preferentially ex-
pressed by neurons. They next asked
whether ABCAL is a target of miR-33 in
the brain. For that purpose, the authors
quantified cortical levels of ABCAI in miR-
337/ mice (Horie et al., 2010). Levels were
significantly higher in miR-33-deficient an-
imals than in wild-type, suggesting that
ABCAL1 is also a miR-33 target in the ner-
vous system. miR-33 overexpression in a
neuronal cell line as well as in primary astro-
cytes also regulated ABCA1 levels, further
confirming the direct regulation of ABCA1
via miR-33.

The authors next asked whether
miR-33 affected AB production. Indeed,
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Schematic representation of the main findings reported in this study as well as of other pathways potentially

requlated by miR-33 relevant to AD. Kim et al. (2015) demonstrated the essential function of miR-33 in modulating ABCA1
expression and how this transporter influenced cholesterol content of ApoE and, thereby, A3 production and degradation (black
fonts, center). miR-33 might exert further control on lipid metabolism by regulating the expression of the transcription factors
SRBEF1 and 2 (white fonts, left). Other miR-33 targets (e.g., cyclin-dependent kinases) might further contribute to AD pathogen-
esis by activating complementary pathways [e.g., tau phosphorylation (white fonts, right)].

in cell lines expressing mutated APP,
miR-33 transfection resulted not only in a
reduction of ABCA1 but also in increased
secretion of AB. The ability of different
cell types to degrade synthetic A was also
impaired by miR-33. Remarkably, restor-
ing ABCAIl levels (using a miR-33-
resistant construct) abolished the effects
of miR-33 on AB homeostasis. Together,
these findings strongly suggested that
miR-33 control AB deposition by modu-
lating ABCAL levels.

Finally, Kim et al. (2015) validated the
involvement of miR-33 in A regulation
in vivo. First, they showed that miR-33""~
mice had reduced cortical levels of AB
products (AB,, and AB,,) but normal
APP levels. Then, using a mouse model of
AD, they found that chronic treatment
with a miR-33 antagonist caused a signif-
icant decrease in AB,,. Overall, the data
presented by Kim et al. (2015) provided
additional evidence of the links between
cholesterol and AB metabolism in the
brain and, more importantly, pinpointed
the essential role of miR-33 in modulating
this pathogenic pathway.

Kim et al. (2015) demonstrated that
most cellular changes induced by manip-
ulation of miR-33 levels could be rescued
by ABCAI, indicating that this trans-
porter is a central target in miR-33 regu-
latory events. Consistent with this notion,
many previous studies have shown that
some targets are more important than
others depending on the context (Cassidy
et al., 2013; Gascon et al., 2014). Never-

theless, miRNAs simultaneously silence
multiple transcripts and regulation of
other targets might result in synergistic
effects. In this regard, it is worth noting
that miR-33 controls the expression of
SREBF1, a transcription factor known to
modulate several genes involved in the
synthesis and uptake of cholesterol (Horie
et al., 2013). Furthermore, miR-33 is em-
bedded in the locus of SREBF2, another
member of the same family (Horie et al.,
2010). Since intragenic miRNAs fre-
quently target their host genes (Kos et
al., 2012; Yuva-Aydemir et al., 2015), an
attractive hypothesis is that miR-33
might control lipid homeostasis at mul-
tiple levels, thus acting as a molecular
hub (Fig. 1).

Along the same lines, computational
algorithms (e.g., TargetScan) indicate that
miR-33 may target multiple kinases fami-
lies including those involved in tau phos-
phorylation, such as cyclin-dependent
kinases or mitogen-activated protein ki-
nases (Rudrabhatla, 2014). It is important
to remember that although multiple the-
oretical scenarios regarding AD patho-
genesis have been postulated, no single
theory can successfully account for the
clinical heterogeneity observed in the dis-
ease. Kim et al. (2015) demonstrated, in
vitro and in vivo, a connection between A3
deposition, cholesterol homeostasis, and
miR-33 in the brain, suggesting that multi-
ple mechanisms may simultaneously con-
tribute to disease. It would be therefore
interesting to assess, for example, whether
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miR-33 affects other known cascades, such
as tau phosphorylation (Fig. 1).

It is important to note that Kim et al.
(2015) did not investigate miR-33 levels in
the brain of AD patients. A rapid survey to
the deposited data in GEO (Gene Expres-
sion Omnibus) profiles showed that no
changes in either miR-33a or miR-33b
(two miR-33 homologs found in humans)
were observed in three independent stud-
ies ( Hébert et al., 2013; Lau et al., 2013;
Santa-Maria et al., 2015). Although these
data do not support the hypothesis that
miR-33 contributes to AD pathology, they
should be interpreted cautiously given the
number of confounding variables intrin-
sic to these profiling studies. In addition
to the heterogeneity of AD itself, variable
comor-
bidities in analyzed cohorts, different
postmortem intervals, or technical dis-
parities might preclude the detection of
miRNAs changes. In this regard, one
could take advantage of miRNA profiling
in mouse models of AD. Here, again,
miR-33 expression was not significantly
modified in the hippocampus of two dif-
ferent transgenic mice overexpressing
APP (Barak et al., 2013; Noh et al., 2014),
suggesting that miR-33 might not be in-
volved in the pathogenesis of the disease.
Nonetheless, as Kim et al. (2015) stated in
their discussion, miR-33 may represent an
attractive therapeutic target.

Regarding the therapeutic potential of
miR-33 in AD, one should first address an
essential question: would altering miR-33
levels alleviate cognitive deficits associated
with AD? This is an important question that
remains unexplored. Notably, there is con-
flicting evidence regarding the contribution
of AB burden on functional impairment:
some treatments have been shown to im-
prove behavioral deficits without affecting
AB pathology (Jankowsky et al., 2005;
Cuadrado-Tejedor et al., 2011) whereas
others found an inverse correlation between
plaque content and behavioral performance
(Cramer et al., 2012; Verma et al., 2015).
Nevertheless, accumulating data indicate
that soluble A, rather than the insoluble
material in the plaques, is the toxic species in
AD (Fedele et al., 2015; Ferreira et al., 2015).
Since miR-33 modulates both the genera-
tion and removal of AB oligomers, results
obtained in this study support a positive
effect of manipulating miR-33 levels on
behavioral outcomes. Further work should
evaluate this crucial issue and clarify
whether treatments targeting miR-33 in
mice are beneficial in reverting memory loss
or other AD-associated symptoms as well as
molecular pathology.
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